
BIBLIOTECA 

Document downloaded from the institutional repository of the University 
of Alcala: http://dspace.uah.es/dspace/ 

This is a postprint version of the following published document: 

Lopez-Carmona, M.A., Marsa-Maestre, I., Hoz, E. de la, Velasco, J. R. , 
2011, “A region-based multi-issue negotiation protocol for non-
monotonic utility spaces, Computational Intelligence, V. 27, n.2 , p. 
166-217. 

Available at http://dx.doi.org/10.1111/j.1467-8640.2011.00377.x 

Copyright 2011 Wiley Online Library 

(Article begins on next page) 

This work is licensed under a 

Creative Commons Attribution-NonCommercial-NoDerivatives 

4.0 International License. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by e_Buah - Biblioteca Digital de la Universidad de Alcalá

https://core.ac.uk/display/230117535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dspace.uah.es/dspace/
http://dx.doi.org/10.1111/j.1467-8640.2011.00377.x


A REGION-BASED MULTI-ISSUE NEGOTIATION PROTOCOL
FOR NON-MONOTONIC UTILITY SPACES

Miguel A. Lopez-Carmona ∗, Ivan Marsa-Maestre, Enrique de la Hoz and Juan R. Velasco

Department of Computer Engineering, Universidad de Alcala, Madrid, Spain

Abstract

Non-monotonic utility spaces are found in multi-issue negotiations where the preferences on the issues yield mul-
tiple local optima. These negotiations are specially challenging because of the inherent complexity of the search space
and the difficulty of learning the opponent’s preferences. Most current solutions successfully address moderately
complex preference scenarios, while solutions intended to operate in highly complex spaces are constrained by very
specific preference structures. To overcome these problems, we propose the Region-Based Multi-issue Negotiation
Protocol (RBNP) for bilateral automated negotiation. RBNP is built upon a non-mediated recursive bargaining mech-
anism which efficiently modulates a region-based joint exploration of the solution space. We empirically demonstrate
that RBNP produces outcomes close to the Pareto frontier in acceptable negotiation times, and show that it provides
a significantly better performance when compared to a generic Similarity-Based Multi-issue Negotiation Protocol
(SBNP), which has been successfully used in many negotiation models. We have paid atention to the strategic issues,
proposing and evaluating several concession mechanisms, and analyzing the equilibrium conditions. Results suggest
that RBNP may used as a basis to develop negotiation mechanisms in non-monotonic utility spaces.
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1 Introduction
Automated negotiation provides an important mechanism to reach agreements among distributed decision makers
[Rosenschein and Zlotkin, 1994, Kraus et al., 1998, Beer et al., 1999, Lai et al., 2004]. It may be seen as a paradigm
to solve coordination and cooperation problems in complex systems [Klein et al., 2002, Jennings, 2001], providing a
mechanism for autonomous agents to reach agreements on, e.g., task allocation, resource sharing, or surplus division
[Kersten and Noronha, 1998, Fatima et al., 2004, Buttner, 2006]. Of particular interest is multi-issue negotiation,
which is concerned with reaching an agreement on a deal involving multiple issues, where it is possible to make issue
tradeoffs to search for win-win solutions. This allows to avoid sub-optimal deals; namely, agreements that one party
can modify to obtain better payoff without negatively impacting the others [Raiffa, 1982].

Multi-issue negotiation scenarios may involve complex non-monotonic preference spaces [Ito et al., 2008, Marsa-
Maestre et al., 2009b], where reaching Pareto efficient agreements may be computationally hard. For example, in
a sensor-network scenario, we can have a robot which performs information aggregation tasks for different service
providers. These aggregation tasks depend on the data gathered by different sensors which are distributed throughout
the environment. Different providers rely on different kind of sensors to provide their services, and thus each provider
has a different preference on the optimal location of the aggregation robot, since its distance to the different sensors
affects the qualitiy of the services they provide. This scenario defines a nonlinear preference space on three dimensions,
where proximity to each kind of sensor used by a service provider yields a given utility, which depends on the distance
to that sensor, and utilities corresponding to each sensor are aggregated to compute the overall utility that a certain
robot location yields to a provider. More dimensions may be added to the problem if we consider, for instance,
temporal variations of utility (due to variations on service demand) or sensor uptime or remaining battery.

The complexity of non-monotonic scenarios arises at least from three main factors: the difficulty of reaching
Pareto optimal outcomes between self-interested agents in an incomplete information environment (i.e., parties know
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nothing about each other), the computational overhead imposed by local exploration of the preference space, and the
complexity of deducing and learning each other’s preferences. The main objective of this work is therefore to develop
effective mechanisms for negotiating under complex preference spaces.

In multi-issue negotiation, there may exist different offers which provide an agent the same utility level. Which
offer to propose is usually nontrivial, and should be based on selecting the offer that maximizes the opponent’s utility,
so that the opponent is more likely to accept the offer. In order to select this offer, similarity criteria have been
widely used to approximate the preferences of the opponents in many negotiation models [Choi et al., 2001, Faratin
et al., 2002, Lau et al., 2004, Kraus et al., 1998]. When using this approach, it is expected that the more similar is an
offer to the previous opponent’s offers, the higher probability exists for the offer to be accepted. Thus, this idea has
been successfully tested mainly in monotonic preference scenarios [Coehoorn and Jennings, 2004, Faratin et al., 2002,
Lopez-Carmona et al., 2010].

Our first objective is to test the performance of similarity-based negotiation under non-monotonic settings. The
approach we take to test this issue is based on the generic Similarity-Based Negotiation Protocol (SBNP) for bilateral
negotiations proposed by Lai and Sycara [2009], which is built on an iterative constrained optimization mechanism.
Though Lai’s work is focused on the analysis of SBNP using monotonic utility functions, the protocol and decision
mechanisms they propose can be applied to non-monotonic scenarios. To adapt the decision mechanisms to different
types of preference structures, the only requirement is to use an adequate optimizer. For example, with monotonic
preferences we may use gradient based optimization techniques, while in non-monotonic or discontinuous prefer-
ence scenarios derivative-free optimization will be a better choice. A detailed description and discussion of SBNP is
provided in Section 4.

It is expected that non-monotonicity of preferences makes similarity a weak criterion because of the lack of in-
formation about the opponent’s preference structure. Thus, our second objective is to propose a negotiation protocol
which can efficiently operate in complex utility spaces where the similarity-based approach fails. Our proposal is
the region-based automated multi-issue negotiation protocol (RBNP), which is built upon a recursive non-mediated
bargaining mechanism.

RBNP is inspired by pattern search optimization methods [Lewis et al., 2000]. Pattern search methods are char-
acterized by a series of exploratory moves that consider the behavior of the objective function at a pattern of points,
all of them lying on a rational lattice or mesh around a current reference point. The exploratory moves consist of a
systematic strategy for visiting points in the lattice in the inmmediate vicinity of the current iterate. After polling, the
algorithm changes the value of the mesh size. The default is doubling the current mesh size after a successful poll,
and halving after an unsuccessful poll. A poll is considered successful when there is at least one mesh point which
improves the reference point value. In this case, the next iteration reference point is the mesh point which has provided
a better improvement in the objective function value. Optimization finishes when the mesh size is less than a given
mesh tolerance.

The main advantage of direct search methods like pattern search is that they do not need to compute derivatives,
so they usually perform well with non-monotonic and non-differentiable functions. In this work we decided to extend
some of the pattern search principles to the automated negotiation domain. Taking this into account, RBNP captures
the idea of mesh expanding and contracting in order to perform a region-based distributed search on the solution space.
Note, however, that the problem to solve in a non-mediated negotiation scenario is significantly different from classical
single-objective or multi-objective optimization. In non-mediated negotiation, the objective functions (i.e., the agents’
utility functions) are not revealed to the opponents, and thus, there is no a centralized optimization process.

To incorporate the iterative exploration fundamentals of pattern search into RBNP, we propose switching from a
contract exchange based interaction protocol to a region offer exchange interaction protocol. The joint exploration of
the solution space is recursive. This means that when agents agree on an offer (a region proposed by an agent), a new
bargaining is performed using lower sized regions within the previously agreed region. This process may be seen as
an iterative zoom in or mesh contraction on the solution space. The end is reached as soon as agents decide that the
agreed region is small enough to be considered a contract. In a similar way to mesh expansion, agents may zoom out
on the solution space to avoid zones of no agreement and therefore reinitiate the bargaining process on different higher
sized regions.

SBNP and RBNP have been tested under monotonic and non-monotonic scenarios. Results show that RBNP
outperforms SBNP, and that RBNP results in approximate Pareto optimal outcomes obtained in reasonable times.
We have paid atention to the utility concession strategies played by the negotiating agents in a negotiation encounter
[Fatima et al., 2005, Faratin et al., 1998b]. Thus, we propose three different concession strategies for RBNP and
evaluate the strategic issues and equilibrium conditions of the protocol when agents using the strategies interact.
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The rest of the paper is organized as follows. In Section 2 we review the related research. Section 3 describes
how we have simulated the monotonic and non-monotonic negotiation scenarios. Section 4 evaluates the behaviour
of SBNP in monotonic and non-monotonic negotiation scenarios. Section 5 presents RBNP and in Section 6 it is
empirically evaluated. Finally, Section 7 reviews the strategic issues, and the last section summarizes our conclusions
and sheds light on some future research.

2 Related Research
Klein et al. [2003] present, as far as we are aware, the first negotiation mechanisms intended for complex preference
spaces. They propose a simulated annealing-based approach, a refined version based on a parity-maintaining annealing
mediator, and an unmediated version of the negotiation protocol for bilateral negotiation with binary issues and binary
dependencies. Soft constraints have been reported as a very useful framework to represent preferences [Zhang and
Pu, 2004]. Hence, there are several works which propose a fuzzy constraint based framework for bilateral multi-
issue negotiations [Luo et al., 2003, Lai and Lin, 2004, Lopez-Carmona and Velasco, 2006, Lopez-Carmona et al.,
2007]. Though these approaches may operate with non-monotonic preferences, they assume that the whole preference
space can be ordered as a set of hard constraints prior to negotiation, which limits their application to more general
preference models. Ito et al. [2008] proposed a multi-party bidding-based protocol to deal with complex utility spaces
generated using weighted constraints. In constrast to the fuzzy constraint based works, weighted constraints need
not to be ordered. The preference space admits high-order dependencies, and issues are not restricted to a binary
domain. In Marsa-Maestre et al. [2009c,a] we showed that the performance of the multi-party bidding-based protocol
decreases drastically in highly non-monotonic utility scenarios. Hence we defined a set of mechanisms for the bidding
and deal identification processes which improve the previous approaches in terms of optimality and scalability. The
mechanisms take into account both the utility of a bid for an agent and its viability (a measure of the likelihood of the
bid to yield a deal). The balance between bid utility and deal probability yields a significant improvement in terms
of optimality rate and failure rate in highly non-monotonic scenarios. In addition, we proposed a probabilistic search
mechanism for the mediator which lowers the scalability problem while achieving acceptable optimality rates, and
an iterative expressive negotiation protocol to give feedback to the agents in case no deals have been found with the
initial bids. The main disadvantage of these approaches is that they are restricted to constraint-based utility spaces and
cannot be used with other types of utility functions or in non-mediated scenarios.

