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Abstract

We characterize the set of all rational transformations with the property of pre-
serving the existence of rational solutions of algebraic ordinary differential equations
(AODEs). This set is a group under composition and, by its action, partitions the set
of AODEs into equivalence classes for which the existence of rational solutions is an
invariant property. Moreover, we describe how the rational solutions, if any, of two
different AODEs in the same class are related.

Keywords: algebraic differential equation; rational solution; integral birational trans-
formation; integral curve; rational parametrization.

1 Introduction

This paper deals with questions in the symbolic analysis of algebraic differential equations;
see e.g. Chapter 9 in [1], [9], [18], [20] for the symbolic treatment, [10] for a numerical
treatment, and [17] for the foundations from differential algebra. More precisely, within this
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area, we describe an algebro-geometric treatment of algebraic ordinary differential equations
(AODEs).

1.1 Algebro-geometric treatment of AODEs

Let K be an algebraically closed field of characteristic zero. Let ′ be the uniquely defined
derivation on K(x) such that ker(′) = K and x′ = 1. An AODE of order n is an ordinary
differential equations of the form (see Def. 3.1)

F (x, y, y′, . . . , y(n)) = 0 , (1)

where F is a polynomial with coefficients in K; in practice, we often take K as the field of
complex numbers C. We will assume w.l.o.g. that the defining polynomial F is irreducible
over K. If this would not be the case, (1) would split in several AODEs.

Now, we associate to (1) an algebraic variety, namely the irreducible hypersurface V(F )
defined by F (u1, . . . , un+2) = 0 in the (n + 2)-dimensional affine space Kn+2, where ui are
new variables. So, a first order AODE corresponds to a surface in K3, a second order
AODE corresponds to a 3-dimensional variety in K4, etc. The defining polynomial F of an
autonomous first order AODE depends only on two variable, namely {u2, u3}, and hence
V(F ) is a cylinder in K3. Therefore, in the case of autonomous first order AODEs we can
consider that the associated hypersurface is a plane curve in K2. Analogously, an autonomous
n-order AODE can be associated to a hypersurface in Kn+1 instead of in Kn+2. A similar
treatment can be done with systems of AODEs (see [7], [11], [16]) and for algebraic partial
differential equations (see [6]).

In this situation, the strategy consists in achieving information on the solutions of (1)
from the algebraic and geometric properties of V(F ). For instance, in [3], [4] the existence
and actual computation of rational solutions of autonomous first order AODEs is studied by
using rational parametrizations of the associated plane curve. In [5] this analysis is extended
to the case of radical solutions by using radical parametrizations of the curve. In [15] the
study in [3], [4] is generalized to the case of non-autonomous first order AODEs. For this
purpose, the authors, using a rational parametrization of the associated surface, introduce a
system of autonomous algebraic ODEs of order 1 and of degree 1, and the problem is treated
by means of its invariant algebraic curves in [16]. Other approaches for first order AODEs
can be found in [2], and in the chapter by G. Chen, Y. Ma in [20].

1.2 Birational transformations of AODEs and their applications

In the algebro-geometric approach one distinguishes two levels, the differential and the al-
gebraic level, and the idea is to derive information on the differential equation from the
associated variety. On the other hand, when working in algebraic geometry it is very usual
to perform transformations that preserve the main properties and invariants of the variety,
with the aim of reaching a simpler expression or a simpler geometric object from where the
final conclusion might be easier to deduce. Typically, one uses birational transformations.
Roughly speaking, a birational transformation is an invertible rational map, i.e. an invertible
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map defined by means of rational functions. Such a rational map may be undefined for spe-
cial values. If the invertible rational map is between irreducible Zariski open sets, the inverse
map is again a rational map. The simplest case of birational transformations are the affine
transformations. But, one may have non-linear birational transformation. For instance, the
quartic plane curve −u4

2 + 2u1u
2
2 + u3

2 − u2
1 = 0 is transformed, under the birational map

φ : (u1, u2) 7→
(
−u2

2 + u1

u2
2

,
1

w

)
, φ−1 : (u∗1, u

∗
2) 7→

(
u∗1 + 1

u∗2
2 ,

1

u∗2

)
,

into the parabola u∗2 = u∗1
2. This implies, for instance, that φ−1(t, t2) = ((t + 1)/t4, 1/t2) is

a parametrization of the quartic.

However, birational transformations, although preserving many important algebraic and
geometric properties, in general do not preserve the differential properties. For instance, let
us consider the homogeneous linear differential equation y′ = 0. Its associated hypersurface
is the plane Π1 of equation u3 = 0 in K3. If we consider the affine transformation {u1

∗ =
u1, u2

∗ = u2, u3
∗ = u3 + u2}, the plane Π1 is transformed into the plane Π2 of equation

u3
∗ − u2

∗ = 0, corresponding to the linear differential equation y′ = y. Nevertheless, while
all solutions of the first equation are rational (indeed constant), the second equation does
not have any rational solution.

So the natural question, and indeed our problem in this paper, is: what type of birational
transformations, if any, on AODEs does preserve the existence of rational solutions? In [13],
we consider the simpler case of affine transformations, and we characterize the set of all affine
transformations that preserve the rationality of the solutions of first order AODEs. More
precisely, these affine transformations are of the type {u1

∗ = u1, u2
∗ = αu2 + βu1 + γ, u3

∗ =
αu3 + β}, where α, β, γ ∈ K, α 6= 0, and they form a group under composition. Note that
the transformation in the previous paragraph is not of this type and that, applying one of
these transformations to Π1, one gets u3

∗ = β corresponding to y′ = β, all solutions of which
are rational.

With the same type of strategy, alternative questions have been treated by other authors
analyzing the equivalence, for first order algebraic differential equations, under different
criteria such as the preservation of the Painlevé property (see [12]).

Having a description of the birational transformations, preserving rational solutions of
AODEs, reinforces the applicability of the existing solving methods. For instance, in Exam-
ple 4.1 we see how a non-autonomous AODE can be transformed into an autonomous one,
and hence algorithms in [3], [4] can be applied to a wider class of equations; see Section 4.

1.3 Main contributions of the paper

In general terms, the main contribution of the paper is the establishment of an equivalence
relation in the set of all AODEs such that in any equivalence class the rational solvability is
preserved. This leads to a new theoretical and algorithmic framework. More precisely, the
main contributions of the paper can be summarized as follows:

• we characterize the set of all birational transformations that, when applied to an AODE
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of arbitrary order n, preserve the rationality of the solutions (see Theorems 2.1, 2.2).
We call them integral birational transformations (see Definition 2.2).

