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 'I confess that I have been blind as a mole, 

 but it is better to learn wisdom late  

than never to learn it at all.'  

Sherlock Holmes 
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RESUMEN 

 

En la frontera entre la superficie terrestre y la atmósfera se producen 

numerosos procesos físicos relacionados con el ciclo hidrológico. Cuando se 

producen precipitaciones en forma de lluvia, y el agua alcanza la superficie 

terrestre, una parte llega al suelo y otra parte puede ser interceptada por la 

vegetación. La fracción que llega al suelo se infiltra en la zona no saturada donde se 

almacena, lo humedece, disuelve los elementos que son absorbidos posteriormente 

por la vegetación y modifica las propiedades físicas del suelo. Para que la vegetación 

pueda desarrollarse es necesario que la planta abra los estomas, absorba CO2 y 

realice la fotosíntesis. Durante este proceso se produce una pérdida de agua a 

través de la hoja, que si es lo suficientemente grande puede llegar a hacer que la 

planta marchite si no es capaz de reponerla del suelo. El agua del suelo es devuelta a 

la atmósfera posteriormente mediante la evaporación y la transpiración de las 

plantas. La Evapotranspiración (ET) se puede definir como el proceso por el cual se 

transfiere el agua evaporada del suelo y la transpirada de la vegetación a la 

atmósfera. La ET es de gran relevancia por su efecto en el clima local y la 

meteorología así como en un gran número de procesos biofísicos. La ET es un 

proceso que depende de los flujos energéticos como la radiación neta (Rn), el flujo 

sensible (H) y el flujo de calor en el suelo (G).  

Es posible medir in situ diferentes variables de la vegetación, el suelo y la 

atmósfera relacionadas con los flujos de agua en la superficie terrestre. Sin embargo 

estas mediciones son complejas debido a su elevada dinámica espacial y temporal. 

Como alternativa a estas medidas in situ, se puede utilizar medidas obtenidas 

remotamente por sensores instalados en satélites, esto es, teledetección. 

Actualmente, la teledetección ofrece una gran variedad de sensores con diferentes 

características espaciales y temporales lo que la convierte en una herramienta 

idónea para el seguimiento de estos procesos teniendo en cuenta que existen 

diferencias, en algunos casos importantes, entre lo observado in situ y lo calculado 
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mediante teledetección. Este hecho hace que se requieran rigurosas validaciones de 

estas estimaciones, así como de los protocolos de recogida de los datos in situ. 

En este trabajo se han analizado diferentes variables relacionadas con los 

flujos de agua entre tierra y atmósfera. El estudio se ha centrado en variables 

referentes al estado hídrico de la vegetación y el suelo, la estimación de parámetros 

biofísicos de la vegetación y en el comportamiento de la Fracción Evaporativa (EF), 

definida como la relación entre la ET y la energía disponible del sistema (Rn –G). 

Todos los datos empleados en este trabajo fueron recogidos en un ecosistema de 

dehesa en la localidad de Las Majadas del Tiétar, en la provincia de Cáceres. En esta 

zona está operativa, desde 2003, una torre de medición de flujos de agua y carbono 

perteneciente a la red FLUXNET. 

La primera parte del trabajo se ha centrado en la estimación de parámetros 

biofísicos y estructurales de la vegetación, concretamente los relacionados con el 

contenido de agua. Para ello se han empleado numerosos datos recogidos en campo 

a lo largo de dos años fenológicos completos y se relacionaron con las medidas 

espectrales a dos escalas diferentes, campo y sensor MODIS (500 m). El contenido 

de agua se calculó usando tres métricas diferentes calculadas a partir de la misma 

muestra, el Contenido de Humedad de la Vegetación (FMC), el Espesor Equivalente 

de Agua (EWT) y el Contenido de Agua del Dosel (CWC). Además se usaron dos 

estimaciones a partir de Modelos de Transferencia Radiativa (RTM) para la 

obtención del FMC y CWC que fueron comparados con las obtenidas a partir de los 

modelos empíricos creados a partir los índices espectrales. Otras variables 

relacionadas como el contenido de materia seca (Dm) y el índice de área foliar (LAI) 

fueron también evaluadas usando índices de vegetación. 

Entre los resultados destacables de este estudio se encuentran en primer 

lugar los relacionados con el protocolo de recogida de datos en campo. En este 

estudio se obtuvieron evidencias de que las diferencias temporales a la hora de 

recoger datos en campo son más importantes que las diferencias espaciales en este 

ecosistema. Además se demostró la necesidad de mostrar consistencia en el 

protocolo de muestreo: tamaño de la muestra, hora de recogida de las muestras, etc. 
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y en la importancia de evitar, en lo posible la toma de decisiones, generalmente 

subjetivas, por parte de los operadores de campo. Otro resultado destacable ha sido 

demostrar la existencia de una alta variabilidad del Dm a lo largo del año. Esto 

indica que asumir, como sugieren algunos autores, un valor constante de Dm para la 

estimación del espesor equivalente de agua a partir del contenido de humedad de la 

vegetación no es una opción viable en este ecosistema. De los índices de vegetación 

que fueron comparados en el estudio, el que presentó menores correlaciones fue el 

Índice de Vegetación Resistente a la Atmósfera (VARI). Se observaron algunas 

diferencias en el comportamiento de los modelos empíricos obtenidos con MODIS y 

las producidas a partir de medidas espectrales de campo, obteniendo resultados 

algo mejores en el caso de MODIS. Este hecho posiblemente sea debido a que las 

adquisiciones de del sensor MODIS presentan diferentes ángulos de observación, lo 

que reduce la proporción de suelo captada por el sensor y por lo tanto capturando 

una mayor proporción del dosel. La comparación entre los modelos empíricos y las 

estimaciones a partir de modelos de transferencia radiativa demostró que en este 

caso los modelos empíricos aún mejoran las estimaciones de los modelos físicos 

desarrollados en zonas similares para estimar el contenido de humedad de la 

vegetación. 

La segunda parte del trabajo se ha centrado en la estimación del contenido 

de humedad del suelo combinando datos ópticos y térmicos mediante el cálculo del 

Índice de Temperatura y Sequedad de la Vegetación (TVDI) cuya obtención se basa 

en la técnica del triángulo. Se han investigado diferentes factores que afectan a la 

definición del triángulo, y cómo estos afectan los valores del TVDI y a su relación 

final con el contenido de humedad del suelo. En este trabajo se introdujo una 

modificación al cálculo del TVDI en la que se sustituyó el Índice de Vegetación de 

Diferencia Normalizada (NDVI) por el Índice de Diferencia Infraroja Normalizada 

(NDII). Esta modificación se tradujo en una mejora en el comportamiento de los 

modelos empíricos para estimar el contenido de humedad del suelo. 

Finalmente en la tesis se investiga el comportamiento de la EF en la zona de 

estudio y su estimación a partir de teledetección. El principal motivo del empleo de 

la EF es que ha sido ampliamente utilizada para estimar la evapotranspiración 
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diaria, asumiendo que la EF es constante a lo largo del día. A partir de las medidas 

recogidas por una torre de flujos se han evaluado las variaciones diarias y se han 

validado las estimaciones de EF calculadas a partir de imágenes Landsat. Se ha 

usado una nueva versión modificada de la técnica del triángulo en la que se ha 

introducido el índice de área foliar adaptado a la escala Landsat a partir del 

producto MODIS (de 1 km a 30 m) como sustituto del índice de vegetación. Además 

se muestra un innovador método basado en las estadísticas propias del triángulo 

para la selección de las fechas a incluir en el análisis estadístico. La validación de las 

estimaciones de EF se ha llevado a cabo de dos maneras diferentes: usando las 

contribuciones de todos los pixeles incluidos en la zona de influencia de la torre; y 

utilizando el valor del único pixel correspondiente a la localización de la torre, 

mostrando ambas aproximaciones escasas diferencias en cuanto a resultados. 

Además se han comparado las EF diarias y la correspondiente a la hora de la pasada 

de Landsat sobre la zona de estudio. En este caso se observaron mayores 

diferencias, lo cual indica que el supuesto de una EF constante a lo largo del día ha 

de ser tomada con ciertas precauciones si el objetivo final es el cálculo de la 

evapotranspiración diaria. 
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ABSTRACT 

 

In the boundary layer between vegetation and soil with the atmosphere 

different processes within the hydrologic cycle take place. When rainfall occurs, 

part of the water reaches the inland surface, part is infiltrated in the soil, and part is 

intercepted by vegetation. The fraction reaching the soil infiltrates in the 

unsaturated zone of the soil making it wet, dissolving the elements that will be 

absorbed by the plants, and changing the physical properties of the soil. Vegetation 

needs to open the stomata during the absorption of CO2 during photosynthesis. In 

this process loss of water by vegetation trough the leaves is produced. If this is loss 

is large, the wilting point of the plant can be reached, and therefore there is a need 

of water uptake which is done by the roots. Water returns to the atmosphere trough 

evaporation and plant transpiration. Evapotranspiration (ET), which can be defined 

as the process that combines the evaporation from the soil and the transpiration 

from the plants transferring water vapor to the atmosphere, is one the most 

relevant processes as it has strong influence on local climate, weather and many 

other biophysical processes. Finally, ET is an energy driven process that relies on 

land-surface energy fluxes like net radiation (Rn), sensible heat flux (H) and ground 

heat flux (G).  

It is possible to collect in situ different variables from vegetation, soil and 

atmosphere related to water fluxes in the boundary layer. However, these variables 

are difficult to measure due to its spatial and temporal variability. Remote sensing 

platforms on the other hand offer an alternative to in situ measurements. 

Nowadays, remote sensing offers a great variety of sensors with different spatial 

and temporal resolutions, which makes this tool very attractive to monitor these 

processes, although there is a need for accounting for the existing differences 

between remote sensing estimates and in situ measurements. This issue requires 

rigorous validations of remote sensing estimates as well as in situ sampling 

protocols. 
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In this thesis, different variables related to water fluxes between vegetation, 

soil and atmosphere have been analyzed. The study focused on vegetation and soil 

water content, biophysical parameters of vegetation and in the behavior of 

Evaporative Fraction (EF), is defined as the ratio between ET and available energy 

(Rn-G). All data used were collected in a dehesa ecosystem at Las Majadas del Tiétar, 

in the province of Cáceres in Spain. In the study site there is an eddy covariance flux 

tower inside the FLUXNET network that has been operation since 2003. 

The first part of this work was focused on the estimation of biophysical and 

structural variables of the vegetation, being the study mainly oriented to estimate 

vegetation water content. A large data set collected over two full phenological years 

was used to relate different metrics of vegetation water content with spectral 

measurements at two different scales, using proximal sensing data and using 

MODIS surface reflectance data (500 m). Three different water content metrics 

simultaneously obtained from the same sample - Fuel Moisture Content (FMC), 

Equivalent Water Thickness (EWT) and Canopy Water Content (CWC) - were 

related to spectral vegetation indices (VI) calculated from MODIS and proximal 

sensing data. In addition estimates of FMC and CWC by inversion techniques of 

Radiative Transfer Model (RTM) were tested and compared against the empirical 

models. Dry Matter content (Dm) and Leaf Area Index (LAI) were also evaluated 

empirically with VI.  

As result from this study, several findings were revealed. The first one is 

related to the field data collection: results showed that temporal changes in FMC, 

EWT and CWC are more critical than their spatial variation within the MODIS pixel. 

The field protocols should hence be adapted in order sample more frequently 

rather than conducting extensive spatial samplings. Field data analysis also 

highlighted the need of being consistent with the size of the sample collected, and 

avoiding as much as possible subjective operator interpretations when collecting 

the data. Another relevant result from this study is that due to the high seasonal Dm 

variability, a constant annual value would not be recommended to predict EWT 

from FMC. Furthermore, Vegetation Atmospheric Resistant Index (VARI) provided 

the worst results in all cases. The empirical estimators differed between sensors, 



vii 
 

slightly better for MODIS than proximal sensing, probably due to differences in view 

angles, and as result the proportions of canopy observed by the sensor increases 

reducing the soil effect. These empirical methods still exceed RTM inversions 

developed for other sites to predict FMC and CWC. 

The second part focused on estimation of soil moisture (SM) combining 

optical and thermal sensors and evaluating the Temperature Vegetation Dryness 

Index (TVDI) calculated using the triangle method. Some of the factors involved in 

the triangle parameterization were studied to better understand how they affect the 

TVDI values and the implications in the final model performance for estimating SM. 

A modification was introduced in the TVDI calculation and the Normalized 

Difference Vegetation Index (NDVI) was substituted by the Normalized Difference 

Infrared Index (NDII). This modification translated in a better performance of 

empirical methods to estimate SM using this technique. 

Finally, this study investigates the behavior of EF on the site and the 

estimate using remote sensing. The reason why EF is investigated is that EF has 

been extensively used to retrieve daily ET, assuming that EF remains constant 

during daytime. Using the EF measured by the Eddy Covariance (EC), we have 

investigate how EF varies temporary and validated the EF calculated from Landsat 

using a modified triangle approach in which the VI was substituted by MODIS LAI 

downscaled to Landsat (from 1km to 30m). A novel method for selecting the highest 

quality days for the analysis based on the statistics of the triangle is also presented. 

The validation of EF estimates from remote sensing was carried out using either the 

pixel contribution based on the information of the EC footprint, or the single pixel 

located in the EC tower, showing both cases very similar results. Furthermore, daily 

EF and instantaneous EF at the time of the satellite overpass were also compared 

with the EF calculated from Landsat. Results of this comparison showed larger 

differences indicating that for this ecosystem the EF self-preservation assumption 

should be carefully taken into account if daily ET has to be obtained from EF.  
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STRUCTURE OF THE PHD DISSERTATION 

 

This work studies three different components of the hydrological cycle 

occurring in the boundary layer between vegetation-soil and atmosphere by using 

proximal and remote sensing data. These processes were divided into: 

1. Vegetation biophysical variables 

2. Soil moisture estimation 

3. Evaporative fraction using Landsat 

The document is divided into six chapters. The first chapter is dedicated to 

present the motivation to carry out this study and is followed by a specific literature 

review for each of the topics and ending with the objectives of this work. The 

second chapter describes the different methods used to collect and process the data 

used in the study. This is followed by three chapters in which the specific methods, 

results and discussion for each of the topics under investigation are presented:  the 

estimation of biophysical variables related with vegetation water content (chapter 

3), soil moisture (chapter 4) and the Evaporative Fraction (chapter 5). Finally, in 

chapter 6 the general conclusions of the thesis are summarized. 
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While oceans represent the largest water reservoir (96.5% of Earth’s total 

water) with an estimated volume of 1,338,000,000 km3 , fresh water represents 

only 2.5% of Earth’s total water (93,000 km3) (Figure 1). The largest contributors 

of fresh water are the ice caps with accounting for about 70% of Earth’s fresh water 

being Antarctica the largest reservoir. Ground water is the second largest reservoir 

of fresh water accounting for the 30%, however this water is only accessible to 

deep-rooted plant species (Dawson and Ehleringer 1991) and a small part of the 

human population with the infrastructures to reach it. The last pool of fresh water 

is the surface water that accounts for rivers, lakes, soil moisture (SM), and 

biological water, which represents only about 1% of the total fresh water.  

 

Figure 1. Distribution of Earth’s Water (Source: 

http://ga.water.usgs.gov/edu/watercyclesummary.html). 

Distribution of water on Earth is a dynamic process that is mostly controlled 

by the Sun. The Hydrologic Cycle, also called Water Cycle, describes the movement 

of water on the Earth. Different components are involved in this cycle according to 
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Figure 2, and as all the processes are connected, there is not a starting one. 

However, we will use the oceans as a starting reference for the Water Cycle 

description. Water from the oceans is evaporated with the energy reaching the 

surface of the Earth from the Sun. It is estimated that around 413,000 km3yr-1 of 

water is evaporated from the oceans (Syed et al. 2010). This evaporated water 

condensates at the upper atmospheric layers creating the clouds. The largest 

amount of water returns to the oceans as rainfall, around 383,000 km3 yr-1 and the 

rest contributes to inland rainfall. Part of the inland rainfall is uptaken by 

vegetation and part of it is stored in the soil root zone area. It is estimated that soil 

root area contains about 58,100 km3 yr-1 of water. The rest of this rainfall recharges 

ground water, rivers, lakes, runoff and returns, at the end, to the oceans closing the 

cycle. The water retained by plants, and in soil root zone returns to the atmosphere 

through evapotranspiration (ET). Ryu et al. (2011) indicated that inland plant 

transpiration and surface evaporation returns to the atmosphere 63,000 ± 13,000 

km3 yr-1, being plant transpiration responsible of 60% of the global ET. These 

numbers highlight the importance of monitoring processes occurring in the 

boundary layer between surface and atmosphere and are the base to carry out this 

research. 
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Figure 2. The Water Cycle diagram.  

(Source: USGS, http://ga.water.usgs.gov/edu/watercycle.html). 