Another interesting approach to solve the computational cost and complexity of non-monotonic spaces is to trans-
form the negotiation space. Hindriks et al. [2006] propose a weighted approximation technique to simplify the utility
space. They show that for smooth utility functions the application of this technique results in an outcome that closely
matches the outcome based on the original utility structure. The limitation of this approach is that it is only applica-
ble to smooth utility functions, and that it is necessary to estimate a region within the utility space where the actual
outcome is expected to be (i.e., it is assumed that this region is known a priori by the agents). Fatima et al. [2009]
analyze bilateral multi-issue negotiation involving nonlinear utility functions. They consider the case where issues are
divisible and there are time constraints in the form of deadlines and discounts, and show that it is possible to reach
Pareto optimal agreements by negotiating all the issues together, and that finding an equilibrium is not computationally
easy if the agents’ utility functions are nonlinear. In order to overcome this complexity they investigate two solutions:
approximating nonlinear utility spaces with linear functions, and using a simultaneous procedure where the issues are
discussed in parallel but independently of each other. They show that the equilibrium solution can be computed in
polynomial time. However, their work is focused on symmetric negotiations where the agent’s preferences are iden-
tically distributed, and the utility functions are separable in nonlinear polynomials of a single variable. In Robu et al.
[2005] utility graphs are used to model issue interdependencies for binary-valued issues. Utility graphs are inspired
by graph theory and probabilistic influence networks to derive efficient heuristics for non-mediated bilateral negoti-
ations about multiple issues. The underlying idea is to decompose highly non-linear utility functions in sub-utilities
of clusters of inter-related issues. They show how utility graphs can be used to model an opponent’s preferences. In
this approach agents need prior information about the maximal structure of the utility space under consideration. Au-
thors argue that this prior information could be obtained through a history of past negotiations or the input of domain
experts.

There are also several proposals which employ genetic algorithms to learn opponent’s preferences according to
the history of the counter-offers based upon stochastic approximations. In Choi et al. [2001] a system based on
genetic-algorithms for electronic business is proposed. The utility functions are restricted to take the form of a product
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combination (i.e., utility of an outcome is the product of the utility values of the different issues). The objective
function used is based on the comparison of the changes in consecutive offers. Small changes in an issue suggest
that this issue is more important. For each new population, the protocol enforces that generated candidates cannot
be better than the previous offer. Unlike other negotiation models based on genetic algorithms, this proposal adapts
to the environment by dynamically modifying its mutation rate. Another negotiation mechanism for non-mediated
negotiation based on genetic algorithms can be found in Lau et al. [2004]. The proposed fitness function relies on
three aspects: an agent’s own preference, the distance of a candidate offer from the previous opponent’s offer, and
time pressure. In this work agents’ preferences are quantified by a linear aggregation of the issue valuations. However,
non-monotonic and discontinuous preference spaces are not explored. In Chou et al. [2007] a genetic algorithm
is proposed which is based on a joint elitism operation and a joint fitness operation. In the joint elitism operation
an agent stores the latest offers received from the opponent. The joint fitness operation combines the agent’s own
utility function and the euclidean distance to the opponent’s offer. In this work two different negotiation scenarios
are considered. In the first one, utility is defined as the weighted sum of the different issue values (i.e., issues are
independent). The second scenario defines a utility function where there is a master issue and a set of slave issues.
Utility is calculated as the weighted sum of the different issue values, where the weights of the slave issued are set
according to the value of the master issue.

Finally, in Yager [2007] a mediated negotiation framework for multi-agent negotiation is presented. This frame-
work involves a mediation step in which the individual preference functions are aggregated to obtain a group preference
function. The main interest is focused on the implementation of the mediation rule where they allow a linguistic de-
scription of the rule using fuzzy logic. A notable feature of their approach is the inclusion of a rewarding mechanism
for agents open to alternatives which are not their preferred choices. The negotiation space and utility values are
assumed to be arbitrary (i.e., preferences can be non-monotonic). However, the set of possible solutions is defined a
priori and is fixed. Moreover, the preference function needs to be provided to the mediation step in the negotiation
process, and pareto optimality is not considered. Instead, a stopping rule is considered, which determines when the
rounds of mediation stop.

In summary, in the existing research nearly all the models which assume non-monotonic utility spaces rely on
binary valued issues, low-order dependencies, or a fixed set of defined a priori solutions. Simplification of the ne-
gotiation space has also been reported as a valid approach for simple utility functions. Finally, the existing works
that assume highly non-monotonic utility spaces are focused on constraint-based preference structures and mediated
solutions. Therefore, new approaches are needed if automated negotiation is to be applied to non-mediated settings
involving non-monotonic preference spaces.

3 Monotonic and Non-monotonic Negotiation Scenarios
In this section we describe how the monotonic and non-monotonic preference scenarios have been simulated. In both
scenarios we consider two agents, each one with its own private utility function, which automatically negotiate a deal
on two or more issues.

3.1 Monotonic Negotiation Scenarios
The monotonic negotiation scenarios are simulated with Constant Elasticity of Substitution (CES) utility functions
[Mas-Colell et al., 1995]. Their functional form is widely used in economics as a production function, and in
consumer theory as a utility function.

Definition 1 The CES utility functions for two agents Ab and As, and a contract space of n issues are respectively
defined by

Ub(s) = (
∑
i=1

αb,i · xi)1/βb ,

Us(s) = (

n∑
i=1

αs,i · (100− xi)βs)1/βs

where s = (x1, x2, . . . , xn) is a contract and xi the ith issue, αx,i is the share parameter, and βx is the elasticity of

substitution parameter. The CES utility functions we use satisfy that:
n∑
i=1

αx,i = 1, 0 ≤ αx,i ≤ 1, and 0 < βx ≤ 1. To
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ensure conflicting interests, we assume increasing preferences on the issues for agent Ab, and decreasing preferences
for agent As.

In order to provide diversity to the instantiation of a monotonic scenario, the followed strategy is to generate four
different utility function pairs by randomly choosing the α and β parameters:

CES scenario =


U1
b (s) U1

s (s)
U2
b (s) U2

s (s)
U3
b (s) U3

s (s)
U4
b (s) U4

s (s)

 .
Thus, the evaluation of a CES scenario implies the execution of a predefined number of negotiations over each pair

of utility functions.We have run 25 negotiations per CES utility function pair
(
Ukb (s)Uks (s)

)
, which implies a total of

25(negotiations)× 4(pairs) = 100 negotiations.

3.2 Non-monotonic Negotiation Scenarios
The non-monotonic negotiation scenarios are created using an aggregation of Bell functions. We have chosen this
type of utility functions because they capture the intuition that agents’ utilities for a contract usually decline gradually,
rather than step-wise, with distance from their ideal contract. Bell functions are ideally suited to model, for instance,
spatial and temporal preferences. In addition, they provide us with the capability of configurating different negotiation
scenarios in terms of different non-monotonicity degrees. Specifically, we can easily modulate the negotiation space
correlation length. Correlation length is defined as the minimum distance between samples in the utility space which
makes the correlation between those samples drop below 0.5. Therefore, a low correlation length implies a highly
rugged preference space. This measure has been also used to assess fitness landscape complexity in evolutionary
computation [Weinberger, 1990].

Definition 2 A Bell function is defined by a center c, height h, and a radius r. Let ‖ s− c ‖ be the euclidean distance
from the center c to a contract s, then the Bell function is defined as

fbell(s, c, h, r) =


h− 2h‖s−c‖

2

r2 if ‖ s− c ‖< r/2,
2h
r2 (‖ s− c ‖ −r)2 if r >‖ s− c ‖≥ r/2 ,
0 ‖ s− c ‖≥ r

and the Bell utility function as

Ub,s(s) =

nb∑
i

fbell(s, ci, hi, ri) ,

where, ci ∈ [0, 100]n, hi ∈ [hmin, hmax] and ri ∈ [rmin, rmax], are randomly generated within the predefined
intervals to construct an instance of utility function. Thus, to generate a Bell utility function we randomly generate nb
centers and assign to each center a height and a radius obtained from the uniformly distributed intervals [hmin, hmax]
and [rmin, rmax], respectively. The correlation length of the negotiation space can be modulated by varying the
different intervals and the number of bells nb.

Without loss of generality, and for simplicity, bell functions define hyperspheres to bound the contracts within the
bell. It would be possible to use different geometry shapes, ellipses for example, which modulate the influence of
each issue on a bell, or to restrict the dependence of a bell on a subset of issues. We can simulate the same effects by
varying the bell generation parameters.

To generate non-monotonic scenarios with different levels of complexity, we fix nb and [hmin, hmax], and vary
the interval [rmin, rmax]. To make the relative complexity of different scenarios invariant with the number of issues,
the range [rmin, rmax] must change with the number of issues. Let us consider first a one-dimensional space, and a
range [pmin · |D|, pmax · |D|] for the radius generation, where |D| represents the domain length and pmin, pmax are
two factors such that pmin ≤ 1, pmax ≤ 1 and pmin < pmax. The question now is how to obtain the corresponding
intervals to maintain the level of complexity for high dimensional spaces. The answer is that we need to keep constant
the ratio between the volume of the whole negotiation domain and the hyperspheres defined by the radius generation
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Table 1: Parameters for the generation of Bell utility functions.

Function type nb [hmin,hmax] [rmin, rmax] Correlation length

BELLs 50 [0.1, 1] [r(n, 0.15), r(n, 0.4)] ' 20

BELLc 50 [0.1, 1] [r(n, 0.015), r(n, 0.04)] ' 5

interval. The volume of a n-dimensional space, under the assumption of an equal length for each dimension is simply
|D|n. The volume of an hypersphere is calculated as

Vn(r) =
rn · πn/2

Γ(n/2 + 1)
,

where r is the radius of the hypersphere, and Γ(.) is the Gamma function. Thus, we need to satisfy

pmin,max =
|D|n

Vn(pmin,max · |D|)
,

from which we define the r(n, pmin,max) function used to calculate the radius intervals

r(n, pmin,max) =

(
pmin,max · |D|n · Γ(n/2 + 1)

πn/2

)1/n

.

In order to cope with the inherent diversity of this type of environments, to instantiate a particular non-monotonic
scenario we generate 10 pairs of Bell utility functions. We considered two non-monotonic scenarios: the Bell Smooth
(BELLs) scenario that describes smooth non-monotonic preferences, and the BELL Complex (BELLc) scenario that
defines a much more complex structure of preferences with many local optima:

BELLs scenario =

 U1s
b (s) U1s

s (s)
· · ·

U10s
b (s) U10s

s (s)

 BELLc scenario =

 U1c
b (s) U1c

s (s)
· · ·

U10c
b (s) U10c

s (s)

 .
As in the CES scenarios, the evaluation of a BELL scenario implies the execution of a predefined number of negoti-
ations over each pair of utility functions. Table 1 shows the parameters used in the generation of BELLs and BELLc
utility functions. The second column indicates the number of bells, the third column defines the range of values used
to define the height of each bell, and the fourth column defines the range of values used to determine the radius of a
bell.

Figure 1 represents four different utility functions for the particular case of a bidimensional negotiation space.
The linear additive and CES utility functions represent an example of monotonic preferences (note that the linear
additive function corresponds to a CES function where βi = 1). The BELL Smooth utility function shows a non-
monotonic preference space with a relatively simple shape, while the BELL Complex utility function exhibits a much
more complex shape with many peaks and valleys. BELL Smooth has been generated with 50 peaks, a radius interval
between 20 and 35, and a height between 0.1 and 1. BELL Complex has also been generated with 50 peaks and a
height between 0.1 and 1, but the radius of the different peaks lie within the interval 5 and 10.