• We prove that this set forms a group (see Proposition 2.1). Moreover, we consider
the action of this group on the set of all AODEs of order n, and we prove that the
existence of rational solutions is an invariant property for all the differential equations
in a given equivalence class (see Theorem 3.1).

• Furthermore, we show how the solutions of two different differential equations, in the
same class, are related (see Theorem 3.1). Analogous reasonings can be used for
studying invariance of larger classes of solution functions.

1.4 Structure of the paper

The structure of the paper is as follows. In Section 2 we define the notion of a rational integral
curve, i.e. a curve having a parametrization of the form (x, f(x), f ′(x), ..., f (n)(x)), and we
characterize the class of birational transformations of (n+ 2)-dimensional mapping rational
integral curves into rational integral curves. We call them integral birational transformations.
These transformations form a group. In Section 3 we investigate how these transformations
act on the set of AODEs. In fact, the orbits w.r.t. to this transformation group form
equivalence classes and the property of having regular rational solutions is invariant for
elements of a given equivalence class. Also the singular solutions are preserved. In Section
4, we illustrate the potential applicability of the results in the paper. We finish the paper
with conclusions and an indication of some open problems.

1.5 Basic notation

Throughout this paper, we use the following notation. K is an algebraically closed field of
characteristic zero, and ′ is the uniquely defined derivation on K(x) such that ker(′) = K
and x′ = 1. y is an indeterminate over a differential extension field of K(x). The differential
equations will depend on {x, y, y′, . . . , y(n)}. The affine coordinates in Kn+2 are denoted
by (u1, . . . , un+2). So when passing from the differential level to the algebraic level we will
replace x by u1, y by u2, and y(i) by u2+i.

In addition, let a rational function f(u) = f1(u)/f2(u) in the (set of) variables u be rep-
resented by coprime polynomials f1, f2. Then we call f1 the numerator of f , f1 = numer(f).
Observe that the numerator is determined up to constant multiples.

If f is a non-zero polynomial in the variable x, then by LCx(f) we denote the leading
coefficient of f w.r.t. x, i.e., the coefficient of xdegx(f).

Moreover, when f(u, v) is a polynomial in the (sets of) variables u and v, then by the
content of f w.r.t. v, contv(f), we denote the greatest common divisor of the coefficients of
f w.r.t. v. By the primitive part of f w.r.t. v we mean ppv(f) = f/contv(f).

For a rational function f(u1, . . . , ur) we denote its derivative w.r.t. uj by fj; in particular,
for the rational functions φi appearing in Theorems 2.1 and 2.2 we denote their derivative
w.r.t. the j-th variable by φi,j.

For a polynomial F (u) we denote by V(F ) the hypersurface defined by F over K.
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2 Integral birational transformations

For any rational function f(x) and positive n ∈ N the set

{(x, f(x), f ′(x), . . . , f (n)(x)) | x ∈ K}

is a rational (or parametric) curve in the affine space Kn+2. For instance, f(x) = 5, and
n = 1, generates the line, in C3, parametrized as (x, 5, 0). This motivates the following
definition.

Definition 2.1. For a given rational function f(x) and a positive integer n, the parametric
space curve

C(n)
f := {(x, f(x), f ′(x), . . . , f (n)(x)) | x ∈ K} ⊂ Kn+2

is called a rational integral curve (RIC) of order n over K (cf. [13], p. 198). f is the defining

rational function of C(n)
f . By

RIC(n) := {C(n)
f | f ∈ K(x)}

we denote the set of rational integral curves of order n over K. •
So, the line {u2 = 5, u3 = 0} is the rational integral curve C(1)

5 ∈ RIC(1). A rational
integral curve is a set of points in Kn+2; but sometimes we find it convenient to consider it
as a rational mapping from K to Kn+2:

C(n)
f : K −→ Kn+2

x 7→ (x, f(x), f ′(x), . . . , f (n)(x))
.

In this context we would like to describe the birational maps of Kn+2 sending rational
integral curves into rational integral curves. Let us see an example.
Example 2.1. We consider the rational integral curve

C2
1
x

=

{(
x,

1

x
,− 1

x2
,

2

x3

)
|x ∈ C

}
and the birational map (compare to Theorem 2.2)

Φ : C4 −→ C4

(u1, u2, u3, u4) 7→
(
u1,

1
u2+u1

,− 1+u3
(u2+u1)2

,−u1u4+u2u4−2u32−4u3−2
(u2+u1)3

)
.

We observe that Φ maps C2
1
x

into C2
x

x2+1

. However, if you consider the birational map

Φ∗ : C4 −→ C4

(u1, u2, u3, u4) 7→ (u1, u1 + u2, u3, u4) .

C2
1
x

is mapped into the curve {(
x,
x2 + 1

x
,− 1

x2
,

2

x3

)
|x ∈ C

}
which is not a rational integral curve, because (x

2+1
x

)′ 6= − 1
x2

•
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Our goal in this section is to solve the following problem (see Remark 2.1 (1)):

Problem: find all birational transformations Φ : Kn+2 → Kn+2 such that
the induced map Φe : C(n)

f 7→ Φ ◦ C(n)
f is actually a map from a non-empty

subset of RIC(n) to RIC(n), i.e., for those f ∈ K(x) such that Φe(C(n)
f ) =

Φ(x, f(x), f ′(x), . . . , f (n)(x)) is well defined, there exists a unique rational func-
tion g ∈ K(x) such that

Φe(C(n)
f ) = C(n)

g . (2)

The following diagram describes the situation in (2):

C(n)
f

Kn+2 Kn+2

K

-Φ

6

�
�
�
�
��

Φ◦C(n)
f =C(n)

g

For a given birational transformation Φ on Kn+2, we denote by RIC(n)
Φ the subset of

RIC(n) where Φe is defined. For instance, if Φ and Φ∗ are as in Example 2.1, then RIC(2)
Φ =

RIC(2) \ {C(2)
−x} and RIC(2)

Φ∗ = RIC(2). In Lemma 2.1 we prove that RIC(n)
Φ is never empty.

Lemma 2.1. Let Φ : Kn+2 → Kn+2 be a birational map, then RIC(n)
Φ 6= ∅. Furthermore, for

almost all polynomials f(x) of degree n, C(n)
f ∈ RIC

(n)
Φ .