The motivation to monitor the water fluxes between soil, vegetation and 

atmosphere using remote sensing is based on the relevance these processes have in 

the hydrological cycle. The aim to monitor SM is based on the fact that it affects 

different processes related to plant and soil properties. It is a controlling factor of 

plant growth as water transports the nutrient elements in the soil matrix and also 

limits the air content and gas exchange of the soil, and as a consequence, the 

respiration processes in the root zone (Campbell and Norman 1998). SM is critically 

involved in the energy and water balance of the land surface as soil water is taken 

by plant roots for photosynthesis and evaporated through transpiration (Monteith 

1981). Monitoring vegetation water content, as well as other vegetation biophysical 

variables is motivated because water in leaves is a limiting factor for different 

physiological processes of vegetation and its deficit causes malfunctioning of 

different cellular processes. Water is involved in the thermal regulation of plant 

trough transpiration and also becomes crucial in the uptake of CO2 for 

photosynthesis (Chaves et al. 2003). It is also fundamental to maintain turgor 
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pressure, which controls different functional parts of plants like cell enlargement or 

gas exchange (Taiz and Zeiger 2010). In addition, monitoring vegetation water 

content is fundamental for irrigation management to prevent vegetation water 

stress and in fire risk management (Chuvieco et al. 2004; Riaño et al. 2005; 

Verbesselt et al. 2007; Yebra et al. 2008b; Yebra et al. 2013). Monitoring other 

vegetation biophysical variables becomes also important when Radiative Transfer 

Models (RTM) or hydrological models are going to be used. These physical based 

models need to be parameterized or calibrated. In the case of RTMs, some of the 

most common variables are EWT, Dm (Jacquemoud and Baret 1990), or LAI 

(Verhoef 1985; Verhoef et al. 2007) among others as the number of variables 

depend whether the modeling is at canopy or leaf level, and the type of RTM. In the 

case of hydrological models, one of the most relevant vegetation parameters is the 

LAI (Stisen et al. 2008a) since it plays a crucial role in energy flux partition between 

soil and canopy as well as in rainfall interception. Therefore monitoring these 

vegetation variables is important not just to understand the ecosystem but for use 

as input parameters in different models. The fluxes from the surface to the 

atmosphere are relevant in agriculture, local climate and also affect the CO2 

assimilation by the plants. Daily ET can be estimated using the existing relationship 

with EF if assumed constant during the day, however, if this assumption is not 

completely true can lead to large errors in the final estimate, hence this fact needs 

to be validated to obtain accurate daily ET retrievals.  

All these processes vary rapidly on time and space and, even if they can be 

measured in situ, the collection of the measurements is very time consuming, 

expensive and usually impossible to gather all the variability. Remote sensing is the 

most suitable tool to monitor these processes at an adequate spatial and temporal 

sampling. Space platforms observe the Earth surface and provide information with 

different spectral, temporal and spatial resolutions. Boundary layer processes like 

vegetation water content, SM and ET are very dynamic and can rapidly change in 

time; therefore monitoring them requires a high revisit frequency. With the current 

technology, this high temporal resolution is only achieved using platforms that 
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provide data at coarser spatial resolution which makes the validation with in situ 

data more difficult (Li et al. 2008; McCabe and Wood 2006). It is therefore 

necessary investigating the processes at different spatial and temporal scales in 

order to improve our understanding of the relationships between the variables 

measured in situ and those calculated using remote sensing data (Anderson et al. 

2007) so more reliable estimations can be achieved.  

 

1.1 Vegetation Water Content. 

Measuring the content of vegetation is not a trivial task and indeed many 

metrics have been proposed in the literature. These metrics have been used and 

defined differently for a wide range of applications such as fire risk/spread 

modeling or plant productivity. There are different metrics to quantify vegetation 

water content. Fuel Moisture Content (FMC) (Desbois et al. 1997), for instance, is 

defined as the mass of water per unit mass of vegetation and, has been extensively 

used to estimate the fire risk occurrence and fire propagation (García et al. 2008; 

Yebra et al. 2008b). Equivalent Water Thickness (EWT) or Leaf Water Content 

(LWC), defined as the mass of water per leaf area, measures the thickness of the 

water layer with the same leaf area (Danson et al. 1992). Several studies showed 

that EWT can be retrieved from spectral information at leaf level as it is directly 

related to the water absorption depth of leaves (Ceccato et al. 2001; Datt 1999). 

FMC and EWT are related each other since EWT can be expressed as the product of 

FMC and the dry matter (Dm), the later one defined as the ratio of leaf dry weight 

and leaf area (Bowyer and Danson 2004; Chuvieco et al. 2003). Finally, another 

metric is the Canopy Water Content (CWC), the mass of water in the canopy per 

ground area (Cheng et al. 2008; Trombetti et al. 2008). Therefore, CWC represent 

the product of EWT and Leaf Area Index (LAI), offering not just information at leaf 

level but at canopy level.  

Field sampling of FMC, EWT or CWC relies usually on gravitational methods 

but these methods are quite limited for estimates at regional to global spatial scales, 
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since it requires interpolation to bridge the gaps in both time and space. Monitoring 

vegetation water content with remote sensing benefits agriculture, to control crop 

production and prevent stress in plants (Peñuelas et al. 1992; Sepulcre-Cantó et al. 

2006) and forestry, to assess fire danger associated with vegetation water 

conditions (Chuvieco et al. 2003; Chuvieco et al. 2004; Chuvieco et al. 2009; García 

et al. 2008; Yebra et al. 2008b).  

In order to estimate plant water content with remote sensing, vegetation 

spectral reflectance has been primarily related to specific water absorption bands 

in the Short Wave Infrared region (SWIR, 1300-2500 nm) (Ceccato et al. 2001; 

Zarco-Tejada et al. 2003). Other studies related vegetation water content to spectral 

indices that do not include SWIR data. These indices monitor the vegetation water 

content by indirectly relating it to another biophysical parameter that is used as a 

proxy of water stress. This is the case of the Normalized Difference Vegetation 

Index (NDVI) (Rouse et al. 1973), with bands in the Visible (VIS) and Near Infrared 

(NIR) spectral region, which has shown a close relationship between vegetation 

biomass and chlorophyll content with the water content in grasslands (Chuvieco et 

al. 2003; Chuvieco et al. 2004; García et al. 2008; Yebra et al. 2008b). Least squares 

regression models have served to empirically relate observed measurements of 

water content to spectral indices. These models have their weakest point of being 

site dependent, requiring long datasets for calibration (Chuvieco et al. 2009) and 

showing different results when the models are extrapolated to other sites using 

different data sets, making difficult their applicability (Riaño et al. 2005; Yebra et al. 

2008a). RTMs on the other hand simulate vegetation spectra based upon physical 

laws and are a sound alternative to empirical modeling. They can be applied to 

different locations to estimate different vegetation parameters, as long as the RTM 

is a realistic representation of the vegetation canopy. For example, Trombetti et al. 

(2008) predicted CWC for the continental US using PROSAILH (Baret et al. 1992) 

simulations. This model was calibrated with CWC from the Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS) hyperspectral water absorption 

bands. AVIRIS is capable of retrieving CWC as it can simultaneously estimate water 
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vapor and liquid water based on principles of spectroscopy (ACORN, ImSpec LLC, 

Analytical Imaging and Geophysics LLC, Boulder, CO), when using a RTM approach 

based on MODTRAN model. AVIRIS CWC estimates have been already validated in 

different studies (Gamon et al. 1993; Green et al. 1993; Sims and Gamon 2003). 

Trombetti et al. (2008) first created 600 PROSPECT-SAILH (Jacquemoud and Baret 

1990; Jacquemoud et al. 1995) synthetic MODIS simulations based on a field data 

base. Later, based on these simulations 60 MODIS band combination were used to 

train the Artificial Neural Network (ANN) and AVIRIS CWC to calculate the 

calibration equation for each vegetation type. Another example is Jurdao et al. 

(2013) who inverted the RTM GEOSAIL (Huemmrich 2001) to estimate in their case 

FMC, which was then validated with extensive field sampling in Spain.  

The objective of this part of the study is to investigate the relationship of 

three vegetation metrics (FMC, EWT, CWC), Dm and LAI and spectral information. 

To our knowledge there is not any study that analyzes three vegetation water 

content metrics simultaneously. This makes the comparison between them difficult, 

as the data sets usually are not comparable. Due to the different physical meanings 

of each metric, the spectral relationships should not be the same, and therefore this 

needs to be done using the same data set. This evaluation will show which metric 

can be retrieved more accurately using spectral information and the best regions of 

the electromagnetic spectrum for each metric. The next objective will assess the 

differences observed between field scale and satellite. Many studies have 

established empirical relationships between data collected in situ and spectral 

information from different sources. Within the area covered by a low spatial 

resolution pixel, there is the chance that the measured variables could vary in space 

due to different SM conditions, illumination and other climatic factors. It is 

therefore important to assess these variations and evaluate field protocols 

improving and modifying them in the weakest points, either increasing or reducing 

the sampling spatially or temporary. Validation of RTM estimates is a task that has 

to be carried out over different environments and ecosystems in order to ensure 

their applicability. In this study we propose to evaluate and compare the estimates 
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of two physical models, one that estimates FMC (Jurdao et al. 2013) and a second 

one that estimates CWC (Trombetti et al. 2008) against the estimates using 

empirical models.  

 

1.2 Soil Moisture. 

Given that SM at the root-zone is affected by rainfall, evapotranspiration 

processes and soil properties, one of the main difficulties of monitoring SM is to 

characterize its spatial and temporal variability. Indirect, accurate and continuous 

SM measurements can be obtained using a certain range of ground instruments and 

methods, such as the Time Domain Reflectometry (TDR). However, these ground 

measurements are very limited and hence they do not represent the spatial 

variability of SM. Earth Observation (EO) satellite platforms can be a powerful tool 

to overcome the limitations of ground sensors and spatialize this variable, since SM 

affects the emission and absorption of electromagnetic radiation in different 

regions of the spectrum:  

• Microwave (MW) backscattered or emitted energy from/by the ground 

surface allows relating the dielectric constant with SM (Schmugge 1978);  

• when the soil is wet the energy balance of the surface is controlled by soil 

evaporation and vegetation transpiration and, hence, lower surface 

temperatures are expected in wet soils than in dryer soils during daytime 

hours (Schmugge 1978). This effect can be captured in the Thermal Infra-

Red (TIR) region of the electromagnetic spectrum. Additionally, if multiple 

observations of the land surface are taken at different times throughout the 

day they can be related to the soil thermal inertia (Wang et al. 2006b) and 

consequently to SM (Minacapilli et al. 2009); and  

• in the optical domain (350-2500 nm), an increase of SM produces an overall 

decrease in albedo (Bach and Mauser 1994). Water-specific absorption 

features in the Short-Wave Infrared Region (SWIR), ranging from 1000 to 

2500 nm, are sensitive to vegetation water content (Ceccato et al. 2001). 
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Each of these spectral regions has its own advantages and disadvantages for 

mapping SM (Kerr 2007; Moran et al. 2004). MW sensors are insensitive to 

atmospheric disturbances, but they usually require larger pixel size (10: 1 orders of 

magnitude) to be compared with sensors in the optical or thermal infrared domain, 

due to the lower emitted energy in the microwave (MW) region. This is the case of 

the most recent missions dedicated to monitor SM, the Soil Moisture and Ocean 

Salinity (SMOS) (50 km) or the future Soil Moisture Active Passive (SMAP) with 40 

km resolution in its MW radiometer.  

Regarding optical and TIR sensors, they allow a higher spatial and/or 

temporal resolution than MW sensors but they are greatly affected by the 

atmosphere. Different methods have been proposed in the literature to combine 

thermal information with visible and near infrared data in order to estimate the 

root-zone SM. This is the case of the Temperature-Vegetation Dryness Index (TVDI) 

(Sandholt et al. 2002), also known as the triangle method (Figure 3), since it 

delimitates empirically the triangle formed when plotting many different cases of 

the Surface Temperature (Ts) versus a Vegetation Index (VI) (Carlson et al. 1995; 

Carlson et al. 1990; Moran et al. 1994; Sandholt et al. 2002; Sun et al. 2012). This 

method was first used by Price (1990) based on the different thermal properties of 

soil and vegetation: for equal weather forcing conditions soil and vegetation 

temperatures differ and this fact explains why the Ts/VI scatter plot within a spatial 

window shows a typical triangular shape (Sandholt et al. 2002). Moisture 

availability (very wet to very dry range) and fractional vegetation cover will also 

affect the shape of the Ts/VI space (Carlson et al. 1995). The upper boundary is 

called “dry edge” and represents dry soils and stressed vegetation where ET does 

not occur and hence surface temperature is maximum. The “wet edge” establishes 

the lower boundary that corresponds with wet soils and unstressed vegetation 

where ET occurs near its potential rate and thus surface temperature is minimum 

and close to the air temperature. Between the two edges, all intermediate 

conditions occur, and SM can consequently be represented in the Ts/VI triangle 

space (Figure 3).  
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Figure 3. Ts/VI space diagram. Taken from (Sandholt et al. 2002). 

One of the key issues in this method is the definition of the edges of the 

triangle. While some studies used ancillary meteorological data to invert an ET 

model, for instance using the Penman-Monteith ET equation (Moran et al. 1994), 

others used the information contained in the Ts/VI space to empirically retrieve the 

edges (Sandholt et al. 2002; Tang et al. 2010). In any case, several assumptions and 

prerequisites need to be taken into account when applying the triangle method: 1) 

uniform atmospheric forcing together with the presence of all moisture and 

vegetation cover conditions are needed within the spatial domain applied (Stisen et 

al. 2007); 2) the dimensions of this spatial domain have to be large enough to collect 

a sufficient amount of Ts/VI cases to the adequately define the triangle shape; and 

3) factors such as land cover type and topography should also be taken into account 

to ensure the applicability of the method (Hassan et al. 2007). 

Different land cover types inside the spatial domain of the Ts/VI space may 

modify the edges of the triangle. Smith and Choudhury (1991) showed the effects of 
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combining crops and forest in the definition of the triangle. Vegetated surfaces, in 

particular forests, have a higher roughness than non-vegetated ones. This affects 

the way the heat is dissipated from the surface at equal wind conditions, being less 

effective in rough surfaces compared to areas with bare soil or low vegetation. In 

addition, including areas with significant differences in altitude can affect to the 

condition of atmospheric homogeneity within the Ts/VI space, with air temperature 

changes caused by the adiabatic lapse rate. On the other hand, areas with high 

slopes or different exposures, besides of their higher difficulty in the retrieval of Ts 

with satellite remote sensing, also lead to changes in solar irradiance, possibly 

breaking the assumption of uniform meteorological conditions. Therefore, the size 

of the spatial window where the Ts/VI space is represented needs to be selected 

according to the abovementioned requisites. A very small window will ensure 

homogeneity in the atmospheric conditions, but there are chances of not finding all 

the SM and land cover conditions in the area. A larger window can solve this 

problem but topography and different land cover types may affect the applicability 

of the method, in particular over heterogeneous areas.   

One of the decisions that need to be taken when using the triangle technique 

to determine the TVDI is the method election to calculate the edges. To the best of 

our knowledge, there are no studies in the literature in which the evaluation of 

different methods for bounding the wet and dry edges has been done; furthermore 

the question is whether this election has a further implication in the final model 

performance of the TVDI. Therefore in this study we propose to evaluate two 

different methods to calculate the edges of the triangle, and assess if this election 

has any consequence in the model performance of TVDI. Furthermore, the SWIR 

region of the spectrum has been proven to be the most sensitive region of the 

electromagnetic spectrum to moisture. Based on this, we propose a substitution of 

the NDVI by NDII. The hypothesis to carry out this modification is based in the fact 

that while NDVI can distinguish between areas with soil, partial cover and 

vegetated, the use of NDII offers more information on the moist status as the index 

will not just be sensitive to vegetation but also to the moisture conditions of 
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vegetation and soil. Additionally several studies have shown that SWIR index are 

higher correlated to LAI than NDVI therefore the edge delimitation and 

consequently the triangle technique can be improved.  

 

1.3 Evapotranspiration and Evaporative Fraction (EF). 

ET is one of the most important components on the water cycle (Jasechko et 

al. 2013). ET, also named latent heat flux (LE) when it is expressed in energy units, 

can be measured in situ using different techniques; such as Eddy Covariance, Bowen 

Ratio-energy Balance or using lysimeters. However these measurements are again, 

local and difficult to extrapolate at regional or global scales. 

In the last decades, remote sensing has allowed regional/global estimation 

of ET using different models and sensors. A review of those methods can be found 

in Li et al. (2009). Since remote sensing methods cannot directly estimate ET, in 

most cases spectral data are used as proxies related to ET or to derive inputs mainly 

related to the estimation of the sensible heat flux for land surface models. These 

methods can be divided in three large groups. The first one includes empirical 

methods that do not need ancillary data such as the Simplified Equation method 

(Jackson et al. 1977; Seguin and Itier 1983) and the triangle method Jiang and Islam 

(2001); (Stisen et al. 2008b). The second group corresponds to the semi empirical 

methods. Some of them require the identification of anchor pixels with maximum 

ET and ET= 0, as well as other meteorological ancillary data to be operative. In this 

group we include the Surface Energy Balance Index (SEBI) (Menenti and Choudhury 

1993), the SEBI simplified version S-SEBI (Roerink et al. 2000), the Surface Energy 

Balance Algorithm (SEBAL) (Bastiaanssen et al. 1998) and the Mapping 

Evapotranspiration with Internalized Calibration (METRIC) model (Allen et al. 

2007). The third group corresponds to the physical methods such as the family of 

Two Source Energy Balance (TSEB) models (Kustas and Norman 2000): the 

Atmosphere-Land Exchange Inversion (ALEXI) (Anderson et al. 1997), the linked 

version with a canopy RTM Two Source Energy Balance Dual Angle Radiative 
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Transfer (TSEB-2ART), (Guzinski et al. 2014; Nieto et al. 2013) or the Dual Time 

Difference (DTD) (Guzinski et al. 2013).  

Most of these methods make use of remotely sensed Land Surface 

Temperature (Ts) and hence the ET retrieved is an instantaneous estimate during 

the satellite overpass. In order to have ET estimates at daily scale the estimation of 

daily Evaporative Fraction (EF) offers some advantages. EF represents the 

proportion of available energy that is used for evapotranspiration. 

 �� = ���� − � =	 ���� + � (Equation 1) 

where Rn is the net radiation, G is the soil heat flux, and H is the sensible heat flux. 

Daily ET can then be obtained from EF assuming the self-preservation of EF 

along daytime (Brutsaert and Sugita 1992; Crago and Brutsaert 1996; Sugita and 

Brutsaert 1991). However, there is some controversy on whether EF can be 

assumed constant under sunny day conditions (Crago and Brutsaert 1996; 

Shuttleworth et al. 1989). A recent study (Peng et al. 2013) analyzed the 

relationship between in situ instantaneous EF and daily EF using a large dataset 

from the FLUXNET network (http://fluxnet.ornl.gov/). Results showed that there is 

a strong relationship between daily and instantaneous EF, but this relationship is 

weather, ecosystem and time of the day dependent.  

Gentine et al. (2007) analyzed the EF diurnal behavior linking a SVAT model 

with micro-meteorological data in a typical Mediterranean semi-arid region. 