4 SBNP in Monotonic and Non-monotonic Negotiation Scenarios
In order to show the efficiency of the similarity-based negotiation under monotonic and non-monotonic scenarios, we
have implemented and tested an instance of SBNP, based on a generic similarity-based alternating-offers negotiation
protocol described in Lai and Sycara [2009]. In their work the authors describe the structure of the negotiation mecha-
nisms, although they do not specify which optimization techniques are used to implement them. In the following, our
proposal of SBNP instance is described in detail.

4.1 SBNP Protocol
SBNP divides the decision mechanisms of an agent into three components: conceding, proposing, and responding. For
the conceding mechanism, we use a time-dependent strategy [Faratin et al., 1998a]. In this strategy for each period T
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Figure 1: Example of monotonic and non-monotonic utility functions in a two-dimensional negotiation space.

(iteration of the alternating offers protocol), each agent sets its objective utility (i.e., the minimum utility which should
give an opponent’s offer in order to be accepted) using the expression:

Uobji (t) = 1− (1− U thi )(
t

T
)

1
βi ,

where Uobji (t) is the objective utility of agent i in period t; T is the negotiation deadline in periods for the agent; U thi
is the reservation utility (utility threshold); and βi > 0 represents the strategy parameter of agent i. If βi < 1 agent
i concedes slowly at the beginning but quickly when the deadline approaches; if βi > 1 the agent concedes quickly
at the beginning but slowly when the deadline approaches; and if βi = 1 the agent concedes evenly during the whole
negotiation.

In the proposing mechanism the agent obtains the most similar contract sti to the opponent’s last offer st−1j , from
the set of available contracts Ci which yields the objective utility given by the concession strategy. This is basically a
constrained optimization problem, which can be formally defined as follows:

sti = min
si∈Ci

∥∥si − st−1j

∥∥
s.t. Ui(si) = Uobji (t) .

That is, to prepare an offer an agent minimizes the euclidean distance to the opponent’s last offer, constrained to
the contracts lying in the isocurve defined by her current objective utility. We have used two different optimization
techniques depending on the negotiation scenario. For scenarios where the utility functions are continuous and have
continuous first derivatives we use a gradient-based method [Nocedal and Wright, 2006]. Specifically, a sequential
quadratic programming (SQP) method is used which does not need the input of a user-supplied Hessian. It computes
a quasi-Newton approximation to the Hessian of the Lagrangian. This optimization technique is applied in monotonic
scenarios (i.e., where agents use CES utility functions). In non-monotonic scenarios (i.e., where agents have BELL
utility functions) we use a pattern search algorithm, which is a derivative-free optimization method. The Bell utility
functions considered do not have continuous first derivatives.
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Figure 2: Example of SBNP negotiations in monotonic (a) and non-monotonic (b) scenarios.

Finally, in the responding mechanism an agent accepts an opponent’s offer if its utility is higher than her current
objective utility.

responseti(s
t−1
j ) =

{
accept, if Uobji (t) ≤ Ui(st−1j )

reject, otherwise .

Figure 2 shows the dynamics of SBNP in a two-dimensional contract space for two different scenarios. In Figure
2 (a) the utility functions of the two negotiating agents, buyer and seller, are monotonic, while in Figure 2 (b) the
utility functions are clearly non-monotonic. In both cases, figures show a set of indifference curves (i.e., isocurves)
corresponding to different utility levels, and the isocurves which correspond to the agents’ reservation values (with
thick lines). In the monotonic scenario it can be seen how the Pareto frontier is defined by the set of points which
correspond to joint tangent lines of a pair of indifference curves. The negotiation starts with agents exchanging
proposals at a high aspirational level (i.e., the agents’ objective utilities are high). As agents exchange offers and
concede, because of the similarity-based optimization process which generates the offers, the negotiation easily gets
near to the Pareto frontier and negotiation ends with a deal. In the non-monotonic scenario the distribution of isocurves
makes the convergence of the negotiation much more difficult. The example shows how the initial offers lie within
different basins of attraction with respect to the region where a final agreement is reached. Fortunately for the agents
in the example, the exchange of offers has conducted the negotiation to basins of attraction where there exists a zone of
agreement. However, SBNP does not guarantee that the mutual attraction imposed by the similarity-based mechanism
lead the agents to zones of agreement. Intuitively, the initial offers chosen will have a strong influence in the success
of the negotiations with SBNP.

It is worth noting that, to our knowledge, there are no studies of the performance of similarity-based negotiation
protocols under non-monotonic preference scenarios. Next, we fill this gap with an evaluation of SBNP in monotonic
and non-monotonic scenarios using the CES utility function type, and the BELLs and BELLc utility function types,
respectively.
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Table 2: SBNP performance in the CES, BELLs and BELLc scenarios.
Number of issues

2 5 10 20

CES

Negotiation Time(s) 2.9519 9.4568 18.604 23.324

Distance 0.0047265 0.023099 0.042401 0.0673

Rounds 7.83 8.17 8.64 7.64

Failures 0% 0% 0% 0%

BELLs

Negotiation Time(s) 21.412 34.721 54.829 -

Distance 0.058359 0.18114 0.4598 -

Rounds 4.69 7.26 4.34 -

Failures 0% 2% 60% 100%

BELLc

Negotiation Time(s) 43.429 64.771 - -

Distance 0.21115 0.21174 - -

Rounds 8.61 6.04 - -

Failures 5% 28% 96% 100%

4.2 SBNP in Monotonic Scenarios
We test negotiation scenarios with 2, 5, 10 and 20 issues. In each negotiation, the agents’ parameters are randomly
varied according to the following uniform distributions:

• U thb = unifrnd[0.1, 0.3]

• U ths = unifrnd[0.1, 0.3]

• Tb = unifrnd[10, 20]

• Ts = unifrnd[10, 20]

• βb = unifrnd[0.5, 1.5]

• βs = unifrnd[0.5, 1.5]

We have measured the mean distance of the outcome utilities from the Pareto frontier, the negotiation time, the fail-
ure rate, and the number of negotiation rounds. To compute the Pareto frontier we used a genetic multiobjective
optimization algorithm.

Table 2 summarizes the results of the experiments, which are statistically significant within the p < 0.05 range.
Results show that the outcome utilities are close to the Pareto frontier and that the failure rate is 0%. The negotiation
time linearly increases with the number of issues, which makes of SBNP a scalable protocol in terms of the number of
negotiated issues. Results do not show dependence of the number of negotiation rounds on the number of issues.

4.3 SBNP in Non-monotonic Scenarios
To evaluate SBNP in the BELLs and BELLc scenarios we ran 10 negotiations for each Bell utility function pair,
which implies the execution of 100 negotiations for each scenario. In each negotiation the SBNP agents’ negotiation
parameters are randomly varied as in the previous evaluation of SBNP for the monotonic scenarios. The results are
reported in Table 2. It can be seen how the performance of SBNP is very poor for more than two issues. Even for two
issues, in the BELLc scenario the mean distance from the Pareto-frontier is 0.21, and the negotiation time goes to 43
seconds. For more than five issues the failure rate drastically increases, and for 20 issues the failure rate is 100%.
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5 RBNP
In this section we present RBNP. Section 5.1 provides an overview of the negotiation problem by describing the
structure of preferences of the negotiation space. In Sections 5.2, 5.3 and 5.3.3 we elaborate the negotiation protocol,
the decision mechanisms and propose three different concession strategies. Finally, in Section 5.4 a summary of the
negotiation parameters is presented.

5.1 Overview of the Problem and Structure of Preferences
We define the issues under negotiation as a finite set of variables X = {xi|i = 1, . . . , n}, where each issue xi
can be normalized to a continuous or discrete range di = [0, 100]. Without loss of generality we will assume a
continuous range. Accordingly, the negotiation domain can be denoted by D = [0, 100]n, where a contract is a vector
s = {xsi |i = 1, . . . , n} defined by the issues’ values. The aim of the agents is to reach an agreement on a contract.

Each agent Ai∈{b,s} owns a utility function Ui : D → R that gives the payoff the agent assigns to a contract. The
utility function can be described as any mapping function between the negotiation space contracts and the set of real
numbers. In contrast to prior works, which usually assume that agents have relatively simple preferences on the issues
(e.g., can be characterized by strictly convex utility functions), we make a more general assumption that the preference
of each agent can be non-monotonic and non-differentiable. We only require the preferences to be rational:

Definition 3 The ordinal preference -i of agent Ai in the negotiation domain is rational if it satisfies the following
conditions:
1. Strict preference is asymmetric: There is no pair of x and x′ in X such that x ≺i x′ and x′ ≺i x;
2. Transitivity: For all x, x′, and x′′ in X , if x .i x′ and x′ .i x′′, then x .i x′′;
3. Completeness: For all x and x′ in X , either x .i x′ or x′ .i x;
where x .i x′ (or x ≺ x′) indicates that the offer x′ is at least as good as (or better than) x for agent i.

The first two conditions ensure the consistence of agents’ preferences in the negotiation domain, and the third
condition ensures that any pair of points in the negotiation domain can be compared. When dealing with strictly
convex (i.e., strictly monotonic) utility functions, for any solution x, the set of solutions that an agent prefers to x is
strictly convex. This implies that each Pareto-efficient solution of a multi-issue negotiation is a joint tangent hyperplane
of a pair of indifference curves or surfaces of the two agents, where an indifference curve (surface) or isocurve (iso-
surface) of an agent consists of the points that are indifferent to the agent (i.e., give the same payoff to the agent).
This condition makes it tractable to find (near) Pareto optimal solutions [Kersten and Noronha, 1998]. However, for
non-monotonic utility functions this condition does not hold, and then the approximation of Pareto optimal solutions
under incomplete information settings turns harder.

5.1.1 Region and Overall Satisfaction Degree of a Region (OSD)

The proposed negotiation protocol involves the exchange of offers defined as regions within the negotiation space. As
described in detail in Section 5.3, the generation of these regions implies a local optimization process constrained by
a higher sized region or parent region. Therefore, the shape of the parent region will have a strong influence on the
optimization performance. For simplicity and efficiency, in RBNP a region takes the form of an hypercube (see an
example of region for a 2-dimensional negotiation space in Figure 3). The main advantage of using hypercubes instead
of any other volume is that with hypercubes we only need to perform a bounded local optimization, while with any
other hyperpoliedron or an hypersphere, a non-linear constrained optimization is needed. We formally define a region
as follows:

Definition 4 A region Ri of the n-dimensional negotiation space of agent Ai is formed by the set of contracts lying
within the hypercube defined as a 2-tuple Ri =< c, r >, where c ∈ D and r ∈ R define the center and the edge length
of the hypercube. We name the region Ri =< c, r > as a region of size r.

In the negotiation protocol we propose, agents’ offers are regions within the contract space. Hence, an evaluation
mechanism is needed to assess regions. We base this evaluation on an estimate of the probability of finding agreements.
We define the overall satisfaction degree (OSD) function to provide this evaluation mechanism.

With {b, s} we mean buyer or seller, which is a usually adopted notation in the bilateral negotiation research literature.
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Figure 3: Example of a region in a 2-dimensional negotiation space.

Definition 5 The OSD of a region Ri for an agent Ai is an estimate of the probability of finding agreements within
a given region. It considers the ratio of the number of contracts with a utility value above an objective utility. Let
SRi = {sk ∈ D|k = 1, . . . ,nsc} be a set of nsc randomly distributed contracts in R, Uobji an objective utility, and
SRobj the subset of acceptable contracts in SRi which satisfy Ui(sk) ≥ Uobji . An agent Ai computes the OSD of a
region Ri as:

OSD(Ri) =
| SRiobj |
| SRi |

.