Proof. Let G(u1, . . . , un+2) be the lcm of all denominators in Φ. Let

f = λ2 + λ3(x− λ1) + · · ·+ λn+2

n!
(x− λ1)n

where λi are undetermined coefficients. First we see that G(C(n)
f ) 6= 0. Indeed, if G(C(n)

f ) =

G(x, f(x), . . . , f (n)(x)) = 0, then G(λ1, f(λ1), . . . , f (n)(λ1)) = G(λ1, λ2, . . . , λn+2) = 0 which
is a contradiction because G 6= 0 and (λ1, λ2, . . . , λn+2) is a generic point in Kn+2. Now, the
set of coefficients of G(x, f(x), . . . , f (n)(x)) w.r.t. x defines an algebraic variety V strictly
included in Kn+2 such that for (λ1, λ2, . . . , λn+2) ∈ Kn+2 \ V , the corresponding polynomial

f generates a curve C(n)
f ∈ RIC

(n)
Φ .

In the next theorem, we solve the problem stated in (2) for the case of first order, i.e. for
n = 1. The basic idea of the proof is to find necessary conditions by checking the map on
lines and parabolas to afterwards prove that these conditions are also sufficient.

Theorem 2.1. [First order case] Let Φ : K3 → K3 be a birational map. If the map Φe :

C(1)
f 7→ Φ ◦ C(1)

f defines a map from RIC(1)
Φ to RIC(1), then Φ must be of the form

Φ(u1, u2, u3) =

(
u1,

au2 + b

cu2 + d
,

∂

∂u1

(
au2 + b

cu2 + d

)
+

∂

∂u2

(
au2 + b

cu2 + d

)
· u3

)
, (3)
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where a, b, c, d ∈ K[u1] such that ad− bc 6= 0.

Conversely, any map of the form (3) is birational and the induced map Φe : C(1)
f 7→ Φ ◦ C(1)

f

defines a map from RIC(1)
Φ to RIC(1).

Proof. Throughout this proof, for ease of notation we will simply write Cf instead of C(1)
f ,

and RIC instead of RIC(1).
Let Φ(u) = (φ1(u), φ2(u), φ3(u)), where u = (u1, u2, u3), be a birational map on K3. Suppose

that φ1(u) = F1(u)
G1(u)

, where F1 and G1 are coprime polynomials in K[u]. F1 and G1 have to
be such that

x =
F1(Cf )
G1(Cf )

for f ∈ K(x) such that Cf ∈ RICΦ. Let us consider the polynomial

P (u) := u1G1(u)− F1(u).

We know that for f as above P (x, f(x), f ′(x)) = 0. We prove that P (u) = 0. Indeed, let
λ = (λ1, λ2, λ3) ∈ K3 and consider the line l(x) = λ2 +λ3(x−λ1). Then, taking into account
Lemma 2.1, for λ in a non-empty Zariski open subset of K3, Cl(x) ∈ RICΦ, and so

P (λ1, λ2, λ3) = P (λ1, l(λ1), l′(λ1)) = 0.

Hence, P (u) = 0, i.e., φ1(u) = u1.
Now we need to determine the form of φ2(u) and φ3(u) such that φ2(Cf )′ = φ3(Cf ) for

f ∈ K(x) such that Cf ∈ RICΦ. This is equivalent to

φ21(Cf ) + φ22(Cf )f ′(x) + φ23(Cf )f ′′(x) = φ3(Cf ) for f ∈ K(x) such that Cf ∈ RICΦ.

Note that the square-free parts of the denominators of φij and φi are equal (here we use the
notation introduced just before the Theorem). Let Q be the numerator of

φ21(u) + φ22(u)u3 + φ23(u)u4 − φ3(u)

We know that for f ∈ K(x) such that Cf ∈ RICΦ we have Q(x, f(x), f ′(x), f ′′(x)) = 0. Let

λ = (λ1, . . . , λ4) ∈ K4 and consider the parabola p(x) = λ2 +λ3(x−λ1)+
λ4

2
(x−λ1)2. Then,

for λ in a non-empty Zariski open subset of K4, Cp(x) ∈ RICΦ, and so

0 = Q(λ1, p(λ1), p′(λ1), p′′(λ1)) = Q(λ1, λ2, λ3, λ4).

Therefore, Q(u1, . . . , u4) = 0. This implies that

φ3(u) = φ21(u) + φ22(u)u3 + φ23(u)u4.

Since the left hand side does not contain u4, φ23(u) must be 0. Consequently, φ2(u1, u2, u3)
does not depend on the third variable. Hence, Φ has the form

Φ(u1, u2, u3) = (u1, φ2(u1, u2), φ21(u1, u2) + φ22(u1, u2) · u3).
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Now, it is enough to determine φ2. We observe that φ22 is not zero, since otherwise Φ
would not depend on u3 and hence could not be birational. Let λ = (λ1, λ2, λ3) be a generic
point in an open subset of K3. Consider the system of equations

u1 = λ1

φ2(u1, u2) = λ2

φ21(u1, u2) + φ22(u1, u2)u3 = λ3.

(4)

Let φ2 =
F2

G2

be in reduced form. Note that F2 6= 0, because Φ is birational. Consider

A(u2) = F2(λ1, u2)− λ2G2(λ1, u2).

First we observe that A is of positive degree in u2. This follows from the fact that
F2

G2

does depend on u2 (because φ22 6= 0). Indeed, degu2(A) = 1. If A has two different
roots, the fiber will have at least 2 elements. Moreover, let us see that A does not have
multiple roots for a generic λ. The polynomial H(u1, u2, w) = F2(u1, u2) − wG2(u1, u2)
cannot have a multiple factor, since degw(H) = 1 (G2 cannot be 0) and gcd(F2, G2) = 1. So
R(u1, w) = discriminantu2(H) 6= 0. If we take λ1, λ2 such that R(λ1, λ2) 6= 0, then A will
not have multiple roots. This proves that indeed degu2(A) = 1. Therefore, φ2(u1, u2) is of
the form

φ2(u1, u2) =
a(u1)u2 + b(u1)

c(u1)u2 + d(u1)
,

with ad− bc 6= 0.
Conversely, any map of form (3) is birational because its inverse is

Φ−1(u1, u2, u3) =

(
u1,

du2 − b
−cu2 + a

,
∂

∂u2

(
du2 − b
−cu2 + a

)
u3 +

∂

∂u1

(
du2 − b
−cu2 + a

))
.

Moreover, if Cf = (x, f(x), f ′(x)), then Φ(Cf ) = (x, g(x), g′(x)), where g(x) =
a(x)f(x) + b(x)

c(x)f(x) + d(x)
; of course with the exceptional case in which f is a root of the denomi-

nator; namely f = −d(x)/c(x).

Now we generalize Theorem 2.1 to rational maps on higher dimensional spaces; i.e. we
solve the problem in (6) for the general case. The proof is by induction on the order and
uses Theorem 2.1 as induction basis.