Variables affecting the diurnal EF evolution are presented for canopy EF (EFC), soil 

EF (EFS) and for the total EF in the study, showing that LAI and SM can strongly 

modify the EF values during daytime. The study also concluded that EFS component 

can be assumed constant during the day, which differs in the case of EFC as the latter 

shows strong variations during the day.  

In some ecosystems, such as the semi-arid ones the most limiting factor that 

controls ET is the SM (Gentine et al. 2007; Stisen et al. 2008b) and consequently, in 

the case of EF, SM has also a great importance (Gentine et al. 2007 ). EF is less 
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affected by atmospheric forcing factors like incoming solar radiation or wind speed 

than ET is (Gentine et al. 2011). One of the simplest methods in estimating ET or EF 

from remote sensing is as well the triangle method since it only relies on remote 

sensing data and is easy to calculate with acceptable results obtained so far. The 

triangle method applied to EF estimation was originally proposed by Jiang and 

Islam (2001) and is based on the simplified expression of the Penman-Monteith’s 

equation (Monteith 1965) developed by Priestley and Taylor (1972) for estimating 

potential ET. In that formulation the aerodynamic resistance in Pennman-

Monteith’s model is summarized in a single term, leading the equation as follows: 

 �� = � 
(�� − �) �� + �� (Equation 2) 

where � is the slope of the saturated vapour pressure curve (kPa C-1), dependent of 

the air temperature, and � is the phsycometric constant (kPa C-1). The term � is a 

substitute of the Priestly-Taylor constant (α), which is usually agreed to be 1.26 

under equilibrium conditions over wet surfaces (Eichinger et al. 1996). By 

combining Equation 1 and Equation 2, EF can be expressed as: 

 �� = � � �����  (Equation 3) 

where the � parameter of the equation can be empirically obtained using the 

triangle technique (de Tomás et al. ; Jiang and Islam 2001; Stisen et al. 2008b; Tang 

et al. 2010) by considering a value of 1.26 when ET is maximum (wet edge) and a 

value of 0 when ET is minimum (dry edge) (Jiang and Islam 2001), with all the 

intermediate values between both edges. However, It is not well understood the 

existing relationship between ɸ parameter in the Ts-VI triangle space. Some 

authors (Stisen et al. 2008b) proposed for instance a double interpolation using a 

second order polynomial equation to define the ɸ isolines (Figure 4), assuming that 

the estimated dry edge deviates from the theoretical dry edge (where ET is actually 

0) 
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Figure 4. Scheme showing the triangle edges and the quadratic interpolation of ɸ 

compared to the linear method. Taken from Stisen et al. (2008b). 

Finally, one of the challenges when using satellite remote sensing data to 

estimate ET/EF is model validation, as there is usually a scale mismatch between in 

situ measurements and the satellite data. Furthermore, since one of the most widely 

in situ ET/EF measurements currently used are based on EC data the validation 

becomes even more challenging as the footprint measured by the EC system is very 

variable due to changes in vegetation roughness and turbulence (Section 2.3). 

Therefore in this study we aim to validate the remote sensing estimates of EF using 

the footprint contributions calculated using the EC data. Although this validation 

has been carried out to validate ET models, this has never been done in the case of 

EF. Landsat was selected to carry out this comparison due to the pixel resolution of 

30 m. The triangle method will be used to retrieve EF; however, in this case we 

propose using a LAI product from MODIS. The decision to use LAI rather than a VI is 

based on the strong relationship between LAI and EF described in Gentine et al. 

(2007). In addition LAI is a more physical variable of the vegetation which provides 

more control on the calculation of the edges of the triangle rather than a Vegetation 
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Index (de Tomás et al. 2014). We will downscale this product from its original 

resolution of 1 km to 30 m using a regression decision tree algorithm. The reason to 

use this product rather than the one measured in the field is that we consider that 

due to the sparse tree distributions at the study site, the proportion of canopy and 

grassland can be highly different within one pixel. We believe that using the 

proposed methodology the errors in the LAI calculation for each pixel will be 

smaller than using empirical models and consequently the calculation of the edges 

of the triangle will be more accurate too. Our hypothesis is that when using the 

footprint contributions the results should be more accurate than if just the value of 

a single pixel over the EC tower is used for the validation, therefore another 

question that we plan to answer in this study is how different are the results if 

instead of using the footprint contributions a single pixel corresponding to the EC is 

used. Daily EF and overpass EF coincident with Landsat will be calculated using the 

EC data and compared against Landsat EF. 
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An overview of the data used in the thesis is presented in this section. The 

main objective of data acquisition is to calibrate and validate the models in the 

different studies of this thesis. This part is organized in different subsections: 

1. Site description 

2. Vegetation biophysical variables 

3. Eddy covariance flux measurements 

4. Soil moisture measurements 

5. Remote and proximal sensing data 

The acquisition was conducted for 2 years (2009/2010) in Las Majadas del 

Tiétar. In Figure 5 it is presented a summary of the data sources used to carry out 

this research. They are divided in two sources, remote sensing data that are 

surrounded by a green box and in situ data that are surrounded by a blue box. Both 

sources merge in the middle of the figure, showing in which chapter of the thesis 

the different data have been used. 
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Figure 5. Scheme summarizing the data used during this research. 
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2.1 Site description 

 

The study site is located at Las Majadas del Tiétar, Cáceres (Spain) FLUXNET 

site (http://fluxnet.ornl.gov/site/440) (Figure 6).  

 

Figure 6. Las Majadas del Tiétar study site location. 

 

The area is a Mediterranean wooded grassland (“dehesa”), an ecosystem that 

occupies about 4% (2.5 Mha) of the Iberian Peninsula (Castro 1997). Common tree 

species are different varieties of oaks, here mostly Quercus ilex subsp. ballota (L.), 

whose acorns and leaves are mainly used as forage for pigs and cows, respectively. 

The scattered oak trees have a 9 m mean height and 6 m mean crown diameter. Due 

to its deep and wide root system, this species is resistant to long drought periods 

(Camarero et al. 2012). Short grassland covers 86% of the area that is managed for 

cow shepherding. It is mainly composed by Rumex acetosella, L., Plantago carinata 

Schrad, Trifolium subterraneum L., Cynodon dactylon(L.) Pers., Taraxacum dens -

leonis Desf. and Vulpia myuros (L.) C. C. Gmel. During the summer, grassland dries 
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out rapidly and turns into dead matter. Summers are hot and dry, with 30 °C daily 

average temperature and only 67 mm total precipitation, which are not 

representative of mean annual 16.7 °C and 572 mm. The average altitude is 256 m 

above mean sea level. Soils are lixisols with an average thickness of 80 cm. Due to 

the presence of a clay layer in some of the areas, small water pools may appear in 

winter after rainy periods. The occurrence of this type of ecosystem in 

Mediterranean areas worldwide, the need to track the responses to water stress 

conditions, together with the presence of a FLUXNET eddy covariance flux tower 

justifies the selection of this site.  

 

2.2 Vegetation Biophysical variables 

In this work, three different vegetation water content metrics of grassland 

expressed as Fuel Moisture Content (FMC), Equivalent Water Thickness (EWT) and 

Canopy Water Content (CWC) as well as other important biophysical variables such 

as Leaf Area Index (LAI) and Dry Matter (Dm) were calculated. A spatial sampling 

was established centered in the Eddy Covariance (EC) flux tower using a random 

sampling scheme. Three sampling zones were defined as concentric rings around 

the EC by incrementing the radius at equal intervals of 150 m. The number of plots 

inside each ring was decided accounting for two parameters, the distance to the EC 

and the area of each ring. A total of 34 square plots with 25m side were randomly 

located around the EC tower. Plots were marked in the field using 4 stakes, one for 

each corner (NW-NE-SW-SE). The stakes were positioned in the field with a Leica D-

GPS. A color code was used to differentiate the plots in the field according to the 

sampling zone. Each of the stakes was labeled indicating the zone and plot and also 

the orientation. This helped the location of the plot once any of the stakes had been 

found.  
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Figure 7. Grassland sampling design centered at the EC flux tower showing the two levels 

initially planned in the sampling strategy. Solid plots indicate those plots that are within the 

MODIS pixel corresponding to the EC tower. 

Then the plots were split in two sampling levels (Figure 7) leading to 13 

plots for level 1, and 21 for the level 2. Temporal sampling was established to be 

coincident in time with Landsat 5 and Landsat 7 overpasses, where level 1 plots 

were sampled coincident with Landsat 5 and level 2 plots with Landsat 7. This 

intensive strategy would provide up to three measurements every month (Figure 

8). However, after one year following this sampling strategy, a test was carried out 
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to evaluate differences between sampling levels using a Kruskal-Wallis non-

parametric test. The results showed that there were not statistically significant 

differences between levels, and therefore the decision of continuing with only one 

that the level coincident with Landsat 5 overpass was taken. The period covered 

with this scheme was from April 2009 to April 2011. Furthermore, data collection 

was only performed after assuring that no rain was forecast during the sampling 

date and neither occurred in the two previous days in order to avoid collecting 

superficial water on the leaves.  

 

Figure 8. Calendar showing the temporal sampling scheme: � denotes data used in the 

study and � denotes discarded data. Green indicates level 1.  
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During the summer, the herbaceous layer became completely dry in the 

study site. Consequently, during the first year it was decided to avoid collecting data 

during the summer period. However, after analyzing the data, we realized that this 

strategy would create some inconsistency to follow the temporal evolution of some 

of the biophysical variables measured, mainly LAI, hence, in order to ensure the 

time series continuity of at least one phenological year, sampling was conducted 

throughout the summer of 2010.  

Since a part of the personnel in charge of data collection varied during the 

different campaigns, protocols were established in order to guide the field sampling 

processes. These protocols described the material and method in a comprehensive 

and unambiguous way so the homogeneity of the dataset could be ensured. 

 

2.2.1 Field Data collection 

Three grassland samples were collected from three 25 x 25 cm2 quadrants 

randomly located within each 25 x 25 m plot. Once the operator reached the plot, 

he/she positions backwards to it. Then he/she randomly throws in the air the 

quadrant, falling into the plot and collects the sample at the point the quadrant 

landed (Figure 9a). Each operator was equipped with pen, clippers, zip plastic bags 

and notebook. Before starting the sampling collection, the operator checks the 

status of the sample and writes down any incidence related to it. Zip plastic bag are 

identified writing down on it the ID of the plot, the date and the type of sample 

collected. 
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Figure 9. a) Field instrumentation consisting on a 25x25 cm quadrant, clippers, field 

notebook, zip plastic bags and pen. b) Picture of a frame after the sample has been collected 

and kept in the zip bag. c) Weighting of collected samples in the field in the trunk of the car 

to avoid wind during the weighting process. 

 

All rooted plants within the quadrant were collected using the clippers 

(Figure 9a,b) and kept in a zip plastic bag. Additionally, a smaller sample was 

collected outside of the quadrant but nearby to estimate EWT (EWTSample hereafter). 

As EWT requires knowing the leaf area of the sample, this was considered a cost-

effective method, since scanning all collected sample inside the quadrant would 

have been unaffordable with the staff available. On the other hand, using a 

subsample from the quadrant sample would have introduced uncertainties in the 

data due to possible loss of fresh weight while it was kept in the zip bag. Sampling 

personnel was adviced to try to ensure that a representative proportion of 

surrounding species was kept in the EWTSample. However, the selection of the 

individuals to be included in the sample depended on the particular criteria of each 

person so it is not free of potential bias. All samples were weighted in the field using 

a scale with 0.01 g precision (Figure 9c) and then transported in a cooler to the 

laboratory. Any possible anomaly found during sampling, i.e. superficial wetness, 

difficulties to remove the soil from the sample or any other incidence, was 

annotated in the plastic bag to document potential inconsistencies found during the 

laboratory analyses. Upon arrival to the laboratory, all samples were relocated in a 

refrigerator and kept there until processing of the samples was carried out. 

c) a) b) 
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2.2.2 Laboratory processing 

After each field campaign the samples were further processed in laboratory 

in order to obtain the desired metrics, but first a quality control was performed 

during laboratory processing. Traces of soil, roots, flowers, acorns, etc., in the 

sampling bag was recorded in the field database. This information was later used to 

remove from the analysis those samples that presented any incidence, ensuring the 

quality of the data. 

Then, all plants collected in the EWTSample and a sub-sample from each 

quadrant was scanned using an Epson Perfection V30 color scanner (Epson 

American Inc., Long Beach, CA, USA). As will be explained in the following lines, in 

this case the use of a subsample is justified as only leaf area, and dry weight will be 

retrieved from the subsample. Leaf area was calculated automatically from the 

scanned images using the unsupervised classification algorithm ISOCLUS with 16 

iterations in PCI Geomatica (PCI Geomatics, Richmond Hill, Ontario, Canada). 

Finally, all samples were dried by placing them in an oven for 48 hours at a constant 

temperature of 60°C and weighted again.  

Three biophysical variables were obtained during this process: Vegetation 

water content (expressed as Fuel Moisture Content (FMC), Equivalent Water 

Thickness (EWT) and Canopy Water Content (CWC)), Dry Matter content (Dm), and 

Leaf Area Index (LAI). FMC was determined from the fresh and dry weights of both 

the whole quadrant sample (FMCQ) and the EWTSample (FMCEWT) according to 

Equation 4: 

 ���	(%) = ����� −�!�" 	�!�" ⋅ 100 (Equation 4) 

where WFresh is the fresh weight (in grams) of the sample measured in the field and 

WDry is the oven dried weight.  

EWT was estimated from the EWTSample:  
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 ��&	(' ⋅ ()*+) = ����� −�!�"	,-./0�12  (Equation 5) 

where AreaLeaf is the leaf area of the EWTSample in cm2 

Dm was calculated as: 

 3)	(' ⋅ ()*+) = �!�"	,-./0�12 (Equation 6) 

CWC was calculated using two different approaches. In the first one, data from the 

quadrant and EWTSample were combined using the following expression:  

 ���456	(' ⋅ ()*+) = ��&7189:� ⋅ �,; (Equation 7) 

where LAI is the leaf area index of the grass within the quadrant and EWT is 

obtained from Equation 5. The grass height in the study site was very short due to 

cow grazing, so the only way to obtain LAI was by using gravitational methods (He 

et al. 2007). LAI was estimated from the relation between the biomass-leaf area of a 

sub-sample inside the quadrant relation and the total quadrant’s biomass using the 

following expression:  

 �,;	(()+ ⋅ ()*+) = �!�"�!�"7<= ⋅ ,-./0�127<=
,-./  

(Equation 8) 

where  is the total dry weight of the whole sample inside the quadrant,  is 

the dry weight of a sub-sample of ,  is the sub-sample leaf area and 

Area is the total area of the quadrant. This gives as result the total LAI, as it 

accounts for the green vegetation and the dry vegetation that is still rooted to the 

soil. 

Finally the second approach measured CWC from the fresh and dry weight 

difference of the sample within the quadrant divided by the area of the quadrant 

(CWCQ in Equation 9):  

 ���>	(' ⋅ ()*+) = ����� −�!�",-./  (Equation 9) 

DryW Sub
DryW

DryW Sub
LeafArea
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2.3 Eddy-covariance measurements 

A flux can be defined as the amount of an entity that goes through a known 

surface per unit of time. Airflow generates great number of eddies that can be 

measured by high sensitive instrumentation used in the so called Eddy Covariance 

(EC) system (Figure 10). The principle of EC is measuring the vertical fluctuations 

of a scalar (CO2, H2O, heat) at very high frequency over an area for a known period 

of time. In essence this method uses the covariance between momentum (wind) and 

the transport of water vapor (H2O), CO2 and heat to represent these fluxes. 

The EC technique allows monitoring the gas exchange and energy fluxes at 

different spatial scales. The use of these micrometeorological measurements offers 

advantages among traditional methods including continuous and not disturbing 

measurements (Baldocchi et al. 1988). 

 

 

Figure 10. Representation of eddies generated by air flow. Taken from Burba and Anderson 

(2010). 

(http://atoc.colorado.edu/~dcn/ATOC7500b/members/reading/Brief_Intro_Eddy_Covaria

nce.pdf) 
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To make this technique operational, ensuring both the quality and 

representativeness of the measurements, there are some requirements that need to 

be addressed which can be a potential source of error. This technique may 

experience problems due to instrument failure, instrument setup, terrain 

roughness, etc. 

In this study, data from micrometeorological measurements provided by an 

EC flux tower located at the study site were used. Acquisition and data quality 

control were carried out by the Centro de Estudios Ambientales del Mediterráneo 

(CEAM). CEAM provided data for this study following the standards and procedures 

defined by the national or world-wide flux station networks in which they are 

included (CARBORED-ES (http://www.ceam.es/carboredes/), CARBOEUROPE-IP 

(http://www.carboeurope.org/), FLUXNET (http://fluxnet.ornl.gov/). The quality 

control of EC data includes various steps: basic test using the raw data measured in 

the field, statistical test and test on the fulfillment of the EC technique requirements 

(Foken et al. 2005). Gaps in the data due either to sensor or data logger failure were 

filled using standardized techniques adopted by CarboEurope-IP and FLUXNET 

networks (Papale et al. 2006), such as the "Marginal Distribution Sampling" method 

(Reichstein et al. 2005) and the "Artificial Neural Network" method (Papale and 

Valentini 2003). 

The instrumentation of the EC flux tower in our site for the (micro) 

meteorological measurements is presented in Table 1. Data have been collected at 

this location since May 2003 when the system was set up. Meteorological 

instruments operating since this date are radiation, air temperature, relative 

humidity, atmospheric pressure, and wind speed. Sampling frequency for the 

micrometeorological EC measurements is 10 Hz for the Sonic 3-D anemometer and 

for the Infra-Red Gas Analyzer. 
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Table 1. Sensors installed at the EC tower in las Majadas de Tiétar study site to measure 

atmospheric and meteorological variables. 