5.2 Negotiation Protocol
The negotiation protocol is based on a recursive bargaining mechanism which is performed concurrently and syn-
chronously by two agents. This mechanism adopts a repeated simultaneous-offer game in order to balance the agents’
negotiation power. In contrast to an alternating-offer game, both agents make their offers (proposals) available at the
same time, and the responses to these offers are also simultaneous. We have formalized the protocol as a negotiation
dialogue composed of bargaining threads (BTHs).

Definition 6 A negotiation dialogue NegD = {bt0ri1 → bt1ri2 → . . .} is a sequence of BTHs, where each thread starts
in a period tn. Each BTH

btnrim = {(Rb, Rs)tnrim → (resb, ress)
tn+1
rim → . . .→ (Rb, Rs)

tn+1−2
rim → (resb, ress)

tn+1−1
rim }

is a sequential exchange of offers (regions) and responses to the offers, where (Rb, Rs)
tn+a
rim represents the simultane-

ous exchange of offers of size rim in period tn + a, and (resb, ress)
tn+a+1
rim the responses to the offers made in period

tn + a. The dialogue admits three types of responses: Accept, Reject, and Request, and each BTH is restricted to the
exchange of offers of size rim (we denote a thread exchanging offers of size rim as a BTH of size rim).

Before a negotiation dialogue begins, it is assumed that agents agree on a finite set of region sizes

RegS = {ri|i = 1, . . . ,m;∀l < k, rl > rk},

where rm represents the lowest size and r1 the highest size. We name m the search depth of the negotiation dialogue.
To simplify the characterization of RegS we have defined the function

FRegS(x) = (
1

eτr − 1
) · (eτr·x − 1) · (r1 − rm) + rm
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Figure 4: Example of RBNP negotiations in monotonic (a) and non-monotonic (b) scenarios. The solid squares
represent the sellers’ offers and the dashed squares the buyers’ offers.

which generates the distribution of region sizes. Parameter x is an element from the set of m equally spaced points
from 1 to 0, and τr modulates the distribution of region sizes between r1 and rm. The distribution is more linear as
τr approximates to 0. For τr > 0 we have a higher density of lower sized regions, while for τr < 0 the density is
higher for higher sized regions. Accordingly, only the m, r1, rm and τr values need to be agreed. We define a one-
shot pre-negotiation mechanism to find an agreement on these parameters. Agents exchange their preferred values,
and then the following rules are applied: a) m = mean(mb,ms); b) r1 = max(rb1, r

s
1); c) rm = min(rbm, r

s
m); d)

τr = mean(τ br , τ
s
r ).

5.2.1 Negotiation Process

Figure 4 shows an example of the dynamics of RBNP in monotonic and non-monotonic negotiation scenarios. It can
be seen how offers are regions within the contract space instead of contracts, and how the size of the regions decreases
until an agreement is found. Negotiation starts with a BTH of size r1 (i.e., the highest size), and the main goal of the
agents is to reach a final agreement on a region of size rm (note that rm is the tolerance defined by the agents for a
region to be considered as a contract). Every time a region (offer) is accepted by the opponent, the current BTH ends,
and negotiation moves towards a new thread of lower size. The search in the new thread is restricted to the domain of
the reached agreement (i.e., the domain of the accepted region) in the previous thread. If agents abort the dialogue in
the current thread because of the impossibility to reach an agreement, they return to negotiate higher sized regions.

These transitions among BTHs are controled by a state diagram, which structures the exploration of the negotiation
space. We name this state diagram negotiation search tree. Its topology is agreed by the agents prior to negotiation,
and depends on the set of region sizes RegS and a set NumB = {nbtr1 , nbtr2 , . . . , nbtrm−1}, which defines the
number nbtrim of BTHs of size rim which may be derived from any parent BTH of size rim−1. Note that nbtrm is not
included in NumB because its value is always 1, as we will see in the example below. The procedure to define a shared
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Figure 5: Example of a negotiation search tree (a), and negotiation search tree navigation (b).

search tree topology consists in the minimization of the tree topologies revealed by the agents before negotiating:

NumB = {min(nbtbr1 , nbt
s
r1),min(nbtbr2 , nbt

s
r2), . . . ,min(nbtbrm−1

, nbtsrm−1
)} .

Figure 5 (a) shows an example of search tree for a set of regions sizes RegS = {r1, r2, r3} and NumB = {2, 2}.
Node D represents the global negotiation domain, and rim nodes represent BTHs of size rim (i.e., bargaining threads
where agents try to find an agreement on a region of size rim). Braces show the domain relationship between BTHs.
In the example, there will be as much as two BTHs of size r2 derived from a BTH of size r1. The solid lines show
descending transitions that become active when agents agree on an offer, and the dashed lines ascending transitions
that trigger when the current thread is unfeasible. The general rule that governs the movement through the negotiation
search tree is that each node can be visited only once. Also, we can see that there is no reason to have more than one
child per node of size r2, so that nbtrm is not included in NumB. To prove this, let us assume that agents are in a
BTH of size r2, and that we have added a child to each node of size r2. A transition is fired as soon as agents find
an agreement. This transition takes the agents to the first child node of size r3. Once there, we may encounter two
possibilities: either agents reach an agreement on an outcome of size r3 and negotiation ends or agents abandon the
current r3 node and jump to a new BTH of size r2, the latter meaning that the added child node is not reachable.

Finally, to clarify the operation of the negotiation process, Figure 5 (b) provides an example of negotiation. Agents
begin to negotiate regions of size r1 (transition 1). In transition 2, an agreement on a region of size r1 has been found,
and then, agents engage in a BTH of size r2, where they find a new agreement (transition 3). Now, agents negotiate
in a BTH of size r3, however, they are not able to find an agreement, and move upwards to a new BTH of size r2.
Note that this BTH is derived from the previous agreement on a region of size r1. Again, they are not able to find
an agreement and move to a new BTH of size r1 (transition 5). Negotiation ends with transitions 6, 7 and 8, which
represent consecutive agreements on regions of size r1, r2 and r3, respectively.

5.2.2 Negotiation Process Rules

In the following, a detailed description of the protocol rules which refine how the negotiation progresses through the
different BTHs is provided. We assume that agents share a negotiation search tree.

BTHr1: Starting Rule: a negotiation begins with bt0r1 , where agents negotiate on regions which are restricted by the
whole domain D.

BTHr2: General Transition Rule: for any transition between two threads btnrl → b
tn+1
rk , rl and rk must satisfy |l −

k| = 1. This means than any transition is performed between adjacent region sizes.

BTHr3: Acceptance Transition Rule: a descending transition btnrim → b
tn+1
rim+1 is fired when in any given period in

btnrim , Rtn+1−2
b , Rtn+1−2

s , or both Rtn+1−2
b and Rtn+1−2

s are accepted as a solution by As, Ab or both As
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and Ab. Once an agent’s offer in btnrim has been accepted by the opponent, the offer is considered the child
of the most recent accepted region of size rim−1 in btn−arim−1 . In case of simultaneous acceptance of regions
(i.e., both agents accept the opponents’ proposals), an only region is chosen as a valid agreement. In order
to balance the agents’ negotiation power, the protocol enforces that each agent alternatively selects the
region which will be considered the valid agreement.

BTHr4: Unfeasibility Transition Rule: an ascending transition btnrim → b
tn+1
rim−1 is fired when in any given period in

btnrim , Ab, As, or both Ab and As consider that it is unfeasible to find an agreement on regions of size rim
in the current thread. The unfeasibility condition of a thread is considered below in the description of the
decision mechanisms in Section 5.3.

BTHr5: Negotiation Domain Rule: the exchange of offers in a BTH btnrim is confined to the negotiation space con-
strained by the accepted offer in the most recent thread of size rim−1 (i.e., btn−arim−1 ). This rule enforces the
recursive search in the negotiation space. For btnr1 , the search is confined to the global domain D.

BTHr6: Ending Rule: under the assumption of bounded duration of the BTHs, the transition rules BTHr2, BTHr3,
BTHr4 and the search tree topology defined by RegS and NumB guarantee the completion of the nego-
tiations. A negotiation ends once the agents have reached an agreement in a BTH btnrm . In this case, the
negotiation ends before completing the exploration of the search tree. If agents complete the exploration
without an agreement in some btnrm , we say that the negotiation has failed.

The transition rules described above determine the joint exploration strategy in the negotiation space. We have seen
that the negotiation protocol is founded on a sequence of bargaining threads, and that this sequence is a recursive
process of exploration. The acceptability of a region, and the unfeasibility of agreements in a bargaining thread govern
the transitions between different threads. The analysis of these elements within the scope of a bargaining thread is
covered in the next section. Specifically, we will define how an agent generates an offer, when an offer is accepted or
rejected, and how a received offer is evaluated in order to suggest a new derived offer.

5.3 Decision Mechanisms
We divide the decision mechanisms of an agent into three components: responding, proposing and concession. The re-
sponding mechanism determines whether an agent should accept, reject, or suggest the movement of an offer proposed
by the opponent. The proposing mechanism determines which offers should be proposed to the opponent. The con-
cession mechanism controls the dynamics of the objective utility Uobji of an agent i during the negotiation dialogue.
Next, we describe these three components in detail.

5.3.1 Responding Mechanism

The responding mechanism of an agent i depends on two sets of thresholds: the acceptance thresholds (ATHi) and
the quality thresholds (QTHi). For simplicity, the quality thresholds are derived from the acceptance thresholds by
means of a quality threshold factor qthf ∈ R. Thus, each agent i privately defines acceptance and quality thresholds
for each region size in RegS:

ATHi = {athir1 , ath
i
r2 , . . . , ath

i
rm},

QTHi = qthf ·ATHi.

As with RegS, to simplify the characterization of ATHi, we define the function

F iATH(x) = athir1 − (athir1 − ath
i
rm) · (1− x− rm

r1 − rm
) · e

(rm−x)·τia
r1−rm .

It creates the acceptance threshold distribution as a function of athir1 , athirm and a curvature factor τ ia, where x is
a region size from RegS. The parameter τ ia modulates the distribution curvature, so that the distribution is linear as
τ ia approaches to 0. For τ ia > 0, F iATH(x) is convex, and the curvature is higher in the lower sized regions. For
τ ia < 0, F iATH(x) is concave, and the curvature is higher in the higher sized regions. Figure 6 gives several examples
of threshold and region size distributions.
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Figure 6: Example of four different threshold and region size distributions. Search depth is 10 (m = 10), the highest
size is 10 (r1 = 10), the lowest size is 0 (r10 = 0), and the corresponding acceptance thresholds are: ath3 = 0.35,
ath0 = 1.

Now, let us assume that the current exchange of offers within the BTH btnrim is (Rb, Rs)
tn+a
rim . The response strategy

for agent Ab will be (for As the strategy is similar):

Response Strategy:


Accept IfOSD((Rs)

tn+a
rim ) ≥ athbrim

MovementRequest IfOSD((Rs)
tn+a
rim ) < athbrim AND

OSD((Rs)
tn+a
rim−1

− (Rs)
tn+a
rim ) ≥ qthbrim

Reject Otherwise
An agent accepts an opponent’s offer if its OSD is higher than athrim , so that the current BTH ends and
the negotiation progresses following the negotiation protocol (see rule BTHr3). If the opponent’s offer is
not accepted, the agent evaluates the quality of the offer, and if the measured quality is above the quality
threshold an offer movement request is generated. To evaluate the quality of the received offer, an agent
computes the OSD of the offer surroundings, which is the space between the offer and a concentric region
with the parent domain size. Finally, if the measured quality is below qthrim , the offer is rejected. Note
that the qthf factor controls the tendency to suggest the movement of the opponents’ offers.