Theorem 2.2. [General order case] Let Φ = (φ1, . . . , φn+2) : Kn+2 → Kn+2 be a birational
map, where n > 1.
If the map Φe : C(n)

f 7→ Φ ◦ C(n)
f defines a map from RIC(n)

Φ to RIC(n), then Φ̂ =

(φ1, . . . , φn+1) : Kn+1 → Kn+1 is birational, Φ̂e maps RIC(n−1)

Φ̂
to RIC(n−1), and

φn+2(u, un+2) = φn+1,1(u) +
n∑
i=2

φn+1,i(u) · ui+1 + φn+1,n+1(u) · un+2 , (5)
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where u = (u1, . . . , un+1).
So Φ is triangular in the sense that its i-th component depends only on the first i variables,
and for i ≥ 3 the variable ui is introduced linearly in φi.
Conversely, any map of the form (5) extending a birational map Φ̂ from Kn+1 to Kn+1, such

that Φ̂e maps RIC(n−1)

Φ̂
to RIC(n−1), is birational and the induced map Φe : C(n)

f 7→ Φ ◦ C(n)
f

defines a map from RIC(n)
Φ to RIC(n).

Proof. If Φ̂ would not be birational, clearly Φ could not be birational. And if Φ̂ would not
map RIC(n−1)

Φ̂
to RIC(n−1), then Φ could not map RIC(n)

Φ to RIC(n).

We must have φn+1(C(n)
f )′ = φn+2(C(n)

f ) for f ∈ K(x) such that Cf ∈ RIC(n)
Φ . This is

equivalent to

φn+1,1(C(n)
f ) +

n+2∑
i=2

φn+1,i(C(n)
f ) · f (i−1) = φn+2(C(n)

f ) for f ∈ K(x) such that Cf ∈ RIC(n)
Φ .

Let Q be the numerator of

φn+1,1(u) +
n+2∑
i=2

φn+1,i(u) · ui+1 − φn+2(u, un+2)

As in the proof on Theorem 2.1 we see that Q(u1, . . . , un+3) = 0. This implies that

φn+2(u, un+2) = φn+1,1(u) +
n+2∑
i=2

φn+1,i(u) · ui+1.

But φn+1 does not depend on un+2, so φn+1,n+2 = 0. Consequently, φn+2 is of the form (5).
Applying the process of shortening the map several times, until finally we arrive at a map

on K3 which is covered by Theorem 2.1, we see that Φ is indeed triangular and the variables
u3, . . . , un+2 are introduced linearly in the corresponding components of the map.

Conversely, any birational map Φ̂, such that Φ̂e maps RIC(n−1)

Φ̂e
to RIC(n−1), must be

such that φn+1,n+1 6= 0, since it is triangular and could not be birational otherwise. So

the extension Φ of the form (5) is also triangular and birational. And Φe maps RIC(n)
Φ to

RIC(n).
In fact, let us determine the inverse of Φ. Φ−1 is also birational and (Φ−1)e maps RIC(n)

(Φ−1)e

to RIC(n). So it must also be of the shape (5). That means, it must be generated by a linear
function in the 2nd component. If Φ is generated by the linear function

L(u1, u2) =
a(u1)u2 + b(u1)

c(u1)u2 + d(u1)

(compare Theorem 2.1), then Φ−1 must be generated by the linear function

L−1(u1, u2) =
d(u1)u2 − b(u1)

−c(u1)u2 + a(u1)
.
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Theorems 2.1 and 2.2 motivate the next definition.

Definition 2.2. An integral birational transformation of order n is a rational transformation
of the form

Φ(u1, . . . , un+2) =
(
u1, φ2(u1, u2), . . . , φn+2(u1, . . . , un+2)

)
,

where φ2(u1, u2) = L(u1, u2) is an invertible linear function in K[u1](u2), i.e.,

L(u1, u2) =
a(u1)u2 + b(u1)

c(u1)u2 + d(u1)
, with a, b, c, b ∈ K[u1] and ad− bc 6= 0,

and φr is derived from φr−1 as in (3) and (5), for 3 ≤ r ≤ n+ 2.
We call L the defining function of this integral birational transformation Φ, and we write
Φ = ΦL.
We call ∆ = a · d− b · c ∈ K[u1] the determinant of Φ, and we write ∆ = ∆Φ.
By

G(n) := {ΦL | L ∈ K[u1](u2) linear in u2 and invertible } (6)

we denote the set of integral birational transformations of order n. •

With this new notation, we have that Φ in Example 2.1 is Φ1/(u1+u2) ∈ G(2).

Remark 2.1. We observe the following.

1. Observe that G(n) is the answer to the problem stated above.

2. From the proof of Theorem 2.1 and Theorem 2.2 we see that if the integral birational
transformation Φ is defined by the function L = a·u2+b

c·u2+d
, then its inverse Φ−1 is defined

by d·u2−b
−c·u2+a

.

3. If Φ ∈ G(n) is generated by a·u2+b
c·u2+d

, then RIC(n)
Φ = RIC(n) if c = 0, and RIC(n)

Φ =

RIC(n) \ {C(n)
−d/c} if c 6= 0.

4. This type of reasoning in the proofs of the previous results may also be applied to
differentiable functions instead of rational functions, in case K is a differential field;
i.e., RIC may be replaced by the set

{(x, f(x), f ′(x), . . . , f (n)(x)) | f is a differentiable function in x}.

For instance, if you consider the integral curve

C2
ex sin(x) = {(x, ex sin (x) , ex sin (x) + ex cos (x) , 2 ex cos (x)) |x ∈ C}

and Φ is the map in Example 2.1, then C2
ex sin(x) is transformed into the integral curve

C2
1

ex sin(x)+x

.

In the following, we see that G(n) is a group, under composition, and we study some of
its subgroups.
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Proposition 2.1. For a positive integer n, the set of integral birational transformations
of order n, G(n), (cf. (6)) is a subgroup (under composition) of the group of birational
transformations of the space Kn+2.

Proof. Since the identity map belongs to G(n), we have G(n) 6= ∅. As we have seen above
(Remark 2.1), with Φ the set G(n) also contains Φ−1.
Let Φ1,Φ2 be in G(n) and let L1(u1, u2), L2(v1, v2) be their defining functions, respectively.
Then the composition Φ1 ◦ Φ2 is defined by the linear function L1(v1, L2(v1, v2)), with the
determinant being the product of the determinants of L1 and L2.
So G(n) is a group under composition.