Variable Units 

Instrument 

Type 

Instrument 

model Start date Height 

Aggre

gation 

period 

Fc CO2 flux 
µmol.m-

2.s-1 Sonic 3-D 

anemometer + 

IRGA 

Sonic R3-50 

(Gill) + LI-7500 

(LiCor) 

5/15/2003 

15.5 m 30 min 

LE 
Latent heat 

flux 

W.m-2 

15.5 m 30 min 

H 
Sensible heat 

flux 
Sonic 3-D 

anemometer 

Sonic R3-50 

(Gill) 

15.5 m 30 min 

τ 
Momentum 

flux 

Kg.m-2.s-

1 
15.5 m 30 min 

SWin 

Short wave 

incoming 

radiation 

W.m-2 

Pyranometer 

CNR4 (Kipp & 

Zonen) 
4/8/2010 

15 m 10 min 

SWout 

Short wave 

outgoing 

radiation 

15 m 10 min 

LWin 

Long wave 

incoming 

radiation 

Pyrgeometer 

15 m 10 min 

LWout 

Long wave 

outgoing 

radiation 

15 m 10 min 

NetRad Net radiation 

4 components 

Net 

Radiometer 

CNR4 (Kipp & 

Zonen) 
4/8/2010 15 m 10 min 

SWin 

Short wave 

incoming 

radiation 

Pyranometer 
CMP22 (Kipp & 

Zonen) 
2/22/2011 15 m 10 min 
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Variable Units 

Instrument 

Type 

Instrument 

model Start date Height 

Aggre

gation 

period 

SWdif 

Diffuse 

incoming 

short wave 

radiation 

W.m-2 Pyranometer SPN1 (Delta-T) 2/24/2011 15 m 10 min 

WD 
Wind 

direction 

Decimal 

degrees Sonic 2D 

anemometer 

WindSonic (Gill 

instruments) 
2/24/2011 

[5m, 

9m, 

15m] 

10 min 

WS Wind speed m.s-1 10 min 

P Precipitation mm Rain Collector 

Precipitation 

Transmiter 

(Thies Clima) 

5/15/2003 1.5 m 10 min 

TRwS 500/503 

(MPS systém, 

spol. s r.o.) 

6/3/2011 1.5 m 10 min 

Pa 
Atmospheric 

Pressure 
kPa Barometer 

PTB 210 

(Vaisala) 
2/24/2011 0.8 m 10 min 

RH 
Relative 

humidity 
% Hygrometer 

Hygro-

thermometer 

(Thies) 

in ventilated 

shelter 

2/24/2011 

[1m, 

2m, 

4m, 

8m, 

15m] 

10 min 

Ta 
Air 

temperature 
°C Thermometer 10 min 

 

With the instrumentation available in the EC flux tower it is possible to 

obtain a large number of variables of the ecosystem such as the Net Ecosystem 

Exchange (NEE) and Gross Primary Production (GPP) among others. As this study 

was oriented to water fluxes estimation between land and atmosphere, we focused 

in those variables related to Evaporative Fraction (EF) and Evapotranspiration 

(ET). The EC instruments used for this purpose are the 3-D sonic anemometer and 

the open path gas analyzer (Figure 11). 
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Figure 11. Picture from top of the EC system showing the setup of the sonic anemometer 

and the open path analyzer. Wiring on top was installed to avoid the birds to place on top of 

the instruments. 

These two instruments work independently; therefore a good 

synchronization is needed. The 3D sonic anemometer measures the three 

components of the wind by sending an acoustic signal and measuring the time it 

takes to travel from two opposite points in three different space dimensions. 

Elapsed time is due to wind and, therefore, the wind velocity can be retrieved. The 

sonic anemometer is also capable of measuring temperature (Sonic Temperature) 

using the same principle, time differences, as does to calculate the wind 

components. However in this case these differences are due to changes in air 

density caused by variations in temperature, making the acoustic signal to travel 

faster or slower. Simultaneously, the gas analyzer measures densities of water 

vapor and carbon dioxide. Records from both instruments allow estimating the CO2 

and H2O fluxes. 

When the estimates using remote sensing are validated using an EC system, 

it is important to make the evaluation only the in area that is being measured by the 

EC tower, or footprint. The footprint of the EC tower can be described as the area 

observed by the EC instrumentation mounted on the tower. Definition of the 

footprint is important to understand and interpret the fluxes measured with the 
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instruments as, depending on the area covered by the footprint, different factors 

can affect the fluxes. The footprint area is always located in the upwind direction 

(Figure 12a) and there are several factors that can modify it: 

• The heights at which measurements are taken. If instruments are 

located near the ground, the footprint will be small and fluxes will be 

highly affected by the area nearby the EC tower. The opposite occurs 

when the instruments are located at upper heights. In that case the 

footprint is larger, but the areas nearby the EC tower present low 

contributions to the measured fluxes. 

• The surface roughness also affects the dimensions of the footprint. 

When the surface roughness decreases, the size of the footprint increases, 

and the opposite occurs if the surface roughness increases, since 

roughness affects turbulence and hence the size of the eddies. 

• Thermal stability also modifies the footprint. If thermal conditions 

are stable, the area is much larger than under unstable conditions, as 

convection also enhances turbulence and therefore shape of the eddies. 

 

There are many different methods to estimate the EC footprint (Haenel and 

Grünhage 1999; Horst and Weil 1992; Kljun et al. 2002). In this study the two-

dimensional footprint of the EC tower was estimated using the approach of Detto et 

al. (2006) with the footprint weights in the upwind direction derived using the 

model of Hsieh et al. (2000) and the weights in the cross wind direction assumed to 

be normally distributed with standard deviation dependent on the standard 

deviation of the horizontal crosswind velocity fluctuations (Schmid 1994). This 

results in a 2D grid (Figure 12b) of pixels representing the relative contribution of 

each pixel to the total EC footprint signal, with the sum of all pixels being 1. When 

evaluating the high resolution fluxes, each modeled pixel is scaled according to how 

strong is the contribution of its location to the EC measurement 
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Figure 12. a) Visualization of flux contributions to the EC measurements. Taken from 

Burba and Anderson (2010) 

(http://atoc.colorado.edu/~dcn/ATOC7500b/members/reading/Brief_Intro_Eddy_Covaria

nce.pdf).b) Cumulative footprint at 12:00 hours for the whole year 2009 in Majadas del 

Tiétar study site. This latter figure shows how dominant winds in the area have an East-

West component. 

b) 

a) 
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2.4 Soil measurements and soil moisture 

Soil measurements were performed at the study site in order to estimate SM, Soil 

Temperature and Soil Heat Flux (G) using the sensors listed in Table 2.  

Table 2. Sensors installed at Las Majadas del Tiétar study site to measure soil variables. 

Parameter Units 
Instrument 

Type 

Instrument 

model 
Start date Height 

Aggrega

tion 

period 

SWC 

Soil 

water 

content 

% vol 

ThetaProbe 

(volumetric 

soil moisture 

content 

sensor) 

Theta probe 

ML2X (Delta 

T) 

4/20/2005 
[-0.04, -

1.9] 
10 min 

Ts 
Soil 

temp. 
°C Thermocouple 

STP01 

(Hukseflux) 
2/22/2011 

[-0.02,-

0.5] 
10 min 

Pt100 

(Campbell 

Scientific) 

2/9/2011 
[-0.02,-

0.5] 
10 min 

G 
Soil heat 

flux 
W.m-2 Heat Flux 

PU43 

(Hukseflux) 
5/15/2003 [-0.02] 10 min 

HFP01SC 

(Hukseflux) 

10/19/201

0 

[-0.02,-

0.03] 
10 min 

 

Time Domain Reflectometry (TDR) was used to measure SM. This technique 

bases its principle on the high dielectric constant (Ɛr) of water (80) vs. other 

materials like soil (6) or air (1). Dielectric materials are those that are not good 

electricity conductors but that permit displacement of charge. 
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The TDR device is consisting on two or three metallic parallel rods 

(conductor) that are introduced into the soil (dielectric medium). The instrument 

(Figure 13a) has a precise receiver that measures time. The TDR unit emits an 

electromagnetic pulse and the signal is transferred through the rods. The signal is 

reflected at the end of the rods. The elapsed time since the pulse was emitted and 

reflected is measured by the receiver unit. This time is related to the propagation 

velocity of the signal that depends mainly on the amount of water in the soil.  

The TDR sensors are installed in the study site at 4 different depths to collect 

the SM variations (4 cm, 8 cm, 10 cm and 20 cm). Three of these sensors are 

installed creating a vertical profile and, therefore, not having more than 4 cm 

displacement on the horizontal plane. The sensors in the vertical profile are located 

at 10 m from the Eddy Covariance flux tower and the remaining sensors at 8 m 

distance (Figure 13b). SM measurements are continuously recorded every 30 

minutes.  

 

Figure 13. a) MLX2 ThetaProbe sensor used in Las Majadas study site. b) Orthophoto 

showing the location of the TDR sensors used for this study. Red circle points to the TDR 

sensors at 4cm, 10cm and 20cm. Blue circle points to the TDR sensor at 8 cm.  

a) 
b) 
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2.5 Spectral information  

Different sources of spectral information have been used in this study 

including both proximal and satellite remote sensing which has allowed a multi-

scale analysis of the water fluxes in the proposed site. The following sections 

include a description of the main characteristics of the spectral datasets used in this 

work (Table 3).  

 

Table 3. Brief summary description of spectral data sources used in this study. 

 ASD 

Fieldspec3 

Landsat TM and 

ETM+ 

TERRA-MODIS MSG-SEVIRI 

Revisit period  16 days 16 days 2 times a day 15 minutes 

Spatial 

resolution  

Field scale 

(25° FOV) 

30 m 500 m optical 4 km 

(Resampled). 

Spectral 

domains  

Optical Optical/Thermal Optical/Thermal Optical/Ther

mal 

Band 

Wavelengths 

(350 nm -

2500nm 

@1nm) 

B1 (450-520 nm) 

B2 (520-600 nm)) 

B3(630-690 nm) 

B4 (760-900 nm) 

B5 (1550-1750 

nm) 

B6 (10400-12500 

nm) 

B7 (2080-2350 

nm) 

B1 (620-670 nm) 

B2 (841-876 nm) 

B3 (459-479 nm) 

B4 (545-565 nm) 

B5 (1230 -1250 nm) 

B6 (1628-1652 nm) 

B7 (2105-2155 nm) 

B31 (10780-11280 

nm) 

B32 11770-12270 

nm) 

B1 (560-710 

nm) 

B2 (740-880 

nm) 

B3 (1500-

1780 nm) 

B10 ( 11000-

13000 nm) 

B11(12400-

14400 nm)  
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2.5.1 Field spectroscopy 

Proximal sensing data were acquired using an ASD FieldSpecTM 3 

(http://www.asdi.com/) spectroradiometer (Analytical Spectral Devices Inc, 

Boulder, Colorado). This instrument samples radiation throughout a fiber bundle 

cable and distributes it to three different sensors. The first one covers the Visible 

and the Near InfraRed regions (VNIR), from 350 nm to 1000 nm with a 3 nm of Full 

Width at Half Maximum (FWHM) and a Spectral Sampling Interval (SSI) of 1.4 nm. 

The other two sensors cover the SWIR region, splitting it in two ranges, from 1000 

nm to 1800 nm (SWIR 1) and from 1800 nm to 2500 nm (SWIR 2). For these 

sensors, FWHM is 10 nm and SSI is 2 nm. Default configuration provides spectral 

data interpolated to 1 nm intervals for the full range covered. Spectral 

measurements were obtained over each 25x25 m2 grassland plot along two 

transects: NW-SE and NE- SW, based upon the stakes placed during the sampling 

design (Section 2). Spectra were acquired at approximately 1.2 m height, rendering 

a sensor footprint diameter of about 53 cm, since nominal FOV is 25° (Figure 14). 

Before measuring each transect, dark current was recorded and removed, and 

instrument configuration optimized for illumination conditions prior to the 

measurements in each transect of the plot. A reference spectrum was acquired 

using a Spectralon® 99% reflective reference panel (Labsphere Inc., North Sutton, 

NH, USA). All measurements were taken under clear sky conditions within about ±2 

hours from local solar noon, to guarantee homogeneous illumination conditions and 

maximum solar irradiance. Sky conditions were recorded in the field logs, and a 

quality control checked the spectra to remove those where illumination changes 

may have occurred after calibration. The ASD was handled without fore optics 

(http://www.asdi.com/products/accessories/remote-sensing-

accessories/foreoptics) to reduce the directional effects on the spectroradiometer’s 

fibers bundle field of view (FOV) (MacArthur et al. 2012).  
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Figure 14. Picture showing proximal sensing data acquisition using an ASD FieldSpec 3 

spectroradiometer. One operator is controlling the spectroradiometer and a second 

operator assists with the white reference panel and writing down any incidences. 

 

With the help of the field notes, spectra were processed and those having 

any anomaly such as changes in illumination or any instrumental problem where 

removed to ensure consistence and quality of the temporal series. 

 

2.5.2 Landsat 

Landsat 5 TM and Landsat 7 ETM+ images available between April 1st 2009 

and 31st December 2011 were downloaded from the Land Processes Distributed 

Active Archive Center (LP DAAC), located at USGS/EROS, Sioux Falls, South Dakota 

(http://lpdaac.usgs.gov). Images during the study period were atmospherically 

corrected and converted to surface reflectance using the Landsat Ecosystem and 

Disturbance Adaptative Processing System (LEDAPS, 

http://ledapsweb.nascom.nasa.gov/). This model uses the routines developed for 

Terra MODIS for atmospheric corrections (Vermote et al. 1997). LEDAPS image 

correction process is summarized in Figure 15. 
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Figure 15. LEDAPS algorithm description (Source: LEDAPS surface reflectance description. 

Version 2.0). 

LEDAPS creates a Look-Up Table (LUT) for the whole scene and for each 

band with information on atmospheric pressure, ozone, geometric distortions and 
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total column water vapor (W) using the Second Simulation of a Satellite Signal in 

the Solar Spectrum, Vector, Version 1, (6S V) RTM code (Kotchenova et al. 2006). 

LEDAPS uses then the Dark Dense Vegetation (DDV) algorithm (Kaufman et al. 

1997) to account for the Aerosol Optical Thickness (AOT) directly from the image 

and LUT. In a first step the image is resampled to 1 km resolution and “dark targets” 

are selected. AOT is calculated for the blue channel based on the correlation 

between the blue (0.45–0.52 mm) and SWIR channel (2.2mm) bands. The AOTs for 

the remaining channels are propagated across the spectrum using a continental 

aerosol model at 30 m. Quality tests are carried out to find unrealistic values and 

neglecting those cases were too many are present within the 1 km window. . Then, 

the AOT is spatially interpolated over the selected dark targets in the scene and 

together with the ozone, atmospheric pressure, and W, the atmospheric 

transmittance and spherical albedo are calculated with 6S in order to invert the Top 

Of the Atmosphere (TOA) reflectance to surface reflectance for each 30-m pixel 

using: .  

 ?6@A = ?1B8 + &C&<?�1 − D1B8?�  (Equation 10) 

where ρTOA is the TOA reflectance, ρatm is the atmospheric intrinsic reflectance, Td is 

the downward atmospheric transmission in the direction of light propagation form 

the TOA surface Tu is the upward atmospheric transmission in the direction of light 

propagation form the surface to the sensors. ρs is the surface reflectance, and satm is 

the atmospheric spherical albedo. 

Landsat surface reflectance estimated with LEDAPS was validated using our 

field reflectance data (Figure 16) showing good agreement and therefore ensuring 

the reliability of the atmospheric correction. The small differences can be explained 

due to dissimilarities in the illumination conditions, due to differences between 

Landsat overpass time and in situ sampling differences in the FOV, especially 

important over heterogeneous surfaces, or even just differences due to the image 

correction method. Although LEDAPS creates a cloud mask, we applied on top the 

Function of Mask (FMask) algorithm (Zhu and Woodcock 2012).  
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Figure 16. Comparison of surface reflectance measured using a field spectroradiometer 

and Landsat corrected with LEDAPS. Band wavelengths can be found on Table 3. Grassland 

plots without tree canopy was used for this comparison. 
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2.5.3 MODIS 

2.5.3.1 Optical Data 

MODIS Terra daily surface reflectance (MOD09GA) data from April 1st, 2009 

to April 15th, 2011 were downloaded from NASA Land Processes Distributed Active 

Archive Center (LP DAAC) at the USGS/Earth Resources Observation and Science 

(EROS) Center, Sioux Falls, South Dakota, USA. This product provide an estimate of 

the surface spectral reflectance as it would be measured at ground level in the 

absence of atmospheric scattering or absorption for bands 1 to 7 (469-2130 nm) at 

500 m spatial resolution. It provides additional information on sensor and solar 

angles and quality state at 1 km resolution. A script programmed in Matlab 

(Mathworks, Batick, Massachusetts, USA) was used to extract, from the image time 

series, the reflectance values of the MODIS pixel centered in the EC flux tower that 

includes approximately 80% of the field sampled. The election of a single pixel was 

preferred to a window of 2 or 3 pixels as there is a cropland area in the north of the 

study site that could affect the data if an average value had been used. The impact of 

angular effects on reflectance was reduced by discarding pixels with View Zenith 

Angles (VZA) wider than 20°. This will also minimize the problems related to the 

accuracy of the geometrical location of the pixel (Wolfe et al. 2002). Under nadir 

observations the footprint observed by the sensor presents usually a circular shape, 

and contributions are usually Gaussian. When viewing geometry changes and the 

viewing angle is increasing, the footprint is not circular anymore, and contributions 

are distorted, this translates in uncertainties, especially over heterogeneous areas. 

