
BIBLIOTECA 

Document downloaded from the institutional repository of the University of 
Alcala: http://dspace.uah.es/dspace/ 

This is a postprint version of the following published document: 

Naranjo, F.B., Kandaswamy, P.K, Valdueza Felip, S., Calvo, V., González-Herráez, M., 
Martín-López, S., Corredera, P., Méndez, J.A., Mutta, G.R., Lacroix, B., Ruterana, P., 
Monroy, E., 2011, "Non-linear absorption of InN/InGaN multiple-quantum-well 
structures at optical telecommunication wavelengths", Applied Physics Letters, Vol. 98, 
n.3 

Available at http://dx.doi.org/10.1063/1.3535609 

© 2011 AIP Publishing 

(Article begins on next page) 

This work is licensed under a 

Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License. 

http://dspace.uah.es/dspace/
http://dx.doi.org/10.1063/1.3535609


a) E-mail: naranjo@depeca.uah.es

Non-linear absorption of InN/InGaN multiple-quantum-well structures 

at optical telecommunication wavelengths  

F. B. Naranjo1, P. K. Kandaswamy2, S. Valdueza-Felip1, V. Calvo2, M. González-

Herráez1, S. Martín-López3, P. Corredera3, J. A. Méndez3, G. R. Mutta4, B. 

Lacroix4, P. Ruterana4 and E. Monroy2 

1 Grupo de Ingeniería Fotónica, Departamento de Electrónica, Universidad de Alcalá 
Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain. 

2 CEA-Grenoble, INAC / SP2M, 17 rue des Martyrs, 38054 Grenoble cedex 9, France. 

3  Instituto de Óptica, (CSIC), c/ Serrano 144, 28006 Madrid, Spain. 

4 CIMAP, ENSICAEN 6, Bld Maréchal Juin 14050 Caen France 

Abstract 

We report on the nonlinear optical absorption of InN/InxGa1-xN (x = 0.8, 0.9) 

multiple-quantum-well structures characterized at 1.55 μm by the Z-scan method in 

order to obtain the effective nonlinear absorption coefficient (α2) of the samples at high 

repetition rate. Saturable absorption is observed for the sample with x = 0.9, with an 

effective α2 ~ -9x103 cm/GW for the studied optical regime. For lower In content in the 

barrier, reverse saturable absorption is observed, which is attributed to two-photon 

absorption. 
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State-of-the-art electronic switching networks are approaching their bandwidth 

limit due to capacitive charging. Further development of optical networks requires 

evolving towards an all-optical approach, in order to fully exploit the immense 

bandwidth supported by wavelength-division multiplexing (WDM). All-optical signal 

processing requires new optical devices for ultrafast signal managing. Resonant optical 

nonlinearities in semiconductors emerge as a feasible approach for the development of 

these devices [1]. In particular, low-dimensional semiconductor structures can attain the 

required specifications thanks to the enhancement of the third-order optical 

susceptibility.  

Recently, III-Nitride semiconductors have attracted much attention for telecom 

applications in the C band (1530 to 1565 nm). Optical switching based on intersubband 

transitions in GaN/AlN nanostructures operating at 1.5 μm has been reported [2][3]. 

These structures display ultra-fast carrier relaxation time due to the strong electron-

phonon interaction in these materials [3][4]. III-nitride materials can also access the 

telecommunication spectral range with interband transitions, using InN-based 

technology. The development of InN growth by molecular-beam epitaxy (MBE) has led 

to high-quality material with a band gap close to 0.65 eV at room temperature [5]. This 

semiconductor shows recovery times in the range of ps [6], and displays saturable 

absorption (SA) and close-to-resonant behavior at 1.55 μm wavelength [7]. InN-based 

multiple-quantum-well (MQW) should present enhanced nonlinear behavior and the 

possibility of tuning the resonance wavelength within the optical fiber transparency 

band. In this work we present the nonlinear optical characterization of InN/InGaN 

MQW structures, in order to assess their feasibility for applications in all optical-based 

devices operating at 1.55 μm.   
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MQW structures consisting of 41 periods of 4.5 nm InN wells and 7 nm InxGa1-

xN barriers with x = 0.8 and 0.9 were grown by plasma-assisted MBE on 10-µm-thick 

GaN-on-sapphire templates. The structures were grown at 450ºC, with a N-limited 

growth rate of 280 nm/h. A reference 1-μm-thick InN layer was grown under the same 

conditions.  