The offer movement request is defined as a vector v̄q(Rs)tn+a
rim

∈ D. This vector defines the preferred direction an agent

wants the opponent to move his next offer. In order to obtain v̄q, we use the center of mass of the filtered samples SR
′
s

obj

(those above the objective utility Uobjb ) taken in the quality evaluation of the opponent’s offer:

v̄q(Rs)tn+a
rim

= norm(

∑
sk∈S

R
′
s

obj

(Ub(sk) · sk)∑
sk∈S

R
′
s

obj

Ub(sk)
− ctn+as ) .

The first term is the center of mass, and the second term ctn+as is the center of the opponent’s offer (Rs)
tn+a
rim . The

norm function converts the difference into an unit vector.
Figure 7 shows an example of operation of the responding mechanism. For ease of presentation, only the proposals

of agent Ab are shown. We assume that the objective utility Uobji is equal to the reservation utility U thi , and that it
does not change during negotiation. In Figure 7 (a), all the contracts within Rtn+1

b give agent As a payoff below her
reservation utility. In addition, Rtn+1

b is far from the reservation utility iso-curve. Hence, As rejects Rtn+1
b . In period

tn + 3 agent Ab offers Rtn+3
b . This offer provides As an OSD which falls below ath. However, when As evaluates
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Figure 7: Example of operation of the responding mechanism.

the quality of the offer, there are several sample contracts which provide her a utility above her reservation utility. If
we assume that the computed OSD is higher than qth, then the offer is considered of good quality and a vector vq is
obtained and sent to agent Ab as a movement request. Figure 7 (b) shows that agent Ab has considered the movement
request by proposing Rtn+5

b . This offer is finally accepted by agent As.

5.3.2 Proposing Mechanism

The proposing mechanism is based on three submechanisms by which an agent generates regions, and a set of rules
which govern the generation of offers. Here we distinguish between region and offer. A region is a candidate to be an
offer, and an offer is a region that has been or is going to be proposed to the opponent.

Let btnrim be the current thread, and let us consider the proposing mechanism from the perspective of agent Ab. The
three submechanisms are defined as follows:

Root Region Generation: Ab applies simulated annealing to her utility function to find a local optimum stn+a, and
generates the region

(Rb)
tn+a
rim =< stn+a, rim > .

This region is named root region. Depending on the annealing temperature used by the optimizer, an agent
controls the local optima search performance. For a high temperature the probability of finding regions
with a high OSD increases. However, an agent searching for root regions with a very high OSD can get
stuck in a reduced set of local optima, and successively generate the same proposals to the opponent.
If the set of proposals are comprised within a zone of no agreement, the negotiation will fail. In order
to mitigate this problem an agent must take care about the variability of her offers, applying a coherent
concession strategy with respect to the root region generation. This issue is covered when describing the
concession mechanisms in Section 5.3.3.

Directed Child Region Generation: Ab generates a child region

(Rb)
tn+a+2
rim =< stn+a+2, rim > ,
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where stn+a+2 = stn+a+max(rim, 0.1·rim−1)·v̄q(Rb)tn+a
rim

. The child region is generated in the direction
v̄q proposed by the opponent, at a distance max(rim, 0.1 · rim−1) from the center stn+a. We say that
(Rb)

tn+a+2
rim is a directed child region of (Rb)

tn+a
rim . The max operator guarantees that the movement is

at least equal to the region edge length. For low sized regions it guarantees that the movement is at least
the 10% of the parent domain length. Note that the child region concept within the proposing mechanism
is different from the parental relation of regions in the BTHs context. In the BTHs context, a parent is a
specific domain which restricts the barganing within a BTH. In this mechanism, a child region is a region
which has been generated from other region of equal size.

Random Child Region Generation: Ab generates a child region

(Rb)
tn+a+2
rim =< stn+a+2, rim > ,

where stn+a+2 = stn+a + max(rim, 0.1 · rim−1) · v̄qrandom. In contrast to a directed child region,
the random child region is generated on a random direction from the parent region center. We say that
(Rb)

tn+a+2
rim is a random child region of (Rb)

tn+a
rim .

To prepare an offer, an agent generates a region (Ri)rim by means of any of these generation submechanisms, and then
evaluates whether its OSD is above the current acceptance threshold athrim , which is obtained from the set ATHi. It
means that we use the same thresholds to generate offers and to accept opponent’s offers. However, it must be noted
that an agent could use different thresholds with a strategic purpose.

The rules which govern the generation of offers within a BTH are as follows:

OGr1: First Region Rule: The first region in a BTH is always a root region.

OGr2: Unacceptable_Region_Rule: Any unacceptable region (note that what we mean is that the agent does not
consider a generated region as valid because its OSD is below the current athrim threshold) is discarded
and then a new search is performed in order to find a new region. If the unacceptable region is a root then
the agent searches for a new root region; otherwise, the agent generates a new random child region.

OGr3: Accepted Offer Rule: The acceptance by the opponent of an offer implies that the current BTH ends, and
that the negotiation progresses following the negotiation protocol to a new BTH or to a deal.

OGr4: Rejected Offer Rule: The rejection by the opponent of an offer implies that the agent moves to the rejected
offer’s parent, and then searches for a new random child region. If the rejected offer is a root the agent
searches for a new root region to prepare a new offer.

OGr5: Movement Request Rule: An agent tries to generate a directed child region upon the reception of a movement
request.

OGr6: Root Offer Limits Rule: A configurable parameter nR ∈ N bounds the number of root offers and the number
of trials when searching for root regions in a BTH. A configurable parameter nD ∈ N bounds the number
of descendants of a root offer. A BTH is considered unfeasible when the nR limit is reached. If an agent
exceeds nD, a new root offer search is performed.

OGr7: Child Region Limits Rule: For a specific offer, the parameter nC ∈ N bounds: the number of unacceptable
child regions (i.e., generated regions whose OSD is below athrim ), the number of child offers, and the
number of rejected children. When this limit is reached, the offer is discarded and the agent moves
upwards in order to find a new offer. If the considered offer is a root, the agent performs a root offer
search.

It can be easily shown that a negotiation dialogue ends in a finite number of periods (i.e., exchange of offers) if both
agents assign finite values to the parameters nR and nD. According to the negotiation protocol the number of BTHs
is bounded by NumB. Thus, the negotiation dialogue ends if the number of periods within a BTH is bounded. The
nR parameter limits the number of root offers and regions, and it is established that the thread is considered unfeasible
(i.e., the thread ends) when this limit is reached. The parameter nD limits the number of descendants of a root offer,
and if this limit is reached the agent withdraws from the current root offer chain in order to search for another root offer.
This in turns guarantees that for the worst case the nR limit is reached, and then a BTH ends. Hence, a negotiation
dialogue ends in a finite number of periods.
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5.3.3 Concession Strategies

A concession mechanism updates the aspirational utility level of an agent during a negotiation process. In SBNP
the aspirational level is identified by the agent’s objective utility Uobji , which directly controls the generation and
acceptance of offers. The variation of the objective utility during a negotiation depends on the behavior and strategy
followed by the agent, and it is usually lower bounded by a utility threshold or reservation value U thi . In RBNP,
however, the generation and acceptance of offers depend both on the OSD operator, which is a function of the objective
utility and the acceptance and quality thresholds (i.e., ATHi and QTHi). In particular, ATHi modulates the expected
deal probability when accepting or generating offers, QTHi regulates the generation of movement requests, while
Uobji defines the aspirational utility level.

We have to take into account that RBNP is based on a region search tree in which the negotiation process evolves
through the consecution of partial agreements on regions. Hence, the concession strategies influence the search of par-
tial agreements on regions. Considering that the acceptance and quality thresholds remain unchanged, the concession
strategy will depend on the variation of the objective utility, which influences the dynamics of acceptance and quality
evaluation of regions through the OSD. We can think of the acceptance and quality thresholds as the tools used to set
the assumed risk when an agent accepts a region or evaluates its quality for a given objective utility.

We have developed three different concession strategies for RBNP, which we believe able to cover a wide range of
possibilities: static, monotonic, and adaptive. Next we describe these strategies in detail.

Static. This is a purely cooperative strategy. The objective utility is fixed to the reservation utility and does no change
during the negotiation:

Uobji = U thi .

Monotonic. This is a purely selfish strategy. For each BTH an agent begins to negotiate at her highest objective
utility (i.e., 1), and then applies a monotonic concession protocol to update her objective utility Uobji . Agents
concede when they find difficulties in the generation of offers, or when the opponent rejects a previous offer.
A concession step factor controls the concession speed. Formally, the protocol is subject to the following four
updating rules:

1. Uobji (tn) = 1, which means that an agent begins to negotiate at each BTH at her highest aspirational level.

2. Uobji (t) = Uobji (t−1)−δ when the generation of a root region fails (see the Root Region Generation mechanism
and the OGr2 rule). The δ parameter is a real-valued updating step factor which determines the concession rate.

3. Uobji (t) = Uobji (t− 1)− δ when the opponent rejects a previous offer (see the OGr4 rule).

4. Uobji (t) ≥ U thi , which means that the objective utility is lower bounded by a reservation value. Once Uobji =
U thi the second and third rule deactivate.

Adaptive. This is a semi-cooperative strategy. Agents dynamically adjust their objective utilities depending on the evo-
lution of the negotiation dialogue. The rationale behind this concession strategy is to act in a semi-cooperative
way, conceding when the negotiation dialogue turns harder, and increasing the aspirational level when the ex-
ploration of the search space is satisfactory. The protocol is subject to the following rules:

1. Uobji (to) = 1, which means that an agent begins to negotiate in the first BTH of a negotiation at her higher
aspirational level. This rule is different to the first rule in the monotonic concession protocol, where the objective
utility is updated to the highest aspiration level at each new BTH.

2. Uobji (t) = Uobji (t−1)−δ when the generation of a root region fails (see the Root Region Generation mechanism
and the OGr2 rule).

3. Uobji (t) = Uobji (t− 1)− δ when the opponent rejects the previous offer (see the OGr4 rule).

4. Uobji (t) = Uobji (t− 1) + δ when the opponent accepts the previous offer (see the OGr3 rule).

5. Uobji (t) = Uobji (t− 1) + δ when the opponent sends a movement request (see the OGr5 rule).
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Figure 8: Dynamics of the objective utility for the different concession strategies. U thi = 0.1, m = 20, and δ = 0.1.

6. Uobji (t) ≥ U thi , which means that the objective utility is lower bounded by a reservation value. When Uobji =

U thi the second and third rule provisionally deactivate until Uobji > U thi .

Figure 8 shows how agents update their objective utilities during a negotiation dialogue for each of the proposed
concession strategies.

5.4 Summary of Negotiation Parameters
We group all the negotiation parameters into a common negotiation profile shared by both agents and an individual
negotiation profile which defines the behavior of a single agent. The common negotiation profile is agreed and known
by both agents prior to the negotiation dialogue. For the individual negotiation profile we assume an incomplete
information setting, which means that an agent does not know the opponent’s profile.

Common negotiation profile

• Issues under negotiation X and the corresponding negotiation space D.

• Set RegS defined by m, r1, rm and τr.

• Set NumB.

Individual negotiation profile

• Utility function Ui.

• Utility threshold U thi (i.e., a reservation value).