Finally, the quality assurance layer was used to eliminate images under clouds, 

cloud shadows and/or with high atmospheric aerosol content (Table 4). We prefer 

using this product instead of MYD09GA due to the system failure on band 6 on 15 of 

the 20 detectors in MODIS- Aqua (Wang et al. 2006a). 
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Table 4. Table showing some of the binary codes during this study and their meaning when 

translated to decimal numbers. Bold numbers indicate those with the highest quality of 

data. 
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72 0 0 0 0 0 0 00 00 001 0 00 

74 0 0 0 0 0 0 00 01 001 0 10 

76 0 0 0 0 0 0 00 01 001 1 00 

137 0 0 0 0 0 0 00 01 001 0 01 

136 0 0 0 0 0 0 00 10 001 0 00 

138 0 0 0 0 0 0 00 10 001 0 10 

140 0 0 0 0 0 0 00 10 001 1 00 

142 0 0 0 0 0 0 00 10 001 1 10 

200 0 0 0 0 0 0 00 10 001 0 00 

201 0 0 0 0 0 0 00 11 001 0 01 

206 0 0 0 0 0 0 00 11 001 1 10 

204 0 0 0 0 0 0 00 11 001 1 00 

1032 0 0 0 0 0 1 00 11 001 0 00 

1033 0 0 0 0 0 1 00 00 001 0 01 

1034 0 0 0 0 0 1 00 00 001 0 10 

1289 0 0 0 0 0 1 01 00 001 0 01 

1288 0 0 0 0 0 1 01 00 001 0 00 

1290 0 0 0 0 0 1 01 00 001 0 10 

1544 0 0 0 0 0 1 10 00 001 0 00 

1545 0 0 0 0 0 1 10 00 001 0 01 

1800 0 0 0 0 0 1 11 00 001 0 00 

1801 0 0 0 0 0 1 11 00 001 0 01 

1802 0 0 0 0 0 1 11 00 001 0 10 

5129 0 0 0 1 0 0 00 00 001 0 01 

8200 0 0 1 0 0 0 00 00 001 0 00 

8204 0 0 1 0 0 0 00 00 001 1 00 

8205 0 0 1 0 0 0 00 00 001 1 01 

8206 0 0 1 0 0 0 00 00 001 1 10 

65535 1 1 1 1 1 1 11 00 001 1 11 
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2.5.3.2 Thermal Data 

Daytime and nighttime Ts were obtained from Terra and Aqua daily 

products: MOD11A1  

(https://lpdaac.usgs.gov/products/modis_products_table/mod11a1) and  

MYD11A1 (https://lpdaac.usgs.gov/products/modis_products_table/myd11a1), 

respectively. The MOD11A1 product provides per pixel Ts and emissivity for the 

Terra sensor (acquired at 22:30 and 10:30 local solar time over the equator), while 

the MYD11A1 provides the same information for the Aqua sensor (acquired at 1:30 

and 13:30 local solar time over the equator). These three products contain 

additional layers with information such as VZA, quality flags assurance or time of 

the overpass (https://lpdaac.usgs.gov/products/modis_products_table). 

 

2.5.3.3 LAI data 

The MODIS MCD15A3 combined (Terra and Aqua) MODIS global LAI and 

FPAR product is composited every 4 days at 1-kilometer resolution and includes 

flags with information on the quality of the LAI retrieval 

(https://lpdaac.usgs.gov/products/modis_products_table/mcd15a3). This product 

was downloaded from NASA Land Processes Distributed Active Archive Center (LP 

DAAC) at the USGS/Earth Resources Observation and Science (EROS) Center, Sioux 

Falls, South Dakota, USA for the dates corresponding to the Landsat images 

acquisition. The information contained in this product corresponds to four days 

starting from the date used in the filename. 

 

2.5.4 SEVIRI 

Data from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI), 

onboard the geostationary EO platform Meteosat Second Generation (MSG), were 

obtained from the Department of Geoscience and Natural Resources Management at 

the University of Copenhagen, Denmark. SEVIRI has 12 spectral bands ranging from 

the optical to the thermal regions. MSG-SEVIRI permits observing the same surface 
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at multiple times (every 15 minutes) during the day, which allows for quantifying 

the morning temperature rise (Stisen et al. 2008b). In this study only 5 SEVIRI 

bands have been used: three in the optical region (nominal centers at 0.6, 0.8 and 

1.6 µm) and 2 in the thermal infrared (nominal centers at 11.2 and 12.0 µm). SEVIRI 

observes the Earth at a constant viewing angle with a spatial sampling of 3.1km at 

nadir. In the case of our study area, VZA is close to 46 degrees and, therefore, we 

resampled the data to a pixel size resolution of 4 km (Figure 17). 

 

Figure 17. VZA from SEVIRI over the Iberian Peninsula. 
 

Four-day Normalized Bidirectionally Adjusted Reflectance (NBAR) was 

produced for the optical data (Proud et al. 2014). First, the 15-minute directional 

reflectances were atmospherically corrected using a modified version of the 

Simplified Method for Atmospheric Correction (SMAC) code (Proud et al. 2010; 

Rahman and Dedieu 1994). As the atmospheric correction requires information 

about aerosol optical depth, W, and ozone content, this information is fed into SMAC 

from the relevant MODIS atmosphere products on a daily basis 
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(MOD08_D3/MYD08_D3). Then, a semi-empirical Bidirectional Reflectance 

Distribution Function (BRDF) model, inherited from the MODIS BRDF model 

(Schaaf et al. 2002) was fitted using all daytime observations in a 4-days period. 

Modeled BRDF reflectances at local solar noon and observed at nadir were 

calculated as the NBAR.  

Land surface temperature (Ts) was estimated using the two-channel split-

window algorithm proposed by Sobrino and Romaguera (2004). The algorithm 

requires as ancillary data VZA, W, and the emissivity (ε) for both split-window 

channels. Daytime W was retrieved from the images by using the time-difference 

split-window algorithm described in Sobrino and Romaguera (2007), while  was 

obtained following the Vegetation Cover Method (VCM) described in Trigo et al. 

(2008) by using the NBAR NDVI as proxy of the fractional vegetation cover. Using 

the International Geosphere-Biosphere Program (IGBP) Land Cover map (Loveland 

and Belward 1997) it gives a calibrated emissivity value for vegetation and soil for 

each band. Emissivity for each pixel is calculated using Equation 11: 

 E�22 = EF�G�H� + E=G(1 − �H�) (Equation 11) 

where FVC is the fraction of vegetation cover, and Eveg and Ebg are the vegetation and 

bare ground emissivities for each channel. FVC was calculated and empirical next 

relationship with NDVI 

 ��H = I3H; −	I3H;�JK:I3H;F�G − I3H;�JK:  (Equation 12) 

where NDVI is the actual NDVI value of theh pixel, NDVIsoil is the NDVI minimum 

NDVI value, and NDVIveg is the NDVI at full canopy cover. In this study the values 

were empirically defined and NDVIsoil was set to 0.18 and NDVIveg was set to 0.70. 

 

2.5.5 Spectral indices 

In this research different spectral indices have been calculated using the 

different spectral datasets previously described. In Table 5 these indices are 

enumerated using MODIS band numbers as reference in the formulation. 

ε
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Table 5. Spectral indices calculated during the study. MODIS band numbers are used as 

reference. 

Index   Formula   Reference  

Normalized difference 
vegetation index 
(NDVI)  12

12=
BB

BB
NDVI

+
−  (Rouse et al. 1973) 

Enhanced Vegetation 
Index (EVI) 









⋅−⋅+
−⋅

312

12

7.56
2.5=

BBB
BB

EVI  (Huete et al. 2002) 

Normalized 
Difference Water 
Index (NDWI) 52

52=
BB

BB
NDWI

+
−  (Gao 1996) 

Normalized 
Difference Infrared 
Index (NDII) 

62

62=
BB

BB
NDII

+
−  (Hardisky et al. 

1983) 

Simple Ratio Water 
Index (SRWI) 5

2=
B

B
SRWI  (Zarco-Tejada et al. 

2003) 

Soil Adjusted 
Vegetation Index 
(SAVI) 

( )L
LBB

BB
SAVI +⋅









++
−

1=
12

12  

Where L= 0.5 

(Huete 1988) 

Global Environment 
Monitoring Index 
(GEMI) 

( )
1

1

1

0.125
0.251=

B

B
GEMI

−
−−−⋅ ηη  

 where ( )
0.5

0.51.52
=

12

22
2
1

2
2

++
⋅+⋅+−⋅

BB

BBBBη  

(Pinty and 
Verstraete 1992) 

Visible 
Atmospherically 
Resistant Index 
(VARI) 

314

14=
BBB

BB
VARI

−+
− .  (Gitelson et al. 

2002a) 

Global Vegetation 
Monitoring Index 
(GVMI) 

( ) ( )
( ) ( )0.020.1

0.020.1
=

−++
−−+

RECREC

RECREC

SWIRNIR

SWIRNIR
GVMI  

(Ceccato et al. 2002) 
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3.1 Methodology 

In this part of the study the VI spectral data (Table 5) and the field variables 

(Section 2.2 and Figure 5) corresponding to the plots within the MODIS pixel 

containing the EC tower have been used (Figure 18). We selected the closest valid 

MODIS image to the field sampling day within ± 5 day window, or the MODIS image 

acquired before the sampling day in case there were two images separated equally 

in time. Minimum time lag between field and satellite data is desirable in order to 

reduce the chances of discrepancy due to animal grazing, which could cause LAI 

changes in short time periods or rain events. 

 

Figure 18. Sample plots used in the study and corresponding pixel to the EC tower location. 
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Based on this information the intra-group, inter-group and overall R2 values 

between FMCQ, FMCEWT, EWT, CWCQ, CWCEWT or LAI, and each of the proximal 

sensing spectral indexes were calculated to investigate their spatio-temporal 

variability within the 500 m MODIS pixel. More specifically, the intra-group R2 

offers information about the spatial variability, due to the collection of samples at 

different plots within the MODIS pixel. A linear regression model was created for 

each sampling day where the biophysical variable and the spectral index were the 

dependent and the independent variable, respectively. The average R2 of all the 

regression models for each day provided the intra-group R2. Instead, the inter-

group R2 explains the temporal variability due to the collection of the samples on 

different days. In this case, the biophysical variable and the VI for all plots were 

averaged for each day. The temporal linear regression model of these averaged 

values determined the inter-group R2. To explain temporal and spatial variability 

altogether, the overall R2 fitted in a single regression model including all plots and 

sampling days for each VI and biophysical variable was obtained. 

Later, using the mean values of each biophysical variable and the proximal 

sensing VI derived from ASD field spectral measurements an univariate linear 

regression model was applied. The same procedure was repeated for VIs derived 

from MODIS data. Bootstrapping techniques evaluated the empirical model 

robustness. According to Richter et al. (2012) this is a valid alternative to 

traditional leave-one-out methods to validate regression models predictability. 200 

bootstrap model simulations were run for each model and the median value of each 

statistics represented its performance. Root Mean Square Error (RMSE), Relative 

Root Mean Square Error (RRMSE), Nash-Sutcliffe Efficiency index (NSE), coefficient 

of determination (R2) and Taylor’s diagrams evaluated the models’ performance.  As 

recommended in Steyerberg et al. (2001), 200 bootstrap model simulations were 

run for each model and the median value of each statistics represented its 

performance. The RMSE measured the error in the estimation of the biophysical 

variable by each model: 
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 ��L� = M1NO(H��BK − HJ=�K )+�
KPQ  (Equation 13) 

where H��BK 	is the estimated variable and HJ=�K  is its observed field measurement. 

RMSE cannot compare the error of different variables with different units. RRMSE 

addresses this limitation to by dividing the RMSE by the average of the observed 

values (HRJ=�) (Richter et al. 2012): 

 ���L� = 100��L�HRJ=�  (Equation 14) 

The NSE indicates the model predictive power which ranges from –∞ to the 

best predictive power value of 1 (Richter et al. 2012). It establishes if the model 

performs at least as accurate as the average of observed values through the 

following expression: 

 IL� = 1 − ∑ (H��BK − HJ=�K )+�KPQ∑ (HJ=�K − HRJ=�K )+�KPQ  (Equation 15) 

The determination coefficient (R2) measures the proportion of variance 

explained by the model and is calculated as: 

 �+ = 	1 − T�+T+ (Equation 16) 

where T�+ represents the residual variance of the model and T+	is the variance of the 

dependant variable.  

The final analysis aimed to compare the performance of the resulting 

empirical models developed with the RTM-based models for estimating CWC 

(Trombetti et al. 2008) and FMC (Jurdao et al. 2013). For that Taylor diagrams will 

be used as they represent a graphical summary of the performance of the models 

and are used to compare complex models such as those RTM based mentioned 

before. In these plots the observed variable and its standard deviation (SD) are 

plotted in the x-axis. RMSE is represented as semicircles centered at the observed 

data. The correlation coefficient (r) is displayed in the azimuthal position. Best 

models are closer in the plot to the observed measurement point; therefore they 
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will have a high r, a low RMSE and a SD similar to the observed values (Taylor 

2001). 

 

3.2 Results 

First, we show temporal trends of all variables involved in this study (Figure 

19) as a daily average of all sampling plots. All variables except Dm showed similar 

temporal evolution with a mean peak in spring and secondary peak in the fall. Dm 

fluctuated throughout the year and exhibited its highest values in the summer. 

FMCEWT and CWCEWT, both calculated from the EWTSample, presented similar trends 

but in some cases higher values than FMCQ and CWCQ, calculated from the quadrant 

sample. The 47% Coefficient of Variation (CV) for Dm was less than for CWCQ (CV= 

95%), CWCEWT (CV=95%), FMCQ (CV= 60%) and FMCEWT (CV= 56%), but higher 

than for EWT (CV= 38%). Differences in LAI and CWC values between for years 

2009 and 2010 as a consequence of different precipitation can also be noticed, 

especially during the spring periods with much higher values in 2010. 
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Figure 19. Box plot showing the temporal evolution of field biophysical variables 

measured. Points represent the median of the daily measurements, the boxes indicate the 

position of the 1st and 3rd quartile, lines delimit the maximum and minimum values, 

and empty points are outliers. Precipitation is represented using bars and 

temperature is represented with a solid line.  

 

The spatio-temporal analysis showing the intra-group, intergroup and 

overall R2 are now presented (Figure 20). In this section the obtained results 

indicated a low intra-group R2 for all the variables suggesting a low spatial 

variability between plots. On the contrary, the high inter-group R2 also for all 

variables points to the high temporal variability between sampling dates. The main 

differences between variables occurred for overall R2. Similar overall and inter-

group R2 values for CWCEWT and FMCEWT indicated that the combination of the 

temporal and spatial factors matched in importance. Instead, overall R2 for CWCQ 

and FMCQ laid in between the inter-group and the intra-group R2 underling the 
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temporal factor as the main source of variation. VARI had the weakest 

determination coefficient for all variables while GEMI offers the best R2 of all of 

them. Those VI that included information in the SWIR region presented better 

performance those that do not include it in the case of LAI and CWC. In the case of 

FMC and EWT, VIs more related to chlorophyll content gave better results.  

 

 

 

Figure 20. . Intra-group (Squares), inter-group (Circles) and overall (Diamonds) R2 values 

between proximal sensing spectral indexes and biophysical variables measured in the field. 
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The best univariate empirical boostrap model to predict each of the different 

biophysical variables using VIs for proximal sensing are shown in Table 6 for 

proximal sensing and Table 7 for MODIS. The model with better statistics to 

retrieve each variable differed for both data sources. FMCEWT and FMCQ showed the 

best correlations with GEMI for the proximal data but EVI performed best for 

MODIS. EWT was best estimated with GEMI in both sensors but presented the 

lowest R2 and NSE of all the biophysical variables. NDII and GVMI were the best 

predictors for LAI, CWCEWT and CWCQ with proximal sensing. When using MODIS 

instead, the best results for LAI were achieved with NDII and GVMI, but EVI did so 

for CWCEWT and CWCQ. When the quadrant sample was used instead of the 

EWTSample, both FMC and CWC showed better results with lower RRMSE and higher 

NSE and R2.  
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Table 6. Model performance statistics for all the spectral indices calculated using proximal 
sensing. 

    NDVI EVI SAVI GVMI GEMI VARI NDWI NDII SRWI 

FMCEWT m 647.630 945.300 704.460 689.010 1184.400 686.960 1605.930 588.980 1008.910 

 
b -40.257 -5.692 -39.240 229.320 -734.405 287.300 484.815 314.340 -506.827 

 
RMSE 121.640 110.910 117.450 126.640 103.827 127.510 114.009 115.540 119.168 

 
RRMSE 45.305 42.442 46.730 48.252 41.047 49.091 46.963 47.363 47.125 

 
NSE 0.334 0.497 0.416 0.340 0.492 0.338 0.377 0.355 0.387 

  R2 0.363 0.446 0.370 0.356 0.489 0.306 0.346 0.340 0.370 

FMCQ m 543.570 794.620 591.640 578.280 999.707 579.940 1373.980 496.630 865.516 

 
b -39.635 -10.952 -38.932 186.630 -626.932 235.460 404.829 258.230 -445.343 

 
RMSE 84.529 75.381 84.802 87.923 68.768 90.175 81.610 83.286 83.098 

 
RRMSE 40.868 35.105 41.484 41.786 34.577 45.191 38.926 39.878 40.617 

 
NSE 0.452 0.576 0.466 0.391 0.631 0.346 0.497 0.497 0.508 

  R2 0.448 0.537 0.461 0.439 0.602 0.377 0.513 0.415 0.515 

EWT m 0.018 0.029 0.021 0.021 0.040 0.018 0.051 0.019 0.032 

 
b 0.011 0.011 0.011 0.019 -0.014 0.020 0.027 0.021 -0.005 

 
RMSE 0.006 0.006 0.006 0.006 0.005 0.006 0.006 0.006 0.006 

 
RRMSE 30.745 29.115 29.972 30.063 27.438 31.521 28.927 28.916 29.537 

 
NSE 0.109 0.215 0.135 0.141 0.317 0.055 0.200 0.167 0.196 

  R2 0.115 0.238 0.162 0.128 0.282 0.078 0.190 0.154 0.191 

LAI m 2.855 3.726 3.030 3.274 4.340 3.032 6.840 2.621 4.358 

 
b -0.298 -0.024 -0.262 0.883 -2.622 1.147 1.983 1.268 -2.287 

 
RMSE 0.343 0.333 0.346 0.298 0.368 0.377 0.345 0.330 0.350 

 
RRMSE 34.996 33.806 35.363 31.742 36.396 37.536 34.123 31.378 32.878 

 
NSE 0.577 0.577 0.607 0.664 0.512 0.525 0.599 0.646 0.609 

  R2 0.546 0.584 0.573 0.675 0.528 0.515 0.602 0.667 0.623 

CWCEWT m 0.079 0.110 0.085 0.092 0.134 0.082 0.200 0.075 0.127 

 
b -0.015 -0.009 -0.014 0.018 -0.090 0.025 0.050 0.029 -0.075 

 
RMSE 0.010 0.009 0.009 0.008 0.009 0.011 0.009 0.009 0.009 

 
RRMSE 46.792 36.708 44.527 38.839 38.440 49.963 40.356 38.399 39.937 

 
NSE 0.567 0.698 0.596 0.677 0.679 0.471 0.650 0.686 0.658 

  R2 0.564 0.675 0.626 0.664 0.679 0.441 0.679 0.704 0.662 

CWCQ m 0.064 0.088 0.069 0.077 0.109 0.063 0.167 0.063 0.106 

 
b -0.013 -0.008 -0.012 0.014 -0.075 0.020 0.041 0.023 -0.063 

 
RMSE 0.007 0.006 0.007 0.005 0.006 0.009 0.006 0.005 0.006 

 
RRMSE 41.944 35.841 39.743 31.580 32.304 52.680 33.303 30.272 34.636 

 
NSE 0.610 0.729 0.662 0.794 0.769 0.401 0.776 0.797 0.764 

. R2 0.647 0.753 0.670 0.783 0.747 0.433 0.776 0.797 0.800 
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Table 7. Model performance statistics for all the spectral indices calculated using MODIS 
data. 