The optical and structural properties of InN thin films have been reported in ref. 

8. Due to the 11% lattice mismatch, InN layers deposited on GaN contain the usual 

misfit defects that form inside nitride layers [9]. However, it has been noticed a 

particularly low density of basal stacking faults formed at the initial stages of the InN 

epitaxy [8]. It is worth saying that such defects and their interaction contribute to reduce 

the threading dislocation density in GaN layers [10]. Therefore, throughout the InN 

layer thickness, edge-type threading dislocations keep a uniform density in the range of 

mid 109 cm-2 [8]. It must be pointed out that GaN-based waveguide devices with similar 

density of threading dislocations have been reported [2],[3].  

The structural quality of the MQW samples was assessed by high-resolution x-

ray diffraction (HRXRD), transmission electron microscopy (TEM) and atomic force 

microscopy (AFM). Figure 1 displays the ω−2θ scan of the (0002) x-ray reflection of 

the MQWs compared to theoretical calculations. The several satellites of the superlattice 

reflection confirm the good periodicity, while the angular shift is consistent with the 

expected In mole fraction. Regarding the TEM analysis, conventional imaging of 

InxGaN1-x/InN is not useful for x compositions close to 1, since the atomic number 

difference is not enough to provide good contrast. However, it was noticed that due to 

the rapid changes in lattice parameters, the distance between the 0002 InN and InGaN 

beam positions in the diffraction pattern increases substantially and this has been 

exploited for asymmetric dark-field image formation, which uses mainly one of the 
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beams. Depending on the contributing beam (InN or InGaN), either the well or the 

barrier is imaged in dark, whereas the other is bright.  Figure 2(a) shows such an 

asymmetric dark-field TEM image of the MQW sample with x=0.9. As attested by the 

inserted intensity profile (InGaN bright), we have a good uniformity of the well and 

barrier thickness, in agreement of those estimated by HRXRD. Root-mean-square (rms) 

surface roughness below 1 nm were measured by AFM in 2×2 μm2 surface for all the 

structures, as it is shown in Fig. 2(b) for the MQW structure with x=0.9.  

Linear optical characterization was performed using low-temperature (T = 5 K) 

photoluminescence (PL) measurements with an Ar laser (λ = 514 nm) as excitation 

source. Normalized PL spectra of the InN/InxGa1-xN MQWs and the InN reference 

sample are shown in Fig. 3. The infrared (IR) emission energy of the samples red shifts 

when decreasing the In content in the barrier. For the sample with x ~ 0.9 the IR 

emission is enhanced, with a full width at half maximum (FWHM) as narrow as 44 

meV. On the other hand, the peak emission intensity decreases for the sample with x ~ 

0.8. These results can be explained in terms of the huge piezoelectric fields that can be 

expected in this kind of structures [11]. 

The band diagram of these samples was calculated using the Nextnano3 

Schrödinger-Poisson solver [12]. The inset of Fig. 3 shows the simulation results when 

considering the MQW structures either relaxed or fully strained on InN. The 

experimental PL emission energy undergoes the red shift expected in the case of MQWs 

fully strained on InN.  

Nonlinear absorption coefficient, α2 was obtained through Z-scan measurements. 

[13]. The Z-scan setup is equipped with a 100 fs-pulse width fiber-laser source with a 

repetition rate of 100 MHz. During Z-scan measurements, the sample is moved along 

the optical axis of the focused laser beam (Z axis direction), while the transmittance of 
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the sample is recorded as a function of the z position. The measurements to obtain α2 

were performed in open aperture configuration using a 5 cm focal-length achromatic 

lens for focusing the laser beam. With this system configuration, a beam waist ω0 ~ 10 

µm is obtained, leading to a Rayleigh range z0 ~ 200 µm. Measurements were 

performed at power levels below 0.8 GW/cm2, the minimum power at which a 

measurable response is obtained from the GaN-template substrate. The experimental 

results were analyzed considering the relationship between the time-integrated 

transmission, Topt, and the non linear absorption given by [13] 
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where I0 is the maximum input power, 0/)1( 0 αα L
eff eL −−= is the effective length of the 

sample, α0 and L are the linear absorption coefficient and the thickness of the sample, 

respectively, and z is its on-axis position, z=0 being the focal plane of the lens. The 

values of α0 were estimated at 1.55 µm wavelength from transmission measurements. 