• Objective utility updating factor δi.

• Number nsci of sample contracts used in the computation of the OSD.

• Limits for the proposing mechanism (nRi, nDi, nCi).
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• Acceptance thresholds ATHi defined by athir1 , athirm and τ ia.

• Quality factor qthfi.

6 Experimental Evaluation of RBNP
In this section, we test the performance of RBNP and demonstrate that RBNP outperforms SBNP under monotonic
and non-monotonic negotiation scenarios. We have evaluated the CES, BELLs and BELLc negotiation scenarios, for
the Static, Adaptive and Monotonic strategies. For the sake of brevity we only show the detailed results for the CES
and BELLc scenarios with the Static strategy. The detailed results for the rest of the strategies and scenarios can be
found at http://www.uah.es/.

We first describe the experimental setup. We then show the results for the BELLc scenarios when using the Static
strategy, and the summary of results for all the scenarios and strategies. Finally, an in depth evaluation of the influence
of the search depth and the number of issues is covered in Section 6.3.

6.1 Experimental Setup
We assume symmetric negotiation encounters, where both agents use the same type of negotiation strategies (asym-
metry is considered in Section 7). Each combination of negotiation scenario and strategy is evaluated using different
negotiation profiles. To generate the different negotiation profiles, we base our analysis on a full-factorial designed
experiment. Thus, six factors have been chosen: search depth m, acceptance threshold for the highest sized regions
athr1 , curvature factor of acceptance thresholds τa, quality threshold qthf , region size curvature factor τr and number
of BTH NumB. These factors may vary as follows:

1. m = {1, 2, 5, 10} defines four search depths. The instance m = 1 is used as a control experiment, so that
agents negotiate on contracts or points in the solution space from the beginning of the bargaining, and there is
no recursivity in the joint exploration of the solution space.

2. athir1 = {0.5%, 2%, 10%} ranges from low to high expected deal probability in the acceptance and generation
of the highest sized offers.

3. τ ia = {1, 10, 20} ranges from quasi-linear distribution of acceptance and quality thresholds to highly curved
distribution.

4. qthfi = {off, 1, 0.5} defines three possibilities for the operation of the offer movement request mechanism:
deactivated, low sensibility, and high sensibility.

5. τr = {0.01, 2,−2} defines three configurations for the distribution of region sizes: linear, more dense distribu-
tion of lower sized regions, and more dense distribution of higher sized regions.

6. NumBhouse = {3, 3, 3, 1, . . .}, NumBrocket = {3, 1, 1, . . . , 3, 3}, NumBuniform = {3, 1, 1, . . .}, NumBbinary =
{3, 2, 2, . . . , 2} define four different search tree topologies. The house search tree exhibits a high number of
nodes in the upper levels. Note that we limit the number of children nodes to three in order to not excessively
increase the negotiation times. The rocket configuration has a higher density of nodes in the lower levels, while
the uniform tree defines the same number of nodes at each level. Finally, the binary configuration proposes a
binary search tree.

The rest of the negotiation profile parameters are fixed as follows:

• n = 10 issues.

• nR = 50;nD = 10;nC = 2.

• nsc = 32 · n makes the number of samples in the computation of the OSD proportional to the number of issues.

• r1 = 50; rm = 1e− 10 defines the highest sized regions as hypercubes with an edge of length 50 (i.e., 50% of
the negotiation domain), and the lowest sized regions as hypercubes with an edge length of 1e − 10. It means
that a region with an edge length of 1e− 10 may be considered as a contract or point in the solution space.
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• U thi = [0.1, 0.3] defines a range for the agents’ utility thresholds. For each experiment, an agent randomly picks
up a utility threshold within this range. The highest utility level for an agent is 1.

• athirm = 1 specifies that the OSD of the lowest sized region rm has to be 100%. Recall that a region of size rm
is assumed to be a contract or point in the solution space, and thus, all the points within the region should have
the same properties.

This configuration provides 4 × 3 × 3 × 3 × 3 × 4 = 1296 experimental runs, where each experimental run tests
a negotiation profile. In the monotonic scenario, we run eight negotiations for each CES utility function pair (i.e.,
32 negotiations). In the non-monotonic scenarios, we run three negotiations for each utility function pair (i.e., 30
negotiations).

We measure the distance of the outcome utilities from the Pareto frontier, the failure rate, the negotiation time,
and the number of negotiation rounds. The Pareto frontier is computed with a genetic multiobjective optimizer. To
analyze the different measures obtained in the experiments, we use a six factors N-way ANOVA with fixed effects, or
a Kruskal-Wallis test for non-parametric one-way analysis of variance [Montgomery and Runger, 1996]. The ANOVA
and Kruskal-Wallis analysis determine whether there are any differences among the measured variable means of the
different negotiation profiles (i.e., the different factor levels). To compare the different means we use a Tukey-Kramer
test [Montgomery and Runger, 1996], and represent the results usign multiple comparison test plots. A multiple
comparison test plot represents in the vertical axis the different factors under evaluation, and in the horizontal axis
the means of the evaluated measurements. For a given combination of parameters (factor level), the circle and the
horizontal line represent the mean value and the confidence interval, respectively. In Figure 10 are shown several
multiple comparison test plots for the Pareto distance. Figure 10 (d) represents the different combinations of factor
leveles m and ath, and their corresponding Pareto distance mean values.

For all the experiments, we first try to apply ANOVA for three-way interaction effects. We then apply an iterative
procedure to omit the interaction terms whose p-value is larger than 0.05 (i.e., the term is not significant) and pool their
effects into the error term. To validate the ANOVA model, we use a normal probability plot to test residual normality.
To test homogeneity of variance, we plot the residuals versus the corresponding predicted values, and the residuals
versus the factor levels. If these plots do not satisfy the variance hypothesis, then we check that the ratios of residual
variances among the different groups do not exceed the ratio 3:1. If the hypotheses do not hold, we try with log, sqrt
and range transformations. The range tranformation computes the ranks of the values in the dependent variable. If
any of the values are tied, their average rank is computed. If the model is not valid after applying the transformations,
we limit the analysis to a Kruskal-Wallis one-way test analysis of variance. In these cases, a good strategy to add
information to the analysis of variance is to represent the corresponding histograms and to obtain conclusions from
them. For the analysis of negotiation time and number of negotiation rounds we will apply this method.

To simplify the presentation of results, the model validation plots have been omitted, and only the most signi-
ficative Tukey-Kramer test plots are presented (i.e., the plots which show the most significative results in terms of
the performance of the measured effect, failure rate, Pareto-distance, negotiation time or number of rounds). Shown
ANOVA tables are those obtained as a result of the described iterative procedure that pools the non significant terms
into the error term.

Experiments were coded in Matlab and run on a 2.4Ghz Intel Core 2 Duo processor with 2GB memory using Mac
OS X 10.5.8.

6.2 Results
6.2.1 CES-Static Results

Failure rate The failure rate is 0.

Pareto-distance The ANOVA table in Figure 9 shows that the distance to the Pareto frontier depends on the
search depth m, the curvature parameters τa and τr (taua and taur in the ANOVA table), and the acceptance threshold
athr1 (ath in the ANOVA table). However, the qthf parameter has no influence on the outcomes. The rationale behind
this, is that offers are rapidly accepted by the opponent and the movement request mechanism does not activate. Finally,
the Tukey-Kramer test plots in Figure 10 show that the most significative parameter is the search depth (see Figure 10
(a)), and that the two-factor interactions do not provide a significant improvement in the results.
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Figure 9: ANOVA table for Pareto-distance in CES-Static scenarios.
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Figure 10: Tukey-Kramer multiple comparison tests for Pareto-distance in CES-Static scenarios.
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Figure 11: Negotiation time histograms for the whole dataset (a), and for negotiations wherem = 10 (b) in CES-Static
scenarios.
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Figure 12: Non-parametric multiple comparison test of negotiation time mean ranks vs search depth m, in CES-Static
scenarios.

Negotiation time Figure 11 (a) shows the negotiation time histogram for the whole dataset, and Figure 11 (b)
for those negotiations where m = 10. Of note in Figure 11 (a) are the four peaks, which are expected to correspond
to the negotiation time distributions for the different search depths. A non-parametric one-way ANOVA confirms the
strong influence of search depth on negotiation time. In Figure 12 is the multiple comparison of negotiation time mean
ranks. The following experiments are performed for m = 10, i.e., for the search depth where negotiators reach the best
outcomes.

The ANOVA table for the range transformation of negotiation time is shown in Figure 13, and in Figure 14 is
the most significative multiple comparison test. Negotiation time improves for distributions of acceptance thresholds
(τa = {10, 20}) and a more dense distribution of lower sized regions (τr = 2).

Negotiation rounds The analysis is performed on the whole dataset. The histogram in Figure 15 shows four
peaks at 1, 2, 5 and 10 rounds. In Table 3 is the cross-tabulation of depth search vs number of rounds, which confirms
that the number of rounds is proportional to the search depth. For example, when the search depth is 10, in 10327
negotiation tests, it takes 10 negotiation rounds to reach an agreement.

Figure 13: ANOVA table for Negotiation time in CES-Static scenarios and m = 10.
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Figure 14: Tukey-Kramer multiple comparison tests for negotiation time in CES-Static scenarios and m = 10.
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Figure 15: Histogram of negotiation rounds.

Table 3: Cross-tabulation of depth search vs number of rounds in the CES-Static scenarios.

rounds

m 1 2 3 5 6 7 10 11

1 10356 12 0 0 0 0 0 0

2 0 10351 17 0 0 0 0 0

5 0 0 0 10328 38 2 0 0

10 0 0 0 0 0 0 10327 41
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6.2.2 BELLc-Static Results

Failure rate In Figure 16 is depicted the ANOVA table for the number of failures per negotiation profile test. We
can see that the number of failures depends on the search depth m and the acceptance threshold ath, and that both
parameters interact. To evaluate the influence of the parameter values on the mean failure rate, we perform a Tukey-
Kramer multiple comparison test. Figure 17 shows the most significative multiple comparison test plots. We detect a

Figure 16: ANOVA table for the number of failures in BELLc-Static scenarios.

strong influence of ath on failure rate. The best results are obtained for m = {2, 5, 10} and ath = {0.02− 1, 0.005−
1}. For this factor (parameter value) combination the failure rate approaches to 0%. If we make athr1 = 0.1 the
failure rate goes to 50% (note that the number of failures is around 15, and the number of experiments is 30). For
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Figure 17: Multiple comparison test for the number of failures in BELLc-Static scenarios. The ath factor includes the
two thresholds from ATH: athr1 = {0.1, 0.02, 0.005} and athrm = 1.

the 648 negotiation profiles in which m = {2, 5, 10} and ath = {0.02 − 1, 0.005 − 1}, the tabulation of the number
of failures vs negotiation profile gives the following results: 16 negotiation profiles where there is only one failure, 3
negotiation profiles with two failures, and one negotiation profile with three failures.

Pareto-distance We consider the whole dataset (i.e., we evaluate the Pareto-distance for all the negotiation profiles,
including those where the number of failures is high). Figure 18 shows the ANOVA table, and in Figure 19 are the
most significative multiple comparison test plots. The ANOVA table shows that Pareto-distance depends on the search
depth, the distribution of acceptance thresholds, and the distribution of region sizes. Search depth interacts with the
rest of the parameters, and there exists a small interaction between the acceptance threshold and the decay factor of
acceptance thresholds. Looking at the multiple comparison test plots, we can conclude that the best results are obtained
for m = 10 and τa = taua = 1. Of note in Figure 19 (a) is the good performance in terms of Pareto-distance when

Figure 18: ANOVA table for Pareto-distance in BELLc-Static scenarios and the whole dataset.
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ath = 0.1 − 1. However, as we have seen in the analysis of the number of failures, a high acceptance threshold for
higher sized regions (i.e, athr1 ) negatively impacts the failure rate.
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Figure 19: Most significative Tukey-Kramer multiple comparison test for Pareto-distance in BELLc-Static scenarios
and the whole dataset.