    NDVI EVI SAVI GVMI GEMI VARI NDWI NDII SRWI 

FMCEWT m 858.207 1727.3 1070.83 754.058 1680.08 1024.95 2171.22 754.537 1338.8 

 
b -168.470 -216.43 -221.470 188.781 -1141.2 293.642 541.210 294.429 -776.4 

 
RMSE 123.871 97.006 114.228 126.706 103.121 121.428 115.411 117.777 115.30 

 
RRMSE 50.720 38.363 45.988 50.895 42.053 47.068 44.279 46.849 46.360 

 
NSE 0.330 0.594 0.391 0.285 0.503 0.310 0.396 0.366 0.403 

  R2 0.300 0.638 0.410 0.266 0.484 0.379 0.378 0.377 0.409 

FMCQ m 680.604 1398.385 856.278 596.816 1392.841 800.227 1768.936 607.301 1086.85 

 
b -127.720 -173.518 -172.878 155.702 -949.314 238.266 441.327 239.867 -629.16 

 
RMSE 96.390 67.325 86.849 97.229 69.457 94.083 85.320 86.381 86.950 

 
RRMSE 46.088 33.811 40.820 46.824 34.713 44.918 40.759 42.163 41.466 

 
NSE 0.358 0.660 0.460 0.298 0.620 0.376 0.457 0.440 0.455 

  R2 0.322 0.664 0.437 0.289 0.599 0.382 0.436 0.433 0.467 

EWT m 0.023 0.059 0.031 0.021 0.065 0.026 0.077 0.024 0.048 

 
b 0.008 0.003 0.006 0.018 -0.035 0.020 0.030 0.021 -0.017 

 
RMSE 0.006 0.005 0.006 0.006 0.005 0.006 0.005 0.006 0.005 

 
RRMSE 31.106 26.333 30.446 31.416 24.600 30.773 27.547 29.525 27.907 

 
NSE 0.082 0.363 0.158 0.100 0.438 0.116 0.259 0.197 0.280 

  R2 0.085 0.351 0.146 0.082 0.405 0.093 0.328 0.214 0.255 

LAI m 4.199 6.267 4.851 3.941 4.933 4.700 8.898 3.524 5.564 

 
b -1.067 -0.708 -1.154 0.659 -3.098 1.181 2.176 1.189 -3.283 

 
RMSE 0.323 0.320 0.305 0.299 0.421 0.328 0.355 0.289 0.350 

 
RRMSE 30.779 32.281 28.994 27.355 44.192 33.664 34.935 28.732 35.111 

 
NSE 0.665 0.615 0.695 0.687 0.336 0.629 0.572 0.739 0.579 

  R2 0.658 0.649 0.706 0.737 0.351 0.635 0.568 0.743 0.584 

CWCEWT m 0.112 0.195 0.134 0.105 0.174 0.124 0.272 0.099 0.170 

 
b -0.034 -0.032 -0.039 0.012 -0.124 0.026 0.057 0.026 -0.110 

 
RMSE 0.009 0.007 0.008 0.009 0.009 0.010 0.008 0.008 0.008 

 
RRMSE 44.456 32.708 39.790 41.267 43.871 48.434 38.446 36.061 38.874 

 
NSE 0.625 0.788 0.696 0.618 0.599 0.537 0.699 0.735 0.689 

  R2 0.624 0.785 0.677 0.657 0.602 0.565 0.698 0.742 0.693 

CWCQ m 0.084 0.157 0.103 0.080 0.150 0.090 0.228 0.077 0.143 

 
b -0.025 -0.026 -0.029 0.010 -0.108 0.020 0.047 0.021 -0.093 

 
RMSE 0.008 0.004 0.006 0.007 0.006 0.008 0.005 0.006 0.004 

 
RRMSE 45.847 27.564 40.840 43.851 34.747 50.985 29.104 34.625 28.333 

 
NSE 0.564 0.856 0.664 0.622 0.743 0.461 0.828 0.735 0.834 

 
R2 0.486 0.869 0.680 0.609 0.746 0.470 0.827 0.730 0.832 
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Finally, the comparisons between empirical and physical models using the 

Taylor diagrams are presented in Figure 21 and Figure 22. We decide to use for 

this comparison FMCQ and CWCQ rather than FMCEWT and CWCEWT as this sample is 

less prone to uncertainties. 

 

Figure 21. Comparison of empirical vs RTM models to estimate FMC with a) proximal 

sensing  and b) MODIS. Square markers are used to represent the spectral indices using NIR 

information. Circles are used to represent the indices using SWIR information and triangles 

represent the RTM. 

 

As it can be observed in the FMC plot (Figure 21a), RTM presented higher 

RMSE and lower correlation coefficient than the empirical models whereas RTM SD 

was the most similar to the observed FMC. In the case of FMC estimated from 

MODIS (Figure 21b), RTM were closer to the empirical models and EVI was the 

best followed by GEMI, appearing slightly apart from the rest of the models. In the 

case of proximal sensing, GEMI showed the best results followed by EVI. For CWC 

(Figure 22), the RTM from proximal sensing overestimated the SD and the RMSE of 

the observed CWC. VARI performed the worst with lower r, a larger RMSE and SD, 

whilst the NDII did the best followed by the GVMI. At MODIS scale (Figure 22), RTM 

showed a very high overestimation of the CWC SD and EVI and SRWI was the best 

and VARI the worst. It is noteworthy that MODIS empirical estimates are the closest 

to the in situ measurements. On the other hand, the RTM estimates of CWC showed 

good correlation values but poor SD results and RMSE.  

a) b) 
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Figure 22. Comparison of empirical vs RTM models to estimate CWC with a) proximal 

sensing and b) MODIS. Square markers are used to represent the spectral indices using NIR 

information. Circles are used to represent the indices using SWIR information and triangles 

represent the RTM. 

 

Temporal evolution of the biophysical variables estimated using the best 

model for proximal sensing and MODIS are shown in (Figure 23). Both sensors 

predicted well EWT, FMCQ and FMCEWT but showed an overestimation, especially 

during the dry season. Contrary, the models for LAI, CWCEWT and CWCQ adjusted 

well even during the dry season. It can also be noticed the presence of an 

anomalous value in those variables affected by LAI. This day the grassland showed a 

very unusual growth, very dense and high. This made the size of the collected 

sample very large which could have introduced some noise to the data, probably 

because a large part of the plant area was outside the frame but was rooted inside 

the quadrant area. However, this is a hypothesis and could not be confirmed with 

the field notes, therefore the data was kept for the analysis. 

b) a) 
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Figure 23. Temporal evolution of the observed (circles) and estimated FMCEWT, FMCQ, EWT, 

LAI, CWCEWT and CWCQ obtained for proximal sensing and MODIS. Left column a) compares 

observed data and proximal sensing. Right column b) compares observed data and MODIS. 

  

b) a) 
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3.3 Discussion 

The results presented in this study revealed that Dm varied significantly 

throughout the year (CV=47 %) with high values in the summer. Temporal variation 

in the plant community structure (species composition and diversity) (Casado et al. 

1986) could explain these high CV values for DM. Dm is one of the inputs in 

widespread leaf level RTM such as PROSPECT (Jacquemoud and Baret 1990) at leaf 

level, and therefore an accurate estimate of this variable will guarantee good RTM 

inversions. Summer should be the best time of the year to invert RTM and predict 

Dm, since leaves are drier and therefore EWT does mask the Dm spectral 

absorption signal (Riaño et al. 2005). Casas et al. (2014) applied a constant annual 

Dm value from the literature to successfully predict seasonal variations in EWT and 

CWC, however, our study confirms that due to the high seasonal variation in Dm, a 

constant annual value would not work for the ecosystem analyzed. 

The spatial variation within the MODIS pixel was not as critical as its 

temporal trend (Figure 20). Therefore, the strategy to capture better the 

variability of vegetation water content in this ecosystem should be to sample fewer 

plots but more times. In regards to the sampling protocol, the poor correlations for 

EWT in Figure 20 suggest weakness in the sampling strategy for this metric. In 

addition, CWCEWT and FMCEWT, generated from the EWTSample, presented lower 

inter-group R2 values than CWCQ and FMCQ, which could be interpreted as a lower 

characterization of the temporal variability by the EWTSample. Impact of differences 

in sampling strategy consisting on collecting all plants included in a fixed sampling 

quadrant or visually selecting a representative sample from outside needs to be 

further investigated. However, the EWTSample is subject to operator interpretations 

and therefore this could lead to bias in the sample. This suggests the need to 

standardize sampling protocols for the estimation of vegetation biophysical 

parameters to ensure data quality, repeatability and to facilitate accurate cross 

comparison from different studies. Some initiatives already exist to facilitate this 

standardization, as the Global Terrestrial Carbon System (GTOS) guidelines in 

support of carbon cycle science (Law et al. 2008) or more recent proposals 

oriented to measure gas concentration using EC like the one presented by Aubinet 



 
 
 

Water fluxes estimation between soil, vegetation and atmosphere using remote sensing 

 

66 
 

and Papale (2014). However, currently there is no international backbone that 

ensures this and agreement in the protocols between the EC and the Remote 

Sensing communities is needed to make field datasets comparable.  

CWC was better predicted than the other two water content variables, FMC 

and EWT (Figure 20). CWC depends on LAI which is even higher correlated than 

those two variables. It is possible to have the same FMC and EWT for different LAI 

and hence different CWC and amount of soil background, which will change its 

reflectance at canopy level. Yebra et al. (2013) demonstrated through PROSAILH 

simulations how a very different CWC for the same EWT based on changes of LAI 

translates into a huge range of NDII values. Our results confirm this theoretical 

expectation described in Yebra et al. (2013) (Figure 24). This issue is especially 

critical over areas with large annual growth dynamic, such as annual grass or crops.  

 

Figure 24. Relationship between a) FMC and LAI , and b) EWT and LAI. 

 

a) 

b) 
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The empirical methods estimated FMC and CWC with slightly different 

results for proximal sensing and MODIS (Table 6 and Table 7). While GEMI and 

NDII estimated best FMC and CWC respectively from proximal sensing; EVI was the 

best estimator of both variables from MODIS. Differences can be explained by the 

fact that proximal sensing provides only nadir measurements while MODIS view 

observation angle could be up to 20° in our study case (Section 2.5.3.1). 

Additionally, MODIS pixel included grasslands but also trees, their shades, and other 

marginal covers such as bare soil and a water pond (Figure 18). Summer periods 

presented slightly lower agreement than the rest of the year with proximal sensing 

and with MODIS. Our guess is that this effect is caused due to missing data during 

summer of 2009, which makes the calibration biased for low values. In addition, it is 

remarkable that MODIS estimations were better than proximal sensing. Differences 

in the statistics between MODIS and proximal sensing can be explained due to the 

differences in the observation geometry and FOV, with the proximal sensing data to 

be more affected by soil signal as a nadir observation is. On the other hand in 

MODIS observations this effect is reduced and the signal is less affected by the soil. 

This is especially important during the dry periods because the tree cover is very 

adapted to hydric stress and hence trees remain almost invariant (Liesenberg et al. 

2007). As consequence of this, the spectral indices from MODIS present less 

variation than those from proximal sensing (Figure 23) and can be translated in a 

better performance of the empirical models. 

Casas et al. (2014) found also that GEMI, NDII and EVI had potential to 

predict water content variables in California (USA), but VARI was their best choice 

for grasslands (FMC and CWC), chaparral (EWT, FMC and CWC) and a 

Mediterranean oak forest (EWT). In our study, VARI showed very poor results to 

estimate FMC, EWT, CWC and better estimates for LAI. This also contradicts other 

studies that predicted FMC on chaparral (Peterson et al. 2008; Roberts et al. 2006; 

Stow et al. 2005, 2006). A hypothesis to explain our result is that VARI was 

developed for homogenous crops with similar LAI (Gitelson et al. 2002b). In this 

study total LAI was calculated rather than green LAI, which accounts only for the 

photosynthetic part of the vegetation. When vegetation is growing and is not under 
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water limited conditions total LAI and green LAI are similar, however, during 

senescence large differences between both LAIs are expected. As presented here, 

FMC and EWT are not vegetation water content metrics related to LAI (Figure 24) 

and this explains the weak relationship. CWC is related to LAI and, therefore, a 

stronger relationship was expected with VARI. However, as it has been previously 

mentioned, the LAI protocol followed in this study accounts for the total LAI and 

this reduces the link between LAI and vegetation water content. 

The empirical methods calibrated for this specific site outperformed the 

physical RTM estimates for CWC and FMC (Figure 21 and Figure 22). This 

confirms the results in Trombetti et al. (2008) were CWC based on RTM also failed 

to improve results from empirical estimates in Casas et al. (2014) study. Inversion 

of RTM overcome empirical approaches when structural information of the canopy 

constrains the model inversion (Casas et al. 2014; Yebra et al. 2008a) and under 

other situations where multiple observations can be retrieved, by using more 

robust algorithms that are not based on LUTs such as optimization algorithms. Such 

information is required to successfully extrapolate a RTM inversion at broader 

scale. 
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4.1 Methodology 

For this study SEVIRI and MODIS were used (Figure 5). Contrary to previous 

section, MODIS Images with a VZA lower than 55°, instead of 20° were selected in 

order to reduce angular effects in both VI and Ts but, at the same time maintain as 

much as possible the temporal resolution. The VIs were obtained from the 

MOD09GA product. NDVI and NDII were calculated using MODIS bands 1 (red, 

0.648 µm), 2 (NIR, 0.854 µm), and 6 (SWIR, 1.640 µm) (Table 5). 

 

With MODIS, a proxy to the morning temperature rise of the surface (δTs) 

was calculated as:  

 U&D = V&D6���1!1" − &DAW<1XKG B	UY V (Equation 17) 

where 
TerraDayTs  is the Terra Ts during the morning overpass,

AquaNightTs  is the Aqua 

Ts during the night overpass and t∂  is the absolute time difference between the day-

night overpasses. Previous studies that combined day and night MODIS overpasses 

(Guzinski et al. 2013) found improvements in the estimation of the Evaporative 

Fraction using the triangle technique (Rasmussen et al. 2014; Wang et al. 2006a).  

Finally with SEVIRI data, thermal inertia was estimated using the δTs 

method described in Stisen et al. (2008b) as the slope of the linear fit between Ts 

and time for all the cloud-free images acquired between 08:00 UTC and 12:00 UTC. 

Quality of the δTs data neglected the cases where the R2 of the linear fit of the 

temperature rise was lower than 0.95 (Figure 25). 
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Figure 25. δTs from MSG-SEVIRI and linear fitting to morning temperature rise. Taken 

from Stisen et al. (2008b) 

 

4.1.1 TVDI 

For this study a  window of 50x50 pixels for SEVIRI (200 km side) and 74x74 

pixels for MODIS (74 km side) centered at the FLUXNET site was selected ensuring 

atmospheric homogeneity, sufficient number of pixels and presence of all soil 

moisture and vegetation cover conditions (Figure 26).  
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Figure 26. Windows used to calculate the TVDI for MODIS and SEVIRI. 

 

Different masks were built for SEVIRI and MODIS images in order to ensure 

the quality of the pixels. First we created clouds and shadows masks for each scene, 

based on the quality assesment in the case of MODIS and the cloud mask provided 

by EUMESAT in the case of SEVIRI  

(http://www.eumetsat.int/website/home/index.html last accessed 2013/11/15). 

Then we removed forest, urban areas and water bodies based on MODIS MCD12Q1 

IGBP land cover map  

(https://lpdaac.usgs.gov/products/modis_products_table/mcd12q1) as they 

present different aerodynamic roughness (Sandholt et al. 2002; Stisen et al. 2008b) 
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and therefore are not appropriate for TVDI calculation. TVDI was calculated using 

only unmasked pixels within each spatial window by combining different methods 

for retrieving the dry and wet edges. For calculating the edges, in a first step we 

binned the NDVI and NDII in equal length intervals of 0.02, ranging from bare soil 

(NDVI=0.1 and NDII= -0.4) to the maximum VI found in the triangle. Secondly, we 

selected the minimum and maximum ST∂  values found in each of the VI bins. In 

what we called the “Simple” method, a regression line between the VI bin and the 

maximum ST∂  values was computed for the definition of the dry edge. Additionally, 

the dry edge was also estimated using the method proposed by Tang et al. (2010). 

The main advantage of this method is that is less sensitive to outliers as it adds 

additional sub-intervals to the initial bins, and obtains the average of the maximum 

ST∂  within the sub-interval falling within the standard deviation (SD) threshold of 

the bin. The selection of the maximum ST∂ is based on these two statistics and the 

relationships with the rest of the intervals. The wet edge was estimated using either 

the Mean or the Median value of the minima δTs, from the ten bins with highest VI ( 

Figure 27).  