Definition 2.3. We call G(n) the group of integral birational transformations of order n. •

Remark 2.2. In our previous paper [13], we have studied the affine case for order 1, i.e., the
case in which Φ(u1, u2, u3) := Φαu2+βu1+γ = (u1, αu2 + βu1 + γ, αu3 + β), where α, β, γ ∈ K,
α 6= 0. The set of all such affine transformations forms a subgroup of the group G(1) of
integral birational transformations on K3. Now, using Theorem 2.2, the linear subgroup
in [13] can be generalized to the n-order case. This leads to the subgroup of G(n) (n > 3)
formed by all integral transformations of Kn+2 of the form Φ(u1, . . . , un+2) := Φαu2+βu1+γ =
(u1, αu2 + βu1 + γ, αu3 + β, αu4, . . . , αun+2); note that ∆Φ = α.

Besides the linear subgroup mentioned in Remark 2.2, we introduce three additional
subgroups. Consider the following subsets of G(n):

G(n)
inv =

{
Φu2 ,Φ1/u2

}
, G(n)

mult =
{

Φa(u1)u2 | a ∈ K(u1), a 6= 0
}
, G(n)

plus =
{

Φu2+b(u1) | b ∈ K(u1)
}
.

Note that G(n)
inv only consists of two elements, while G(n)

mult and G(n)
plus are infinite sets.

Proposition 2.2. G(n)
inv, G

(n)
mult and G(n)

plus are subgroups of G(n).

Proof. The identity transformation is in G(n)
inv, G

(n)
mult and G(n)

plus.

Clearly, G(n)
inv is a subgroup of G(n), since the non-identity element in G(n)

inv is its own inverse.

Let Φ1,Φ2 ∈ G(n)
mult, with defining functions a1(u1)u2 and a2(u1)u2, respectively. Then Φ1◦Φ−1

2

is in G(n)
mult with defining function a1(u1)

a2(u1)
u2.

Let Φ1,Φ2 ∈ G(n)
plus, with defining functions u2 + b1(u1) and u2 + b2(u1), respectively. Then

Φ1 ◦ Φ−1
2 is in G(n)

plus with defining function u2 + b1(u1)− b2(u1).

Therefore, G(n)
inv, G

(n)
mult and G(n)

plus are subgroups of G(n).

Proposition 2.3. Every Φ ∈ G(n) can be decomposed into a product of elements in G(n)
inv,

G(n)
mult and G(n)

plus.

Proof. Let Φ be an arbitrary element in G(n), defined by the function

L(u1, u2) =
a(u1)u2 + b(u1)

c(u1)u2 + d(u1)
.

11



1. If c = 0, then we can write

L(u1, u2) =
a

d
u2 +

b

d
.

So Φ = Φ2 ◦Φ1, where Φ1 ∈ G(n)
mult is defined by a

d
u2, and Φ2 ∈ G(n)

plus is defined by u2 + b
d
.

2. If c 6= 0, then we can write

L(u1, u2) =
a

c
+

bc− ad
c2
(
u2 + d

c

) .
So Φ = Φ4 ◦ Φ3 ◦ Φ2 ◦ Φ1, where Φ1 ∈ G(n)

plus is defined by u2 + d
c
, Φ2 ∈ G(n)

inv is defined

by 1
u2

, Φ3 ∈ G(n)
mult is defined by bc−ad

c2
u2, and Φ4 ∈ G(n)

plus is defined by u2 + a
c
.

Therefore, every element in G(n) can be decomposed into a product of elements in those three
subgroups.

3 The transformation of AODEs

In this section, we study the action of the group G(n) (see Def. 2.3) on the set of all
algebraic ordinary differential equations. In addition, we show that the equivalence classes
generated by the action of G(n) satisfy the expected property, namely, the rational solvability
is invariant. We start with the following definition.

Definition 3.1. Let F (u) ∈ K[u1, . . . , un+2] be such that degun+2
(F ) ≥ 1. The algebraic

ordinary differential equation (AODE) of order n (over K) defined by F is of the form

F (x, y, y′, . . . , y(n)) = 0.

Let AODE (n) be the set of all algebraic ODEs of order n over K. •
If the defining polynomial of an AODE can be factored, then the set of solutions is clearly

the union of the sets of solutions of the AODEs defined by the factors. So throughout this
paper we will assume that the AODE F (x, y, y′, . . . , y(n)) = 0 is given by an irreducible
polynomial F . We will study the integral birational transformations of the associated hy-
persurfaces to AODEs. For this purpose, we must first ensure that for any such hypersurface
and for every element in G(n) the map is well-defined. This first step is given in the next
proposition.

Proposition 3.1. For every F ∈ AODE (n) and for every Φ ∈ G(n) there exists a non-empty
Zariski dense open subset Ω ⊂ V(F (u1, . . . , un+2)) ⊂ Kn+2 such that Φ is defined on Ω.

Proof. The denominator of each rational component of Φ is either a constant or a power of
a polynomial in K[u1, u2], and F does depend on at least one variable ui, i > 2. Therefore,
since F is irreducible, no denominator of Φ vanishes on V(F ).

Now, we are ready to introduce the notion of transformed AODE. Later, in Theorem 3.3,
we will see how to actually compute the transformed differential equation of a given AODE.
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Definition 3.2. Let F ∈ K[u] be irreducible and non-constant. Let Φ ∈ G(n) be an integral
birational transformation on Kn+2. Let W be the irreducible image variety of V(F ) under
Φ, i.e., the Zariski closure Φ(V(F ))∗ of the set theoretic image. Let G be the defining
polynomial of the hypersurface W ; i.e. W = V(G). Then, we say that Φ transforms the
AODE F (x, y, y′, . . . , y(n)) = 0 into the AODE G(x, y, y′, . . . , y(n)) = 0. We denote this
relation by G = Φ · F . •

We observe that, because of the triangularized form of the elements in G(n), integral
birational transformations preserve the order of the AODE. So we get the following action
of G(n) on AODE (n):

G(n) ×AODE (n) −→ AODE (n)

(Φ, F ) 7−→ Φ · F.

This group action induces an equivalence relation in AODE (n), say ∼G(n) , and hence provides
a quotient set

AODE (n) := AODE (n)/ ∼G(n)

such that if F,G ∈ AODE (n) then F ∼G(n) G if and only if there exists Φ ∈ G(n) such that

Φ · F = G. We denote the equivalence class of F ∈ AODE (n) as F .

Let F ∈ AODE (n), G ∈ F and Φ ∈ G(n) such that Φ · F = G. Let us assume that the
AODE F (x, y, y′, . . . , y(n)) = 0 of order n has rational solutions (a similar reasoning could
be done for other types of solutions as those introduced in Remark 2.1(4) ). Because of

Remark 2.1, for every rational solution y = f(x), with maybe one exception, C(n)
f ∈ RIC

(n)
Φ .