Negotiation time The non-parametric one-way ANOVA analysis confirms the strong influence of m on negotiation
time. To evaluate negotiation time, we first consider the whole dataset (i.e., we evaluate all the negotiation profiles),
then we restrict the evaluation to the negotiation profiles where we obtained the best results in terms of failure rate
and Pareto-distance. Figure 20 (a) shows the negotiation time histogram for the whole dataset, and Figure 20 (b) for
those negotiations with the optimal configuration (m = 10, ath = {0.02− 1, 0.005− 1}, taua = 1). For the optimal
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Figure 20: Negotiation time histograms in BELLc-Static scenarios: (a) For the whole dataset; and (b) for m = 10,
ath = {0.02− 1, 0.005− 1}, taua = 1.

configuration, we can see that the mean negotiation time is around five seconds, and that most negotiations have a
duration of no more than ten seconds. Finally, and restricted to the optimal configuration for failure rate, Pareto-
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distance and negotiation time, the three way ANOVA for the range transformation of negotiation time does not show
dependency on the qthf , taur and nbth factors.

Negotiation rounds Figure 21 shows the negotiation rounds histograms for the following configurations: (a) Whole
dataset; and (b) the best configuration considering the failure rate and Pareto-distance (m = {2, 5, 10}, ath = {0.02−
1, 0.005− 1}, τa = 1).
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Figure 21: Histograms of negotiation rounds in BELLc-Static scenarios: (a) Whole dataset, and (b) m = {2, 5, 10},
ath = {0.02− 1, 0.005− 1}, τa = 1.

The non-parametric multiple comparison test for the dataset (b) is shown in Figure 22. It confirms that the main
effect in the number of negotiation rounds is the search depth.

6.2.3 Summary of Results

This section summarizes the experimental results for the RBNP and SBNP protocols. It describes, for the different ne-
gotiation strategies and scenarios, the corresponding optimal parameter configurations and their results. The different
values are statistically significant within the p < 0.05 range.

Failure rate Table 4 summarizes the failure rate results for the RBNP and SBNP protocols. RBNP shows a failure
rate of 0% in the CES and BELLs scenarios. In BELLc, a high athr1 negatively impacts on the failure rate. For low
athr1 acceptance thresholds and m = 2, 5, 10 the failure rate drops to 0%. SBNP performance is good in the CES
scenarios, but decreases drastically in the non-monotonic environments.

Pareto-distance Table 5 shows the Pareto-distance results for the RBNP and SBNP protocols. In RBNP, Pareto-
distance improves with the increase of search depth. For the adaptive and monotonic concession strategies the activa-
tion of qthf significantly improves the outcomes. When using the static strategy, agents’ offers are quickly accepted by
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Figure 22: Non-parametric multiple comparison test of negotiation rounds mean ranks vs search depth m, in BELLc-
Static scenarios and configuration m = {2, 5, 10} and ath = {0.02− 1, 0.005− 1}.
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Table 4: Failure rate results for the RBNP and SBNP protocols.

Failure rate

CES

RBNP-Static 0%

RBNP-Adaptive 0%

RBNP-Monotonic 0%

SBNP 0%

BELLs

RBNP-Static 0%

RBNP-Adaptive 0%

RBNP-Monotonic 0%

SBNP 60%

BELLc

RBNP-Static 50% for ath=0.1-1 0% for m=2,5,10 ath=0.02-1,0.005-1

RBNP-Adaptive 50% for ath=0.1-1 0% for m=2,5,10 ath=0.02-1,0.005-1

RBNP-Monotonic 70% for ath=0.1-1 0% for m=2,5,10 ath=0.005-1

SBNP 96%

Table 5: Pareto-distance results for the RBNP and SBNP protocols.

Pareto-distance

CES

RBNP-Static m=10 0.0748

RBNP-Adaptive m=10 qthf=0.5,1 0.0422

RBNP-Monotonic m=10 qthf=0.5,1 0.03416

SBNP 0.0424

BELLs

RBNP-Static m=10 τa=1 0.3232

RBNP-Adaptive m=10 qthf=0.5 0.2071

RBNP-Monotonic m=10 qthf=0.5 0.1401

SBNP 0.4598

BELLc

RBNP-Static m=10 ath=0.02-1,0.005-1 τa=1 0.3414

RBNP-Adaptive m=10 ath=0.02-1,0.005-1 (qthf=0.5 or τa=1) 0.2773

RBNP-Monotonic m=10 ath=0.005-1 qthf=0.5,1 0.2176

SBNP -

the opponents. It means that the movement request mechanism rarely activates, and hence qthf has a small influence
on the negotiation process.

If we take into consideration the failure rate and Pareto-distance measures, a globally optimal configuration would
be: high search depth m, activation of offer movement request (qthf = 0.5), low acceptance thresholds for higher
sized BTHs (athr1 = 0.5%), more dense distribution of lower sized regions (τr = 2), and a quasi-linear distribution
of acceptance thresholds (τa = 1).

The SBNP and RBNP performances are quite similar in the CES scenarios. In BELLs, SBNP performs much
worse than RBNP, with a 60% failure rate and very poor Pareto-distance results. In BELLc scenarios SBNP does not
work.

Negotiation time and negotiation rounds Table 6 represents the negotiation time and negotiation round results for
the RBNP and SBNP protocols. The most influential factor in the negotiation time is the search depth. Low athr1
values improve the performance, with the exception of the CES-Adaptive scenario. High τa values improve the results,
though in the non-monotonic scenarios and with the static strategy, we saw that Pareto-distance improves with τa = 1.
The τr factor improves the performance when it defines a more dense distribution of lower sized regions, i.e. τr = 2.

28



Table 6: Negotiation time and negotiation round results for the RBNP and SBNP protocols.

Time Rounds

CES

RBNP-Static m=10 τa=10,20 τr=2 0.8583 10

RBNP-Adaptive m=10 qthf=0.5,1 ath=0.1-1τr=2 1.2320 15

RBNP-Monotonic m=10 qthf=0.5,1 (ath=0.005-1 or τa=10,20) 5.4536 30

SBNP 18.604 9

BELLs

RBNP-Static m=10 τa=1 4.2635 15

RBNP-Adaptive m=10 qthf=0.5 (ath=0.02-1, 0.005-1 or τa=10,20) 5.3643 20

RBNP-Monotonic m=10 qthf=0.5 ath=0.005-1 τa=10,20 45.2966 60

SBNP 54.829 5

BELLc

RBNP-Static m=10 ath=0.02-1,0.005-1 τa=1 6.7232 60

RBNP-Adaptive m=10 ath=0.005-1 (qthf=0.5 or τa=1) 11.4517 60

RBNP-Monotonic m=10 ath=0.005-1 qthf=0.5,1τa=10,20 52.3414 70

SBNP - -

Table 7: Summary of optimal configurations for different scenarios and strategies.

m=high, qthf = low, τr = high, nbth=any athr1 τa

CES-Static high high

CES-Adaptive high high

CES-Monotonic low high

BELLs-Static low low

BELLs-Adaptive low high

BELLs-Monotonic low high

BELLc-Static low low

BELLc-Adaptive low high

BELLc-Monotonic low high

The number of negotiation rounds is mainly influenced by the search depth and the concession strategy. As
expected, the number of rounds increases with the search depth and with the level of competitiveness of the agents’
strategies.

Finally, Table 7 summarizes the optimal configurations in the different scenarios and for the different strategies. To
consider a configuration as optimal, we have taken the failure rate as the prioritary measure, then the Pareto-distance,
and finally the negotiation time. To simplify the characterization of the different factors, we use the terms ’high’ and
’low’ to define value trends. In those cases where a factor has no influence on the performance of the protocol, we
have chosen a concrete value to make the table as general as possible.

In monotonic negotiation scenarios, agents perform well with a convex function of acceptance tresholds, i.e.,
τa = 20, and high initial acceptance thresholds. Only when using the monotonic strategy agents should make athr1
smaller. In non-monotonic scenarios, athr1 must take a low value in order to avoid negotiation failures in the higher
sized BTHs. With the adaptive and monotonic strategies agents perform better with a convex function of acceptance
thresholds (τa = 20). However, with the static strategy it is better to use quasi-linear functions.

6.3 Number of Issues and Search Depth in RBNP
We have already obtained the optimal configuration of negotiation parameters for the different strategies and scenario
types. The experiments have shown that the search depth and the concession strategies play a key role in the perfor-
mance of RBNP. It is of interest now to test the RBNP performance when using search depths higher than 10. Thus,
taking as a basis the optimal configurations shown in Table 7, we extend the evaluation of RBNP for search depths
m = {15, 20, 25, 30, 35, 40}. In addition, we perform the experiments under negotiation scenarios of 2, 5, 10 and 20
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Figure 23: SBNP, RBNP-Static, RBNP-Adaptive and RBNP-Monotonic performance as a function of search depth
and number of issues under the CES scenario.

issues to evaluate scalability. Figures 23, 24 and 25 report the performance of the RBNP and SBNP protocols for the
CES, BELLs and BELLc scenarios, respectively.

6.3.1 CES

For two issues, SBNP performs slightly better than RBNP. However, as the number of issues increases, and for a search
depth higher than 10, SBNP performs worse when compared to RBNP-Adaptive and RBNP-Monotonic. Overall,
RBNP performs better than SBNP in monotonic scenarios. The only exception is in the number of rounds, where
SBNP performance is clearly better.

When comparing the different strategies in RBNP, the Pareto-distance measures are better with RBNP-Monotonic,
and this is more evident as the number of issues increases. The worst results in terms of Pareto-distance are obtained,
as expected, with the Static strategy, where agents do not compete for high utility aspirational levels. The RBNP-
Adaptive protocol obtains slightly worse results than those obtained with RBNP-Monotonic. However, the negotiation
time and number of rounds performance with the Adaptive strategy is much better. Another expected result is that as
the number of issues increases, agents need to negotiate with a higher search depth to obtain good results. However,
for a given scenario, there exists an optimal search depth value such that there is no benefit in using a higher one.
Considering that there is a trade-off between search depth and negotiation time, it is convenient to use that search
depth value. A search depth value between 10 and 20 seems to be a good trade-off between Pareto-distance, time and
number of rounds. Another interesting property of RBNP when working in the CES scenarios, is that the negotiation
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Figure 24: SBNP, RBNP-Static, RBNP-Adaptive and RBNP-Monotonic performance as a function of search depth
and number of issues under the BELLs scenario.

time does not significantly depend on the number of negotiated issues. Finally, we can see how none of the negotiation
protocols fails in the CES environment.

6.3.2 BELLs

The performance of SBNP decreases in the BELLs scenarios. Thus, for 10 and 20 issues the failure rate is, respectively,
60% and 100%, and for 2, 5 and 10 issues the Pareto-distance and negotiation time are sensibly worse than for RBNP.
As in the CES scenarios, the only exception is in the number of rounds, where SBNP is significantly better.