 

 

Figure 27. Comparison of simple and Tang method to calculate the points that are going to 

be used in the dry edge calculation. Black dots represent the points in the VI-Ts space, and 

red dots represent the calculated points with each of the methods. 
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Once the edges were defined, the TDVI was computed as (Sandholt et al. 

2002):  

 &H3; = U&D −	U&DZK�/ + [	H; −	U&DZK� (Equation 18) 

where MinST  ∂  is the value of the wet edge, a and b are the intercept and slope of the 

dry edge, and VI is the spectral index used, either NDVI or NDII.   

The analysis gave a total of 16 different TVDI calculations (2 dry edge 

methods x 2 wet edge methods x 2 VIs x 2 sensors). Linear regression models 

between the field TDR SM measurements for each 4 SM depths and the TVDI values 

from the pixel that contained the TDR instruments were established using a 

bootstrap technique (Efron and Gong 1983). Taylor diagrams (Taylor 2001) were 

used to evaluate the models and to select the best performing method at each soil 

depth. Once the best model was selected, its performance and predictability was 

evaluated using a second bootstrap with 200 repetitions (Steyerberg et al. 2001) to 

calculate the RMSE, Nash-Sutcliffe Efficiency index (NSE) and the Determination 

Coefficient (R2), following the recommendations of Richter et al. (2012). Best 

performing models will be used in the final analysis to retrieve map SM in summer 

and winter. 

 

4.2 Results 

 

Analysis was carried out only for those dates when both SEVIRI and MODIS 

data were available to ensure comparability of the models. The results of these 

comparisons are presented using Taylor diagrams in Figure 28. As it can be 

observed, the performance of those models in which TVDI was calculated using the 

NDII outperformed those in which the NDVI was used. Regarding the dry edge 

estimation method, in the case of MODIS images, the Simple method offered the 

best agreement with observed data with higher correlation values, lower RMSE and 

more similar SD to field observations.  
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Figure 28. Model performance comparison using the Taylor diagrams at four SM depths. 

Colors indicate different edges/VI combinations. Left column corresponds to MODIS and 

right column corresponds to SEVIRI. 
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On the other hand, SEVIRI showed best agreement with dry edge determined 

using Tang. In terms of soil depth, the agreement was best at 8 and 10 cm for 

MODIS but at 20 cm for SEVIRI. Detailed statistics of the best models are shown in 

Table 8. Results indicate a statistically better model performance with MODIS than 

with SEVIRI with higher R2 and NSE values. SD of the statistics was estimated from 

the bootstrap, and shown in Table 8, except for m and b. The statistics showed that 

for MODIS the fitting parameters of the model (m ´and b´) presented higher SD 

values. For the error statistics the SD showed very similar values in both platforms. 

 

Table 8. Slope (m) and intercept (b) for the fitting equations of the best performing models 

at each soil depth for MODIS and SEVIRI, and their values using bootstrap in the calibration 

(m’ and b’). Statistics after the bootstrap process include the m’, b’, RMSE, NSE and R2, 

together with their SD to the right of these parameters. 

 
Depth m  b m'  stdv b' stdv 

RMSE 

(%Vol) stdv NSE stdv R2 stdv Method 

4 cm 0.278 0.239 0.278 0.028 0.239 0.019 0.060 0.006 0.354 0.073 0.355 0.068 
NDII 

Simple 
Mean 

8 cm 0.233 0.233 0.237 0.027 0.254 0.017 0.048 0.003 0.373 0.070 0.374 0.075 
NDII 

Simple 
Mean 

10 cm 0.215 0.215 0.215 0.023 0.222 0.015 0.043 0.003 0.392 0.063 0.386 0.071 
NDII 

Simple 
Mean 

20 cm 0.156 0.1866 0.158 0.024 0.187 0016 0.039 0.003 0.270 0.071 0.275 0.073 
NDII 

Simple 
Mean 

 
Depth m  b m'  stdv b' stdv 

RMSE 

(%Vol) stdv NSE stdv R2 stdv Method 

4 cm 0.163 0.153 0.160 0.023 0.151 0.015 0.058 0.006 0.288 0.071 0.286 0.074 
NDII 
Tang 
Mean 

8 cm 0.116 0.168 0.116 0.016 0.168 0.010 0.048 0.004 0.233 0.072 0.241 0.068 
NDII 
Tang 
Mean 

10 cm 0.120 0.152 0.119 0.014 0.151 0.009 0.043 0.003 0.291 0.074 0.296 0.073 
NDII 
Tang 
Mean 

20 cm 0.105 0.145 0.107 0.014 0.146 0.009 0.039 0.004 0.271 0.078 0.280 0.080 
NDII 
Tang 
Mean 
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In Figure 29 and Figure 30, scatterplots showing the relationship of TVDI 

values when it is calculated using Tang vs Simple, and Mean vs Median methods to 

define the dry edge and wet respectively are presented. For both MODIS and SEVIRI 

images, higher values are observed when Tang is used instead of Simple to define 

the dry edge, and almost no differences when mean or median are used to define 

the wet edge. 

 

 

Figure 29. MODIS a) SEVIRI b) TVDI image value comparison between Tang and Simple 

methods to define the dry edge. 

 

 

 

Figure 30. MODIS a) SEVIRI b) TVDI image value comparison between Mean and Median to 

define the wet edge. 
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4.3 Discussion 

 

The best model to estimate SM using MODIS and SEVIRI using the triangle 

method was found in our case when NDII was used instead of NDVI with an 

improvement in the model performance in terms of correlation with field 

observation from 0.5 to 0.65. This can be explained because NDII is more sensitive 

to SM and highly related to LAI (Wang et al. 2008; Yilmaz et al. 2008; Zarco-Tejada 

et al. 2003) and therefore highly linked to water stress than NDVI, which is more 

sensitive to chlorophyll activity. The correspondence between both VIs and thermal 

amplitude observed with MODIS over all the year indicated that correlation 

between these two variables is lower with NDII (r= -0.488) than NDVI (r= -0.554). 

This fact suggests more information represented in the scatter plot when NDII is 

introduced, probably due to the higher sensitivity of this VI to moisture, both soil 

and vegetation. Recent studies have also noticed an improvement using NIR/SWIR 

index among others like NDVI when downscaling SMOS SM (Sánchez-Ruiz et al. 

2014). TVDI permits monitoring the spatial and temporal variations in SM over an 

area of interest as other studies have already shown before (Holzman et al. 2014; 

Patel et al. 2008; Stisen et al. 2008b; Vicente-Serrano et al. 2004), however using 

NDII instead of NDVI improved the model performance. NDVI accounts mainly for 

chlorophyll activity and biomass whilst NDII is also related to biomass and water 

conditions, and thereby NDII is more related to ET than NDVI is.  

Model calibration showed similar results than Sun et al. (2012) who applied 

a theoretical dry edge to find a R2=0.36 between TVDI and SM for a larger number 

of points and different profile setup than our study. The statistics at different 

depths showed that TVDI is best correlated with the SM in the root zone area (8-10 

cm) in the case of MODIS. Rapid SM variations at 4 cm depth were not observable 

by the TVDI as shown in Table 8. In contrast, SEVIRI showed the best results at 20 

cm depth, which offers more stable SM values. This could be explained due to the 

constant observation geometry of SEVIRI leading to the TVDI values being more 

influenced by the tree cover signal (Rasmussen et al. 2010), especially important in 
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areas such as savannas or woody savannas, that include vegetation types that 

usually present a deeper root system. Model fitting statistics (m and b) showed very 

similar values when calculated in the initial stage (no bootstrap) and when 

calculated using bootstrap (m’ and b’) suggesting that the coefficients are robust. 

Furthermore, TVDI values increase when Tang dry edge is applied. In Figure 

31 an ideal theoretical triangle was plotted defining the hypothetical Simple and 

Tang dry edges. As it can be observed, Tang’s dry edge presents a higher slope than 

Simple. There are some coincident TVDI values for both methods in the central part 

of the plot that correspond to the isolines where the two methods intersect. To the 

left of this area, TVDI is higher for Simple than for Tang, and the opposite occurs to 

the right. Depending on the relationship between the slopes of the two methods, the 

same area can present higher TVDI values according to its relative position in the 

triangle. In our study case we found that the majority of the pixels presented higher 

TVDI values for Tang, but this could be the opposite for other sites, as the 

intersection of the isolines could be displaced in a different way. 

  

 

Figure 31. Ideal theoretical relationship between TVDI using the Simple (green line) and 

Tang (blue line) dry edge methods. 

Differences in the dry edge slope are explained because Tang method 

calculates the average value of the maxima of the 5 subintervals inside each bin, 

while Simple uses single maximum value inside each bin. Additionally, Tang method 
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test the data selected to calculate the average maximum Ts∂  and later, when the 

linear regression is established, neglects those points in which the maximum Ts∂  

for a given interval is further than + 2 times the RMSE away from the  of the 

regression line (Tang et al. 2010). In the case of MODIS the differences in dry edge 

slope result in steeper slopes when Simple method is applied (Figure 32a). This 

differs from SEVIRI where Tang method presents steeper slopes (Figure 32b).  

 

 

 

Figure 32. Comparison of the dry edge slope values for MODIS (blue crosses) and SEVIRI 

(red circles) between Tang and Simple methods.   

This opposite behavior could be related to the discrepancies between the 

MODIS 1 km and SEVIRI 4 km spatial resolution. MODIS can better differentiate 

between bare soil areas and fully vegetated areas than SEVIRI, due to its higher 

spatial resolution and in some cases, lower viewing angles than SEVIRI. In the case 

of MODIS, Tang method does not take many points around the intersection of the 

wet and dry edges, where VI is maximum, and therefore it shows gentler slopes 

than Simple (Figure 33a and b). In the case of SEVIRI, the opposite (Figure 33c and 

d) occurs.   

Ts∂

a) b) 
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Figure 33. Simple and Tang dry edge obtained for the same day (2009/07/19) from MODIS 

(a and b) and SEVIRI (c and d), respectively. Simple method is shown in the left column and 

Tang method in the right column. All examples are calculated with the NDVI and Mean for 

the wet edge. 

 

The edge definition is more accurate for MODIS than for SEVIRI. MODIS 

presents better spatial resolution that can differentiate pure pixels. The window 

size is smaller, and therefore more similar weather forcing conditions with a larger 

number of pixels, and therefore the RMSE interval used in Tang is smaller. Despite 

MODIS defines the vertex of the triangle better, as pure pixels are more frequent 

than in SEVIRI, Tang´s algorithm in this study did not select these points for the dry 

edge definition, probably due to a small number of pixels and therefore the 

a) b) 

c) d)
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algorithm did not use them as they were out of the bounds of the RMSE criterion for 

the point selection. 

The theoretical dry edge is defined by those points where zero ET occurs. As 

Stisen et al. (2008b) mentioned, soil water uptake from the root zone occurs in 

dense vegetated areas and this leads to lower Ts than the theoretical ones resulting 

in an observed dry edge usually below the theoretical one. Sun et al. (2012) 

indicated that the theoretical edge lead to higher correlation values between TVDI 

and SM. Our results presented best results with methods that showed the less steep 

slopes in the dry edge in agreement with other studies that found these cases closer 

to the theoretical dry edge (Goetz 1997; Sun et al. 2012). Long et al. (2012) 

mentioned the difficulties of low spatial resolution data in distinguishing very wet 

surfaces using the triangle method over small areas. In our study case we have to 

consider also the effect of the viewing geometry of the sensor. In our study site 

SEVIRI observes at a constant viewing angle of 46°. This reduces the fraction of soil 

observed due to interception of the tree canopy and hence it becomes more difficult 

to find pure soil areas for the edge definition. On the other hand, the definition of 

the wet edge using the Mean or Median methods did not show much effect on the 

final TVDI values since both methods were based on the same points. 

Finally, Figure 34 presents the estimated SM with MODIS images at two 

different dates (summer and winter) using the empirical model that showed the 

best results at 10 cm depth with MODIS (NDII with Simple dry edge and Mean wet 

edge) lower SM values in the dry period (2009/07/19), with irrigated croplands in 

the center of the scene (black ellipsoid). Other areas with high SM correspond to 

more vegetated areas corresponding to shrublands and forest. The image 

corresponding to the cold and wet season (2009/02/18) show higher SM values 

over the scene. These maps indicate that TVDI is capable of collecting the spatial 

variations in SM. 
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Figure 34. SM estimation at 10 cm depth from the best empirical performing model at two 

different dates (2009/02/18 and 2009/07/19), showing the differences in SM during 

winter and summer and the spatial variability. Pixels in black were removed by the mask. 

Black ellipsoid highlights the crop existing north from the EC tower. 
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5.1 Methodology 
 

In this section the methods applied to estimate the evaporative fraction (EF) 

using the triangle method are described. EF has been estimated combining Ts and 

LAI derived from Landsat and MODIS data for the period from March 2009 to 

December 2011. Validation of EF was carried out using the Eddy Covariance (EC) 

flux tower measurements (Figure 5 and Figure 35). 

 

Figure 35.Site location and Landsat scene covering the study site area and image window 

used to calculate EF. 
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5.1.1 Eddy Covariance measurements and footprint 

Using the LE measured from the EC flux tower (Section 2.3), EF was 

calculated using Equation 1 for every data ranging from 9:00 to 17:00 UTC. 

Additionally an overpass EF (covering Landsat overpass which for our study site is 

around 10:50 UTC) was computed as the average of the 5 measurements from 

10:00 to 12:00 UTC (Figure 36). The decision of using 5 measurements instead of 

only one corresponding to the overpass time was with the aim of minimizing the 

potential noise due to some instrumentation errors common when using the EC 

technique (Massman and Lee 2002).  

 

Figure 36. Typical daily EF evolution showing the time windows used to calculate daily and 

overpass EF. Figure modified after Peng et al. (2013). 

 

As explained in Section 2.3, the specific EC tower footprint at the time of 

Landsat overpass was estimated in order to assign the contributions of each 

Landsat EF pixel to the total area of influence of the footprint, so the comparison 

between EF measured from the EC tower and the EF estimated from Landsat could 

be properly implemented. Landsat pixels were aggregated to the footprint 
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resolution in this process, and the total contribution was calculated. In those cases 

in which Landsat presented some areas without data within the footprint, mainly 

due to the stripes caused by sensor failure in Landsat 7 ETM or clouds; the 

algorithm was forced to calculate the EF based only on the valid pixels within the 

footprint (Figure 37).  

 

Figure 37. Band 1 surface reflectance of Landsat 5 TM and Landsat 7 ETM+ comparison. 

When the footprint is within the stripe area, only the valid pixels are used to calculate the 

contribution. 

Statistics of the comparison between EF measured from the EC tower and 

estimated from Landsat data were obtained using bootstrap with 200 repetitions 

(Schlesinger and Bernhardt 2013) and following the recommendations by Richter 

et al. (2012) 

 

5.1.2 Satellite pre-processing 

For this study the LEDAPS corrected Landsat images (Section 2.5.2) were 

post processed by filtering out the low quality pixels affected by atmospheric 

disturbances and cloudy pixels. After that, a 12 km by 12 km window centered in 
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the EC tower was extracted from the scenes (Figure 35). This window dimension 

ensures enough number of pixels to calculate the edges of the triangle and at the 

same time guarantee homogeneous atmospheric forcing conditions. Finally, urban 

areas and larger water bodies included in the scene window where removed using a 

mask. This mask was generated by visually selecting these two different land cover 

types. 

A decision tree regression algorithm proposed by Gao et al. (2012) was used 

to downscale the 1km MODIS LAI (Section 2.5.3.3) to 30m using Landsat optical 

data. First, MODIS LAI previous date to the Landsat overpass was selected to carry 

out the following steps. This algorithm aggregates the atmospherically corrected 

surface reflectance data from Landsat (bands 1-5 and 7) to match the 1 km pixel 

resolution of MODIS. Those 1 km LAI pixels with the best quality flags (SCF_QC=0 

best result possible) are extracted to reduce the noise in the regression. A further 

mask is applied to the data selecting only the 1 km LAI pixels that show low spectral 

variability (CV < 20%) of the Landsat reflectances 30 m scale, ensuring the 

homogeneity of the pixel in the calibration of the regression tree. A total of 14 LAI 

classes were selected in the calibration tree process. Once the model is trained at 

the MODIS scale, LAI maps are produced at Landsat scale by applying the regression 

tree to the original reflectance Landsat at 30m (Gao et al. 2012). The resulting LAI 

image presented some noise, present as salt and pepper effect, therefore a low pass 

mean filter using a 3x3 pixel windows was applied to remove this effect in the scene 

(Figure 38). This noise could be due to border effects between covers with very 

different LAI. 
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Figure 38. Smoothing effect of the 3x3 low pass filter. 

 

5.1.3 Evaporative fraction using Landsat (Triangle method) 

Taking into account the uncertainties found in LST retrieval using a single 

thermal band (Vlassova et al. 2014) and also the fact that the triangle method, is 

based on the relative position of the LST-VI pairs (Venturini et al. 2004); we decided 

to calculate the triangle (Figure 4) using Landsat brightness temperature (BT), 

together with the downscaled LAI. The bin step in the calculation of the edges of the 

triangle was configured at 0.2 and the maximum bin temperature was used to 

calculate the dry edge fitting line using Tang method (Tang et al. 2010) as it showed 

in the previous chapter that is less sensible to the presence of outliers. To calculate 

the wet edge the Variable Maximum Vegetation Index (Vari Max VI) method was 

used. This method obtains Tsmin as the value of the dry edge that corresponds to a 

LAI that corresponds to those areas of full vegetation density, where transpiration 

is occurring at its maximum rate. In our case the maximum LAI is either the 

maximum LAI found in the scene or a LAI of 3.5, whichever is higher. The value of 

LAI=3.5 was chosen based on the maximum values observed in the study area 

during the field sampling campaigns (Figure 19).  
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Once the edges of the triangles were calculated for each date, the results 

were checked to remove those dates where the triangle was not properly defined, 

according to three different parameters extracted from the triangle calculation.  