For analyzed MQW samples, with α0~3•102 cm-1, the effective length obtained is the 

total active length of the QWs. A value of α0 = 4±0.4•103 cm-1 was estimated for the InN 

thick sample, leading to a Leff = 825±25 nm. Thus, the error in the estimation of α2 due 

to Leff error is below 5%.   

Figure 4 shows the Z-scan results obtained for the 1-µm-thick InN reference 

sample and the analyzed InN /InxGa1-xN MQW samples, together with the fitting of the 

experimental results to eq. 1. The InN sample presents SA behavior with α2 = -1450 

cm/GW, which corresponds to a saturation intensity of Isat~1.4 GW/cm2. This SA effect 

is attributed to band filling [7], and can be explained in terms of the low effective mass 

of InN [14]. 



 6

The superlattice with x ~ 0.9 shows SA with α2 = -9150 cm/GW. The increase of 

the SA coefficient compared to bulk InN is attributed to quantization effects which 

reduce the density of states at the band edge, and it leads to a reduction in Isat down to 

16 MW/cm2. Indeed, simulations performed for this structure taking into account the 

carrier density photogenerated during the Z-scan measurements (up to 1.7 × 1012 cm-2) 

show that the carrier screening of the internal electric field cannot justify the change in 

the transmission observed.  

Results obtained from the sample with x ~ 0.8 points to a reverse saturable 

absorption (RSA) behavior with a value of α2 = +3650 cm/GW. For this sample the 

excitation energy is far from the estimated recombination energy between levels of 

confined carriers in the wells. Thus, the RSA is attributed to two-photon absorption 

(TPA) from carriers confined in the H1 level to the continuum. This effect has already 

been observed in AlGaAs/GaAs MQW structures [15].  

The obtained values of α2 could be affected by the high repetition rate of the 

laser source, which produces local thermal effects in the sample during the 

measurements. Due to these thermal effects, the sample behaves as an optical lens, 

which might lead to an overestimation of nonlinear parameters obtained by the Z-scan 

method. With our measurements conditions and considering a thermal diffusion 

coefficient of D ~ 0.55 cm2/s for InN [16] these thermal effects could affect to the 

measurements for laser repetition rates above ~1 MHz [17]. However, it must be 

pointed out that the obtained nonlinear absorption corresponds to the expected behavior 

of the analyzed samples in a telecommunication application under high repetition rates.    

In conclusion, we have studied the nonlinear optical absorption of InN/InxGa1-xN 

superlattices with high In content in the barriers, operating in the telecommunication 

regime. The optical properties of the structures are determined by the huge piezoelectric 
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field present in the wells. SA is observed for the sample with x ~ 0.9, with an 

enhancement of nonlinear absorption compared to bulk InN. On the other hand, RSA 

attributed to two-photon absorption is obtained for the sample with x ~ 0.8. These 

results open the possibility to control and enhance the nonlinear properties of InN-based 

superlattices with a view to their application to all-optical telecommunication networks.  
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Figure captions 

 

Figure 1. HRXRD ω−2θ scan of the (0002) x-ray reflection of the InN reference 

sample and the InN/InGaN MQW structures, compared to theoretical calculations using 

the X’Pert Epitaxy 40 software from Phillips Analytical. Measurements are vertically 

shifted for clarity. 

 

Figure 2. (a) Dark field  (g = 0002) TEM micrograph of the InN/InxGa1-xN MQW 

sample with x~0.9. In the inserted profile along c, the QWs are well delineated. (b) 

AFM image of the same sample exhibiting atomic steps. 

 

Figure 3.  Low temperature (T = 5 K) PL spectra of the analyzed samples. Inset: 

Recombination energies as a function of In content in the barriers obtained from 

electronic simulations considering the structure fully relaxed (open squares), fully 

strained on InN (solid squares), and experimental PL peak energy (solid circles). 

 

Figure 4.  Z-scan measurements of InN sample and InN/InxGa1-xN samples with x ∼0.9 

and x∼ 0.8. The fitting to the eq. (1) is also shown for each case. 
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