Therefore, by Theorems 2.1 and 2.2, there exists a unique g(x) ∈ K(x) such that Φe(C(n)
f ) =

C(n)
g . So Φ(x, f(x), f ′(x), . . . , f (n)(x)) = (x, g(x), g′(x), . . . , g(n)(x)). Thus,

G(x, g, g′, . . . , g(n)) = F (Φ−1(Φ(x, f, f ′, . . . , f (n)))) = F (x, f, f ′, . . . , f (n)) = 0.

We have deduced the following theorem.

Theorem 3.1. [Invariance of the rational solvability] The existence of rational solutions is

an invariant property for the elements in each equivalence class of AODE (n). Furthermore,
if y = f(x) is a general rational solution of F (x, y, y′, . . . , y(n)) = 0 and Φ · F = G, then

y = g(x), where Φe(C(n)
f ) = C(n)

g , is a general rational solution of G(x, y, y′, . . . , y(n)) = 0.

Theorem 3.1 establishes the invariance of the existence of rational solvability of AODEs.
Nevertheless, for actually computing the rational solutions of a parametrizable AODE the
central tool, developed in [15, 16], is the study of the so called associated system. In the
sequel, we show that not only the existence of rational solution but also the tool for computing
them is preserved.

Definition 3.3. Let F (u1 . . . , un+2) be the irreducible polynomial defining the AODE

F (x, y, y′, . . . , y(n)) = 0.

We say that F (x, y, y′, . . . , y(n)) = 0 is a parametric ordinary differential equation (PODE) if
the hypersurface defined by F (u1, . . . , un+2) is rational; i.e. it can be rationally and properly
parametrized over K.
Let PODE (n) be the set of all PODEs in AODE (n). •
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Remark 3.1. We observe that there exists an important difference between the cases n = 1
and n > 1. For n = 1 (i.e. surfaces in K3), Castelnouvo’s Theorem (see e.g. [19]) ensures
that every surface rationally parametrized can be properly and rationally parametrized (note
that K is algebraically closed of characteristic zero). However, for n > 1, i.e. for hypersurface
in Kn+2, the equivalence is not true in general. For the case n = 1, we refer to [13].

Clearly, PODE (n) ⊂ AODE (n). Moreover, since the elements in G(n) are birational
transformations, the rationality of the associated algebraic hypersurface is preserved when
applying to the differential equation and element in G(n). Furthermore, if P(t1, . . . , tn+1) is
a proper rational parametrization of F ∈ PODE (n) and Φ ∈ G(n) then Φ(P(t1, . . . , tn+1)) is
a proper rational parametrization of Φ · F . So, Φ · F ∈ PODE (n). Therefore, G(n) also acts

on PODE (n). Similarly, we use the notation PODE (n) and F for F ∈ PODE (n).

Let us study the equivalence classes in PODE (n). From [15], [16], [8] we know that every
element in PODE (n) is associated to a system of autonomous ODEs in the parameters. More
precisely, let P(t) = (χ1(t), χ2(t), . . . , χn+2(t)) be a proper rational parametrization of the
solution hypersurface F (u1 . . . , un+2) = 0, where we assume that the Jacobian g of P(t) is
regular; see below the role of g. Then the associated system to F (x, y, y′, . . . , y(n)) = 0 w.r.t.
P is {

t′1 =
f1

g
, t′2 =

f2

g
, . . . , t′n+1 =

fn+1

g

}
where

f1 =

∣∣∣∣∣∣∣∣∣
1 χ12 . . . χ1,n+1

χ3 χ22 . . . χ2,n+1
...

...
...

...
χn+2 χn+1,2 . . . χn+1,n+1

∣∣∣∣∣∣∣∣∣ , f2 =

∣∣∣∣∣∣∣∣∣
χ11 1 . . . χ1,n+1

χ21 χ3 . . . χ2,n+1
...

...
...

...
χn+1,1 χn+2 . . . χn+1,n+1

∣∣∣∣∣∣∣∣∣ , . . . ,

fn+1 =

∣∣∣∣∣∣∣∣∣
χ11 χ12 . . . 1
χ21 χ22 . . . χ3

...
...

...
...

χn+1,1 χn+1,2 . . . χn+2

∣∣∣∣∣∣∣∣∣ , g =

∣∣∣∣∣∣∣∣∣
χ11 χ12 . . . χ1,n+1

χ21 χ22 . . . χ2,n+1
...

...
...

...
χn+1,1 χn+1,2 . . . χn+1,n+1

∣∣∣∣∣∣∣∣∣ .
We now prove that the associated system is invariant under this group action.

Theorem 3.2. [Invariance of the associated system] Let F ∈ PODE (n) and Φ ∈ G(n).
Let P(t) = (χ1(t), χ2(t), . . . , χn+2(t)) be a proper rational parametrization of the solu-
tion surface F (u1 . . . , un+2) = 0 with det(J(P(t)) 6= 0. Then the associated system of
F (x, y, y′, . . . , y(n)) = 0 w.r.t. P and the associated system of (Φ · F )(x, y, y′, . . . , y(n)) = 0
w.r.t. Φ ◦ P are equal.

Proof. The associated system of F (x, y, y′, . . . , y(n)) = 0 w.r.t P(t) is{
t′1 =

f1

g
, t′2 =

f2

g
, . . . , t′n+1 =

fn+1

g

}

14



where fi and g are as above. We have

(Φ ◦ P)(t) =

(
χ1, φ2(χ1, χ2), φ21 + φ22χ3, . . . , φn+1,1 +

n+1∑
i=2

φn+1,iχi+1

)
.

Moreover, (Φ ◦ P)(t) is a proper rational parametrization of the hypersurface Φ · F = 0.
Therefore, the associated system of (Φ · F )(x, y, y′, . . . , y(n)) = 0 w.r.t. (Φ ◦ P) is{

t′1 =
f̃1

g̃
, t′2 =

f̃2

g̃
, . . . , t′n+1 =

f̃n+1

g̃

}

where

f̃1 =

∣∣∣∣∣∣∣∣∣
1 χ12 . . . χ1,n+1

φ21 + φ22χ3 φ21χ12 + φ22χ22 . . . φ21χ1,n+1 + φ22χ2,n+1
...

...
...

...

φn+1,1 +
∑n+1

i=2 φn+1,iχi+1

∑n+1
i=1 φn+1,iχi,2 . . .