When comparing the different strategies in RBNP, we can see that the Pareto-distance measures are quite simi-
lar with the Adaptive and Monotonic strategies, and as in the CES scenarios, that the RBNP-Adaptive and RBNP-
Monotonic performances are sensibly better than with RBNP-Static. Also, the negotiation time and number of nego-
tiation rounds with the Adaptive strategy are much better than with the Monotonic strategy. Moreover, for 20 issues
and the Monotonic strategy, RBNP exhibits a high failure rate, while with RBNP-Adaptive the failure rate approaches
to zero. In the BELLs scenarios, a search depth value between 10 and 20 seems to be a good trade-off between
Pareto-distance, time and number of rounds.
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Figure 25: SBNP, RBNP-Static, RBNP-Adaptive and RBNP-Monotonic performance as a function of search depth
and number of issues under the BELLc scenario.

6.3.3 BELLc

The SBNP performance decreases drastically in the BELLc scenarios. Thus, the failure rates for 2, 5, 10 and 20 issues
are, respectively, of 5%, 28%, 96% and 100%, and for 2 and 5 issues the Pareto-distance and negotiation time are
sensibly worse than with RBNP. As in the CES scenarios, the only exception is in the number of rounds, where SBNP
is significantly better.

When comparing the different strategies in RBNP, we can see that the best Pareto-distance performances for 2, 5
and 10 issues are obtained when using the Monotonic strategy. With the Adaptive strategy the results are slightly worse
than those obtained with RBNP-Monotonic, but RBNP-Adaptive shows two advantages: the failure rate for 20 issues
is below 20%, and the negotiation time and number of rounds are significantly lower. As in the BELLs scenarios,
a search depth value between 10 and 20 seems to be a good trade-off between Pareto-distance, time and number of
rounds.

7 Strategy Analysis
So far, we have evaluated scenarios where agents use the same negotiation strategies. However, we need to analyze the
potential consequences of the strategic behavior of the negotiating agents, analyzing the dynamics of the negotiation
process when agents with different strategies interact. The questions we want to answer are which strategy should an
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agent play, whether there exists a dominant strategy, and whether individual rationality may lead to situations of low
social welfare. To characterize situations where individual rationality leads agents to results which yield low social
welfare is the notion of price of anarchy. The price of anarchy was first introduced in [Papadimitriou, 2001] in the
context of selfish routing, as a measure of loss of social efficiency due to selfish behavior. In the context of a problem
of social welfare maximization, price of anarchy can be defined as follows:

Definition 7 The price of anarchy (PoA) in a given game is defined as the ratio between the social welfare of the best
possible outcome of the game and the social welfare of the worst Nash equilibrium in the game:

PoA =
max
s∈S

sw(s)

min
s∈SNash

sw(s)
,

where S is the set of all possible outcomes of the game, SNash ⊆ S is the set of all possible outcomes induced by a
Nash equilibrium in the game, and sw(s) is the social welfare of a given outcome s.

Defined in this way, price of anarchy gives an indication of the potential loss in a given game when individually
rational agents are confronted. A PoA of 1 indicates that there is no social welfare loss, while on the other side, a PoA
of∞ indicates that the minimum social welfare of the Nash equilibria is zero.

In this section we measure the RBNP performance when agents use different concession strategies in a given
negotiation encounter. We evaluate the CES, BELLs and BELLc scenarios for 10 and 20 issues. It is assumed that
each agent uses the optimal configuration of negotiation parameters and a search depth of 20.

7.1 CES
Figure 26 depicts the boxplots of utilities for the different combinations of strategies in the CES scenarios. Results
show that an agent playing Monotonic against Static or Adaptive always receives a higher payoff (i.e., higher utility)
than playing any other strategy. In addition, we can see that if both agents play the Monotonic strategy, there is no
evidence of a decrease in the social welfare when compared to the Static-Static and Adaptive-Adaptive pairs. It means
that there exists a unique Nash equilibrium in which each agent plays her strictly dominant strategy, the Monotonic
strategy. In the CES scenario, the Monotonic-Monotonic pair is at the same time the unique Nash equilibrium and the
maximum social welfare pair, which means that PoA is 1.

We have considered the strategic analysis from the perspective of utility. If we take into consideration negotiation
time or the number of rounds, it may be necessary for an agent to play Static of Adaptive to speed up an agreement, at
the cost of a decrease in the utility of the outcomes.

7.2 BELLs
The boxplots of utilities under the BELLs scenarios are shown in Figure 27. With ten issues, the results are similar to
those obtained under the CES environment. The strictly dominant strategy is to play Monotonic, with a PoA of 1.

With 20 issues, when both agents play Monotonic the failure rate is very high (note that the Monotonic-Monotonic
boxplot for 20 issues in Figure 27 (b) shows high utility levels because it does not gather the negotiation failures). If
we consider that a negotiation failure provides the agents utility 0, the payoff matrix for a game with the Adaptive
and Monotonic strategies is as shown in Table 8, where each number represents the median of utility. Note that the
Static strategy is not being considered because there is no individual or social benefit in using it. This payoff matrix
is known as the game of chicken, and is characterized by the existence of two Nash equilibria, corresponding to the
Monotonic-Adaptive pairs. There is no dominant strategy, which means that the optimal strategy for an agent depends
on the opponent’s strategy. If the opponent plays Adaptive, the agent should play Monotonic, and if the opponent plays
Monotonic, the agent should play Adaptive. However, if agents do not know the strategies played by the opponents,
risk attitude plays a main role in this scenario. A risk-prone agent may play Monotonic, assumming the risk of a
negotiation failure, but with the likelihood of obtaining the highest payoff if the other agent plays Adaptive. On the
other hand, a risk-averse agent should play Adaptive in order to obtain a payoff of at least 0.2. Finally, the PoA is the
ratio between the pairs: Adaptive-Monotonic and Adaptive-Adaptive. For the sum of utilities PoA = 0.5+0.5

0.6+0.2 = 1.25,
and for the product of utilities PoA = 2.08.
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Figure 26: Boxplots of utilities for the different pairs of strategies under the CES scenarios.
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Figure 27: Boxplots of utilities for the different pairs of strategies under the BELLs scenarios.
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Table 8: Payoff matrix for the Adaptive and Monotonic strategies in the BELLs and 20 issues scenario.

Ab Adaptive Ab Monotonic
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Figure 28: Boxplots of utilities for the different pairs of strategies under the BELLc scenarios.

7.3 BELLc
Figure 28 shows the boxplots of utilities under the BELLc scenario. For ten issues, as in the CES and BELLs scenarios,
the Monotonic strategy is dominant, and the unique Nash equilibrium is the Monotonic-Monotonic pair. In the BELLc
scenario with 20 issues, the failure rate is 100% when at least one of the agents play Monotonic. The intuition behind
this is that in highly complex negotiation spaces only a cooperative behavior lead agents to an agreement. Regarding
the Static and Adaptive strategies, there is no a strong evidence of dominance. However, as it can be seen in Figure
25, the negotiation time and number of rounds are significantly better with the Adaptive-Adaptive pair.

8 Conclusion
In this paper we analyze the problem of automated negotiation in complex non-monotonic preference spaces. We
propose the Region-Based Multi-issue Negotiation Protocol (RBNP) for bilateral automated negotiation. RBNP is built
upon a non-mediated recursive bargaining mechanism which efficiently modulates a region-based joint exploration of
the solution space. The proposed region expansion and contraction method within the bargaining mechanism avoids
zones of no-agreement in an efficient manner. We pay attention to the strategic issues, where concession mechanisms
play a fundamental role, incorporating three different concession strategies, purely cooperative, purely competitive
and semi-cooperative in order to cover a wide range of agent behaviors.

We first show that the generic Similarity-Based Multi-issue Negotiation Protocol (SBNP), which has been suc-
cessfully used in many negotiation models, has a poor performance in non-monotonic spaces. The main problem with
SBNP is that agents’ utility concessions may lead to situations where agents’ offers are similar but it is not possible to
make further concessions (i.e., agents get stuck in a zone of no agreement). RBNP solves these situations by means
of region expansion and contraction. In addition, offer movement request is identified as a useful technique which
complements expansion and contraction by letting agents to express their preferences for the opponent’s offers. This
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technique significantly improves the results under complex preference settings.
We perform an exhaustive empirical analysis of RBNP under monotonic and non-monotonic scenarios, and obtain

the optimal negotiation parameter values. It is shown that RBNP produces outcomes close to the Pareto frontier in
acceptable negotiation times, and that it clearly outperforms SBNP both in monotonic and non-monotonic negotiation
scenarios. RBNP only fails when both agents play a monotonic concession strategy under a non-monotonic negotiation
scenario with 20 issues.

Search depth (i.e., the number of region sizes used in a negotiation encounter) plays a main role in the negotiation
protocol performance. In general, Pareto optimality increases with search depth at the cost of an increase in negotiation
time. Thus, there is a trade-off between Pareto optimality and negotiation time which may be controlled with the search
depth.

The strategy analysis we perform evaluates the consequences of the strategic behavior of the negotiating agents.
The experimental analysis shows that the dominant strategy in monotonic scenarios is to play a monotonic concession
strategy. With the Monotonic-Monotonic pair we obtain also the maximum social welfare solution, which means that
the price of anarchy (PoA) is 1. In non-monotonic negotiation scenarios, and for 10 issues, the dominant strategy is
again the monotonic strategy, and the corresponding PoA is 1. However, for medium-level complexity scenarios and
many issues (BELLs and 20 issues), there is no dominant strategy, and we have two Nash equilibrium solutions for
the Adaptive-Monotonic strategy pairs. Finally, in the highly complex BELLc and 20 issues scenario the failure rate
goes to 100% when at least one of the agents plays the monotonic strategy. It means that only the adaptive or static
strategies lead agents to agreements.

RBNP has shown to be an effective protocol which performs well under monotonic and non-monotonic scenarios.
The compromise between Pareto optimality and negotiation time can be easily controlled by means of the search depth.
Only under extremely complex preference spaces RBNP fails. Regarding the strategic issues, in most practical cases
the monotonic strategy will be the right choice, and only when negotiation time is critical or in complex preference
settings it will be necessary to change to another strategy. We have considered in this work a static environment. In
dynamic environments, however, autoadaptive mechanisms will be needed, so that agents can improve their config-
uration during the course of the negotiation. We believe that these results open the door to a new set of negotiation
algorithms, and that the concepts of region and recursivity could be applied in more complex negotiation settings such
as multiparty and mediated negotiations.
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List of symbols
• ATH Set of acceptance thresholds.

• athrim Acceptance threshold for regions of size rim.

• BELLs, BELLc BELL smooth or complex negotiation scenarios.

• btnrim Bargaining thread of size rim beginning at instant tn.

• BTH Bargaining thread.

• CES Constant elasticity of substitution negotiation scenario.

• δ Concession step factor.

• m Search depth.

• n Number of issues.

• nbtrim Number of BTHs of size rim.

• NegD Negotiation dialogue.

• nsc Number of sample contracts.

• NumB Number of BTHs.

• OSD Overall satisfaction degree.

• QTH Set of quality thresholds.

• qthf Quality threshold factor.

• RegS Set of region sizes.

• rim Region size of level im.

• (Rs,b)
tn
rim Seller or buyer region of size rim at instant tn.

• τ ia Curvature factor for the distribution of acceptance thresholds.

• τ ir Curvature factor for the distribution of region sizes.

• vq Offer movement request vector.

• Ub,s Buyer or seller utility function.

• Uobjb,s Buyer or seller objective utility.

• U thb,s Buyer or seller utility threshold.
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