∑n+1
i=1 φn+1,iχi,n+1

∣∣∣∣∣∣∣∣∣
=φ22φ33 . . . φn+1,n+1f1,

and

g̃ =

∣∣∣∣∣∣∣∣∣
χ11 χ12 . . . χ1,n+1

φ21χ11 + φ22χ2,1 φ21χ12 + φ22χ22 . . . φ21χ1,n+1 + φ22φ2,n+1
...

...
...

...∑n+1
i=1 φn+1,iχi,1

∑n+1
i=1 φn+1,iχi,2 . . .

∑n+1
i=1 φn+1,iχi,n+1

∣∣∣∣∣∣∣∣∣
=φ22φ33 . . . φn+1,n+1g.

Similarly, we can express f̃i in terms of fi with the same factor φ22φ33 . . . φn+1,n+1. Note that

φ22φ33 . . . φn+1,n+1 6= 0,

which implies that the jacobian condition satisfies also for Φ ◦ P . It implies that the
associated system of F (x, y, y′, . . . , y(n)) = 0 w.r.t. P and the associated system of
(Φ · F )(x, y, y′, . . . , y(n)) = 0 w.r.t. Φ ◦ P are equal.

Remark 3.2. So, with the notation of the theorem, two equivalent equations F and G in
PODE (n) have the same class of associated systems w.r.t. the various parametrizations of
the corresponding algebraic hypersurface. Therefore one might search for an element in the
equivalence class having a geometrically simpler solution hypersurface and therefore leading
to a simpler parametrization. For instance, if the equation is equivalent to an autonomous
one, we can transform the solution hypersurface to a cylinder, thus greatly simplifying the
parametrization problem. This is why the algorithm of Feng and Gao is much simpler.

Corollary 3.1. Integral birational transformations send regular rational solution to regular
rational solutions and singular rational solution to singular rational solutions.
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Proof. By Theorem 3.1 rational solutions are mapped to rational solutions. By Theorem 3.2
the general solutions are preserved. So, regular rational solutions are sent to regular rational
solutions and, consequently, singular rational solutions must be mapped into singular rational
solutions.

In the last part of this section, let us take a closer look at the transform G = Φ · F ,
where F ∈ AODE (n) and Φ ∈ G(n). It is clear, that G can be easily computed by means of
elimination techniques as Gröbner basis, etc. Nevertheless, for further theoretical reasons,
we want to have a precise description of G. For this purpose, we start with the following
lemma.

Lemma 3.1. Let Φ be a birational map from Km on Km, and Φ−1 its inverse. Let V = V(P ),
with P ∈ K[x] irreducible and non-constant such that Φ is defined on a non-empty Zariski
open subset of V . Let W be the irreducible image variety of V under Φ, i.e., the Zariski
closure Φ(V )∗ of the set theoretic image. Then Φ−1 is defined on(

V(A) \ V

(
m∏
i=1

Ci

))
,

where A is the numerator of P (Φ−1(x)) and Ci is the numerator of Ni(Φ
−1(x)), Ni(x) being

the denominators of the rational functions defining Φ(x). Moreover,(
V(A) \ V

(
m∏
i=1

Ci

))∗
= W .

Proof. Let Φ and Φ−1 be written as

Φ(x) =

(
M1(x)

N1(x)
, · · · , Mm(x)

Nm(x)

)
, Φ−1(x′) =

(
M ′

1(x′)

N ′1(x′)
, · · · , M

′
m(x′)

N ′m(x′)

)
.

We introduce the algebraic set

B =

(x, x′, z) ∈ Km ×Km ×K

∣∣∣∣∣∣
P (x) = 0
x′iNi(x) = Mi(x), i = 1, . . . ,m
zK(x, x′) = 1


where K(x, x′) = N1(x) · · ·N3(x)N ′1(x′) · · ·N ′3(x′). Also, we consider the projection πx′ :
Km ×Km ×K→ Km such that (x, x′, z) 7→ x′.

Let us see that W = πx′(B)∗. Indeed, let Ω be the non-empty Zarsiki open subset of
Φ(V ) where Φ−1 is defined; note that, since W is irreducible because V is, then Ω is dense in
W . Let q ∈ Ω. Then there exists p ∈ V such that Φ(p) = q. Thus, (p, q, 1/K(p, q)) ∈ B. So,
q ∈ πx′(B). Therefore, Ω ⊂ πx′(B), and hence W = Ω∗ ⊂ πx′(B)∗. Conversely, let q ∈ πx′(B)
then there exist p ∈ Kn and α ∈ K such that (p, q, α) ∈ B, from where one deduces that
p ∈ V , q = Φ(p). So, q ∈ Φ(V ). Therefore, πx′(B) ⊂ Φ(V ) and hence πx′(B)∗ ⊂ W .

Finally, we prove that πx′(B)∗ = (V(A) \ V (
∏m

i=1Ci))
∗
. Indeed, let q ∈ πx′(B). Then,

there exits p ∈ Km, α ∈ K such that (p, q, α) ∈ B. Thus, p ∈ V , K(p, q) 6= 0, from here
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q = Φ(p) and Φ−1(q) is well defined. Moreover, 0 6= Ni(p) = Ni(Φ
−1(q)). So, q 6∈ V (

∏m
i=1Ci).

On the other hand, P (Φ−1(q)) = P (p) = 0. Thus, q ∈ V(A). Therefore, taking closures,
we get that πx′(B)∗ ⊂ (V(A) \ V (

∏m
i=1Ci))

∗
. Conversely, let B be the denominator of

P (Φ(x′)); observe that B is a power of the lcm(N
′
1, . . . , N

′
m). In V(A) \ V (

∏m
i=1Ci) we

consider the open set Σ = V(A) \ (V (
∏m

i=1Ci) ∪ V(B)). Since gcd(A,B) = 1, Σ 6= ∅ and
Σ∗ = (V(A) \ V (

∏m
i=1Ci))

∗. Let q ∈ Σ. Since B(q) 6= 0, then Φ−1(q) is well defined, say
p = Φ−1(q). So, since q ∈ V(A), F (p) = F (Φ−1(q)) = A(q)/B(q) = 0. Furthermore, since
q 6∈ V (

∏m
i=1 Ci), then 0 6= Ni(Φ

−1(q)) = Ni(p). So, Ni(p) 6= 0 and N
′
i (q) 6= 0. Therefore

there exists α such that (p, q, α) ∈ B. Thus Q ∈ πx′(B). Now taking closure we get the other
inclusion.

In the next theorems we show how to compute the transformed AODE corresponding to
a given AODE.

Theorem 3.3. [Computation of the transformed AODE] Let F (u1, . . . , un+2) be the irreducible
polynomial of an AODE of order n, and let Φ ∈ G(n). Then the transformed AODE is defined
by the primitive part w.r.t. {u2, . . . , un+2} of the numerator A(u1, . . . , un+2) of the rational
function F (Φ−1(u1, . . . , un+2)). Moreover, the content of A w.r.t. {u2, . . . , un+2} is of the
form ∆r

Φ, for some non-negative integer number r.

Proof. Let Φ := ΦL when L = L1/L2 and L1 = a(u1)u2 + b(u1), L2 = c(u1)u2 + d(u1) are
co-prime polynomials. Let G = Φ · F . Because of Proposition 3.1, and taking into account
that G(n) is a group, we have that V(F ) and Φ(V(F ))∗ = V(G) satisfy the conditions of
Lemma 3.1. So, we analyze for our particular case the value of Ci (with the terminology of
Lemma 3.1). By Theorem 2.1 and Theorem 2.2, we know that the denominators Ni in Φ
are powers of L2. On the other hand, Φ−1 = ΦL−1 and L−1 = (u2d − b)/(−cu2 + a). So,
the numerator of Ni(Φ

−1) is a power of ∆Φ. Therefore, G is the irreducible factor of A not
depending only on u1. Thus, G = PP{u2,...,un+2}(A) and its content is ∆r

Φ with r ≥ 0.

Remark 3.3. In our paper [13], Section 4, we have considered three special classes of of
parametrizable AODEs, namely

• (a) equations solvable for y′: y′ = G(x, y),

• (b) equations solvable for y: y = G(x, y′),

• (c) equations solvable for x: x = G(y, y′),

where G is a rational function. The action of the group of linear transformations leaves
the first two classes invariant, whereas it leads out of the third class. So if an equation can
be transformed by the group of linear transformations to the form (c), we can apply our
solution method.
Now the action of the group of birational transformations G(n) leaves only the first class
(solvable for y′) invariant, whereas it leads out of the second and third class. For instance,
the equation y = G(x, y′) is transformed into

ay + b

cy + d
= G(x, A(x, y)y′ +B(x, y)) .
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The degree of y in this equation is no longer 1, because the y appears in G; this does not
happen with the group of linear transformations, because in this case A and B are constant.

4 Potential applicability to solving AODEs

In this section, we illustrate the potential applicability of the previous results to the prob-
lem of solving AODEs. We have observed that all differential equations in an equivalence
class have the same order, say n. However, the variables {x, y′, . . . , y(n−1)} appearing in
the equation can be different. So, it may happen that x does not appear, and hence an
autonomous equation may be equivalent to a non-autonomous one (see Example 4.1). Also,
we may have equivalent equations where the number of involved derivatives is different (see
Example 4.2). Nevertheless, the systematic theoretical-algorithm study is an open problem.
So, the contribution of this paper must be seen as the establishment of a theoretical frame
for developing new algorithm techniques.

Example 4.1. Consider the first order algebraic ODE

F (x, y, y′) = 25x2y′2 − 50xyy′ + 25y2 + 12y4 − 76xy3 + 168x2y2 − 144x3y + 32x4 = 0.

Using the transformation

Φ(u1, u2, u3) =

(
u1,

3u2 − u1

−u2 + 2u1

,
5u1

(−u2 + 2u1)2
u3 +

−5u2

(−u2 + 2u1)2

)
∈ G(1)

we get that Φ ·F is the primitive part w.r.t. {u2, u3} of the numerator of F (Φ−1(u1, u2, u3));
i.e.,

Φ · F = u2
3 − 4u2.

Therefore, F (x, y, y′) = 0 is transformed into the autonomous AODE

G(x, y, y′) = y′
2 − 4y = 0.

In addition, we observe that F cannot be transformed into an autonomous AODE by affine
transformations as considered in [13].

Since Φ is birational, the rational general solution of F (x, y, y′) = 0 is transformed into
the rational general solution of G(x, y, y′) = 0 and vice versa. It is clear that y = (x+ c)2 is
the rational general solution of y′2 − 4y = 0. Therefore,

y =
x(2(x+ c)2 + 1)

(x+ c)2 + 3
,

where c is any constant, is the rational general solution of F (x, y, y′) = 0. The autonomous
equation G has the singular solution y = 0 which, by the inverse of our transformation, is
mapped into the singular solution y = 1

3
x of F (compare to Corollary 3.1). •

The previous example shows that the property of being autonomous is not invariant
w.r.t. the action of the group. This can be helpful in solving AODEs if one can decide the
existence of an autonomous equation in a given class. For the case of affine transformations
such a decision algorithm is given in [13]. For the more general case, partial results can be
found in [14].
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Example 4.2. Consider the second order algebraic ODE

F (x, y, y′, y′′) = x6 + 3x5u2 + 3x4y2 + x3y3 − x2u4 − xu4y + 2xy′
2

+ 2xy′ − 2y′y − 2y = 0.

Using the transformation

Φ(u) =

(
u1,

u2

u2 + u1

,
u1u3 − u2

(u2 + u1)2 ,
u1

2u4 + u1u4u2 − 2u1u3
2 − 2u1u3 + 2u3u2 + 2u2

(u2 + u1)3

)
∈ G(2)

we get that Φ · F is the primitive part w.r.t. {u2, u3, u4} of the numerator of
F (Φ−1(u1, u2, u3, u4)); i.e.,

Φ · F = u1
3 − u4.

Therefore, F (x, y, y′, y′′) = 0 is transformed into the AODE

G(x, y, y′, y′′) = x3 − y′′ = 0.

Since Φ is birational, the rational general solution of F (x, y, y′, y′′) = 0 is transformed into
the rational general solution of G(x, y, y′, y′′) = 0 and vice versa. y = (1/20)x5 + c1x+ c2 is
the rational general solution of G(x, y, y′, y′′) = 0. Therefore, applying the inverse map we
that

y = −
( 1

20
x5 + c1x+ c2)x

1
20
x5 + c1x+ c2 − 1

,

is the rational general solution of F (x, y, y′, y′′) = 0. •

5 Conclusion and future directions of research

We have characterized the birational transformations preserving rational solvability of
AODEs. The set of all these birational transformations forms a group under composition.
The action of this group partitions the set of all AODEs into equivalence classes for which
the rational solvability is invariant. The rational general solutions of two elements in the
same class, if they exist, can be transformed into each other by such transformations. The
same holds for the singular solutions.

This opens a new spectrum of open questions, such as deciding the equivalence between
two given AODEs or the transformability of a given AODE into an equivalent autonomous
one. Decision algorithms for both problems are known for the case of affine transformations.
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