1) The number of pixels in the window used to calculate the edges of the 

triangle. Only those with at least 75% of the total possible were selected. With this 

decision we guarantee the comparability and temporal consistency of the data, as 

well as having enough pixels to calculate the edges of the triangle and removal of 

those dates in which cloud mask reduces the number of good quality pixels 

available for edge definition.  

2) The R2 value of the dry edge fitting line; only those dates where this value 

is higher than 0.9 were selected. With this criterion those dates in which the dry 

edge presents noise are removed leaving only those dates where the dry edge is 

sharp.  

3) The number of points used to define the dry edge. Only those dates in 

which at least 10 points are used for the calculation of the dry edge were selected. 

Tang method removes points to improve the calculation of the dry edge based on 

the RMSE. This might lead to high R2 values but in some cases without a large 

enough range of LAI values. Using those dates where at least 10 points are used for 

the definition will ensure the quality of the data and having representative points 

over the full range of LAI, as in our study case the bin step was set to 0.2. This 

simple quality procedure ensures the quality and representativeness of the 

triangles used for the estimation of �. 

The ϕ parameter was estimated using the two step scheme proposed by 

Stisen et al. (2008b) that uses a non-linear interpolation rather than the linear 

proposed by Jiang and Islam (2001) and modified to work with LAI instead of a VI. 

This interpolation method first obtains the lower bound of � for each interval of LAI 

between LAIMax (ɸmax) and LAIMin (ɸmin) (Figure 4) using the next equation  

 �K,8K� = �81] � 0A^_*0A^`_a0A^`bc*0A^`_a�+  (Equation 19) 
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As potential ET is assumed to occur for wet conditions, a fixed ɸmax was 

assigned to the upper bound independently of the vegetation cover. Once the upper 

and lower bounds for each LAI interval are defined, we interpolate linearly within 

each LAI interval between the lowest and highest Ts following the next equation: 

 �K = 6�_,`bc*6�_6�_,`bc*6�_,`_a d�81] − �K,8K�e + �K,8K�  (Equation 20) 

And � was calculated from the temperature at the wet edge (in °C) as in 

Equation 21. This temperature was used as a surrogate to the actual air 

temperature required to calculate Δ in order to avoid using ground data and 

assuming that � ����� is not very sensitive to small changes of T 

 � = 4098 ∗ �0.6108 ∗ exp	(17.27 ∗ && + 237.3)�(& + 237.3)+  (Equation 21) 

while � was calculated at a fixed atmospheric pressure of 100 KPa using Equation 

22:  

 � = (9 ∗ rEs = 0.665 ∗ 10*u ∗ r (Equation 22) 

where P is the atmospheric pressure, E	is the ratio molecular weight of water 

vapor/dry air (0.622), cp is the specific heat at constant pressure (1.013*10-3 MJ kg-1 

C-1) and s is the latent heat of vaporization (2.45 MJ kg-1). Then EF was calculated 

using Equation 3 in Section 1.3.  

Finally the contributions of the footprint estimated as in Section 2.3 were 

used for each coincident day to compare EF Landsat estimated with those measured 

by the EC system during Landsat overpass. Furthermore, in order to analyze scale 

issues in EF estimation, we compared both the footprint aggregated Landsat EF 

values as well as the single pixel values over the flux tower. To validate the 

estimates and the different methods used to calculate EF from Landsat, we have 

used the EC EF as reference. Due to the small number of available Landsat scenes 

during the study period, a higher robustness in the estimation of the different 
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statistics -determination coefficient (R2), Root Mean Square Error (RMSE), bias and 

Mean Absolute Error (MAE) - was obtained by using bootstrap with 200 repetitions. 

 

5.2 Results 

5.2.1 EF measured with the EC tower 

 

Results of the daily and overpass EFs calculated from the EC tower is 

presented in Figure 39. EF temporal evolution exhibits lowest values during the 

summer, coincident with the driest and warmest period of the year in 

Mediterranean ecosystems. The opposite occurs in winter, where most of the rainy 

events occurred at the study site. The EF daily variability, expressed as the Standard 

Deviation (SD) (Figure 39), shows much higher values for daytime than the 

overpass EF, which barely pass above 0.2 and higher during winter time. 

 

Figure 39. EF and SD of EF calculated from the EC system from 2009/01/01 to 

2011/12/31. Left plot presents the results of daily EF values. Right plot presents the 

overpass EF results. 

The relationship between daytime and overpass EF indicated that daytime 

EF shows higher values than overpass EF (��RRRRDaily = 0.52 vs ��RRRROverpass = 0.32) (Figure 

40) which agrees with the daily EF trends described by different authors (Gentine 

et al. 2007; Lhomme and Elguero 1999). Correlation analysis between the two EFs 

a) b) 
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showed high agreement (R2=0.960) when the SD is lower than 0.2, however when 

all data is included the R2 drops to 0.68. 

 

Figure 40. Scatterplot comparing daily EF and overpass EF. a) Image presenting the 

relationship with only those data where the EF SD is lower than 0.2 are plotted. b) image 

presenting the relationship with all the dataset. 

 

The different footprints calculated over the study period are presented in 

Figure 41. As it can be observed, the predominant footprint direction is E-W and in 

most of the cases the 80% of contribution is at a distance shorter than 1 km, except 

for the date 2011/05/08 where the footprint covered a much larger area due to 

stability conditions. However, due to the presence of sparse trees in the area, the 

footprint calculation is challenging and this footprint has to be considered an 

approximation of the actual footprint, likely with a more irregular shape. 

a) 

b) 
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Figure 41. Calculated footprints centered at the EC flux tower using data within the 

overpass temporal window data. Background image corresponds to a Landsat 5 TM false 

color composite over the study area. . 
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Once the footprint was calculated we plotted the hourly temporal evolution 

of EF and Rn for the coincident dates (Figure 42) to better understand these 

differences. In our study case the typical U shape of EF (Gentine et al. 2007; 

Lhomme and Elguero 1999; Peng et al. 2013) is not recognizable in most of the 

cases; only in 2011/11/06 this pattern is clearly observable. On the other hand a 

rapid increase in the EF in the afternoon is clearer over the wet period 

(2009/09/23, 2009/11/02 or 2009/12/04 among others). During the dry periods 

the daily EF values showed very low variation causing a flat pattern and, therefore, 

low EF SD values.  
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Figure 42. EF intra-day variations and Net Radiation for those days where the footprint 

was calculated. 
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5.2.2. EF calculated from Landsat 

 

Table 9 summarizes the results obtained for those dates corresponding to 

Landsat overpass. It includes parameters related to the wet/dry edges calculations, 

and the EF obtained from the EC tower and the Landsat estimates. As it can be 

observed there are some missing values due to erroneous data in the EC system, 

which made impossible either calculating the footprint contributions or the EF, or 

in other cases due to the Landsat 7 ETM+ stripes falling within the EC tower 

location. From the 45 dates originally selected for the study, a total of 18 dates were 

removed based on the criteria defined in Section 5.1.3, leaving a maximum of 27 

usable scenes. The scenes removed corresponded mainly to rainy and cloudy 

periods. Another 5 dates with low quality or no data measured by the EC tower 

were removed leaving a total of 22 dates for the validation process (out of the 45 

cloud-free scenes that were originally processed). 

 

Table 9. Summary table presenting the results obtained from Landsat to calculate EF. Data 

in italic data corresponds to those selected dates after applying the filter to select the best 

dates. Bold data highlighted the dates used for validation. Dry edge Intercept indicates the 

value where the line intercepts the y axis. Dry edge slope shows the value of the slope of the 

dry edge. Wet edge value presents the intercept of the wet edge with the y axis. The dry 

edge points indicates the number of points used for the calculation of the dry edge and 

the % Points shows the percentage of points used for the edges calculation from the total 

possible in the window. EF presents the value of the evaporative fraction measured by the 

eddy covariance tower presenting the standard deviation value (EF SD) or either the EF 

value obtained with Landsat for the footprint (EF footprint) or from the pixel over the EC 

tower(EF pixel). 

Date Triangle information Eddy Covariance Landsat EF 

       Daily Overpass  

 

Dry Edge 

Intercept 

Dry Edge 

Slope 

Wet Edge 

value R2 

Dry Edge 

Points 

% 

Points EF EF SD EF EF SD 

EF 

Footprint 

EF 

Pixel 

2009-03-31 44.04 -6.69 26.36 0.99 11.00 77.04 - - - - - 0.36 

2009-05-02 39.45 -5.07 25.88 0.91 11.00 83.73 0.46 0.07 0.43 0.04 0.42 0.36 

2009-05-18 45.92 -7.82 25.07 0.99 11.00 84.00 0.34 0.06 0.32 0.05 0.30 0.32 
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2009-06-11 47.41 -6.76 28.53 0.99 10.00 95.31 0.25 0.06 0.22 - 0.24 0.24 

2009-06-27 46.98 -7.91 27.40 0.97 10.00 95.35 0.18 0.04 0.19 0.02 0.32 0.35 

2009-07-13 43.70 -5.33 29.62 0.98 10.00 95.33 0.16 0.10 0.17 0.14 0.26 0.26 

2009-07-29 51.95 -7.68 30.81 0.95 11.00 95.36 0.14 0.06 0.09 0.06 0.32 0.34 

2009-08-30 43.21 -4.79 27.10 0.95 14.00 95.39 0.05 0.10 0.06 0.06 0.19 0.21 

2009-09-07 35.04 -3.24 24.14 0.99 10.00 82.51 - - - - 1.74 1.93 

2009-09-15 34.28 -4.22 20.08 0.99 13.00 95.40 0.19 0.07 0.20 0.06 0.30 0.30 

2009-09-23 33.93 -3.44 22.37 0.88 14.00 83.30 0.52 0.22 0.40 0.02 0.48 0.49 

2009-10-01 27.09 -2.54 18.56 0.89 14.00 91.15 - - - - 1.75 1.93 

2009-10-17 30.42 -4.40 15.65 0.98 12.00 95.39 0.61 0.26 0.45 0.04 0.56 0.55 

2009-11-02 23.89 -3.95 13.52 0.99 10.00 70.64 0.50 0.56 0.49 0.11 1.70 1.93 

2009-12-04 17.55 -3.47 6.60 0.80 9.00 94.86 - - - - 0.67 0.67 

2010-02-06 18.59 -2.76 10.54 0.98 6.00 95.13 - - - - - 0.92 

2010-03-10 16.51 -1.39 12.79 0.88 9.00 95.05 0.37 0.09 0.37 0.09 2.07 2.09 

2010-04-11 33.88 -4.68 21.38 0.99 10.00 95.29 0.67 0.05 0.62 0.03 1.10 1.13 

2010-04-19 24.26 -1.08 21.34 0.91 11.00 69.65 - - - - 1.73 1.93 

2010-05-05 36.68 -5.30 21.59 0.98 10.00 82.75 - - - - - 0.84 

2010-05-21 44.07 -6.62 26.56 0.99 11.00 81.77 0.80 0.09 0.73 0.05 0.64 0.64 

2010-06-22 51.61 -8.63 28.62 0.98 11.00 81.59 0.45 0.04 0.43 0.03 0.44 0.41 

2010-06-30 42.74 -6.12 26.81 0.99 11.00 95.31 0.43 0.08 0.38 0.07 0.26 0.26 

2010-07-16 49.06 -7.06 30.69 0.99 10.00 95.31 0.29 0.06 0.31 0.07 0.28 0.31 

2010-08-01 47.17 -6.51 25.29 0.99 13.00 95.34 0.27 0.08 0.24 0.05 0.17 0.16 

2010-09-10 40.22 -5.07 23.19 0.94 14.00 82.95 0.18 0.04 0.18 0.03 0.21 0.23 

2010-09-26 33.77 -4.02 20.25 0.92 14.00 83.36 0.17 0.12 0.17 0.03 0.27 0.29 

2010-10-12 24.10 -1.94 17.59 0.98 13.00 81.34 0.50 0.13 0.44 0.04 0.59 0.61 

2010-11-05 22.69 -2.19 16.97 0.95 8.00 95.30 0.86 0.83 0.54 0.03 1.12 1.20 

2010-11-21 13.91 -1.13 10.88 0.90 10.00 38.01 - - - - 1.69 1.93 

2011-01-24 12.84 -3.24 4.42 0.95 7.00 94.64 0.85 1.80 0.70 0.04 

 

1.33 

2011-02-01 11.43 -1.08 8.62 0.50 11.00 80.07 0.84 1.14 0.45 0.11 - - 

2011-02-09 13.14 -2.09 7.60 0.94 11.00 92.78 0.47 0.39 - - - 1.54 

2011-02-25 19.54 -0.73 17.56 0.54 10.00 95.06 0.81 0.32 0.56 0.16 - 2.83 

2011-03-29 20.09 -0.61 18.49 0.85 10.00 92.79 - - - - 1.83 1.93 

2011-04-06 23.37 -2.57 16.58 0.98 9.00 32.76 - - - - 1.90 1.93 

2011-05-08 36.20 -5.77 20.95 0.94 11.00 59.19 - - - - - 1.38 

2011-05-16 36.48 -5.10 23.12 1.00 9.00 95.37 0.72 0.10 0.64 0.06 0.76 0.74 

2011-08-28 42.45 -5.23 24.87 0.96 15.00 82.24 0.26 0.09 0.23 0.04 0.16 0.18 

2011-09-05 35.41 -3.49 23.67 0.95 14.00 95.29 0.25 0.07 0.26 0.01 0.27 0.28 

2011-09-13 40.89 -4.35 26.26 0.96 14.00 82.08 0.21 0.08 0.20 0.05 0.23 - 

2011-09-29 33.14 -4.82 20.39 0.97 12.00 82.65 0.21 0.10 0.16 0.06 0.20 0.23 

2011-10-15 32.85 -4.08 19.98 0.92 13.00 81.33 0.13 0.21 0.08 0.06 0.32 0.37 

2011-10-31 13.38 -1.12 12.39 1.00 2.00 0.68 - - - - 1.74 1.93 

2011-12-18 12.08 -1.26 8.92 0.66 10.00 81.88 0.57 1.51 0.49 0.12 1.71 1.93 
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Figure 43 shows the timeseries of EF, both the observed from EC and the 

predicted from Landsat. As guessed, there is much more available data during the 

spring and summer seasons than for winter and autumn, and EF follows the 

expected trend for the Mediterranean ecosystems with high EF values just after the 

cold and wet season where the vegetation is green and soil is wet, and very low EF 

values during the dry and warm period where the soil becomes dry and the 

vegetation cures (Figure 43).  

 

Figure 43. EF observed (EC) and estimated (Landsat) for the whole study period. Red 

boxes indicate the periods corresponding to the Spring and Summer were the rainy events 

are less frequent. 

The comparison between the calculated EF from Landsat and the reference 

EF from the EC using footprint contributions and the pixel is presented in Figure 44 

and bootstrap statistics are presented in Table 10. Higher agreement between 

Landsat and measured EF is observed when the comparison is carried out using the 

overpass data. Results indicated very similar statistics in case of using the footprint 

data or the pixel value although the latter one presents slightly better statistics. 

Daily EF presented the lower R2 value (R2=0.583) of all compared methods and 

highest R2 was found for the overpass EF when compared with the tower pixel 

value (R2=0.645). On the other hand other error statistics like MAE (MAE or RMSE) 

showed slightly better results when daily data are used. 
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Figure 44. Observed vs. predicted relationships between reference daily EF value or 

overpass EF measured with the EC versus the EF calculated from Landsat. Blue dots 

represent the Landsat pixel value at the EC tower, while red dots represent the aggregated 

Landsat values at the footprint scale. 

 

Table 10. Validation statistics of EF estimated using Landsat compared with the EC 

measurements using bootstrap with 200 repetitions. 

Footprint RMSE RMSE SD R2 R2 SD Bias Bias SD MAE MAE SD 

Daily EF  0.153 0.031 0.583 0.128 0.043 0.031 0.116 0.018 

Overpass EF 0.141 0.036 0.638 0.125 0.061 0.028 0.104 0.021 

Pixel RMSE RMSE SD R2 R2 SD Bias Bias SD MAE MAE SD 

Daily EF 0.145 0.035 0.633 0.114 0.065 0.029 0.103 0.022 

Overpass EF 0.142 0.034 0.645 0.118 0.068 0.028 0.104 0.021 
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5.3. Discussion 

The results of the EF measured by the EC system showed that the 

assumption of EF daily preservation in this ecosystem cannot be guaranteed. This is 

an important finding, as this assumption can lead to large errors in daily ET 

estimates (Crago and Brutsaert 1996; Gentine et al. 2007; Lhomme and Elguero 

1999; Peng et al. 2013). Several studies have already mentioned that the 

assumption of constant EF during daytime hours is valid under clear skies and 

constant weather forcing conditions (Crago and Brutsaert 1996; Shuttleworth et al. 

1989). In this study we have shown that daily EF fluctuates during the day using the 

SD as an indicator of this variation. Higher SD values were observed during autumn 

and winter coincident with the rainy periods at the study site and therefore more 

prone to changing weather forcing conditions (Figure 39a). In the case of the 

overpass EF this EF fluctuation was much smaller, first as a consequence of using a 

smaller number of measurements (5 against 17), and second due to the time 

window used, which contains less variable data under constant weather forcing 

conditions (Figure 36). The comparison between daily EF and overpass EF using 

the data from the EC are in agreement with the results found by Peng et al. (2013) 

where R2 close to 1 was found under clear sky conditions for grasslands and 

savannas at 11:00 UTC. When we eliminated those values with a SD higher than 0.2 

we found an increase in R2 resulting in values up to 0.96 (Figure 40). The authors 

also observed a decrease in the R2 under cloudy sky conditions, and in our case 

when all data is used the R2 decreased down to 0.68 (Figure 40).  

A more detailed study of those days coincident with Landsat overpass 

revealed interesting features. Different diurnal behaviors where observed 

depending on the season. In summer very low daily EF variation was observed 

(Figure 42) while in spring and autumn the diurnal trends of EF presented a rather 

constant evolution until noon but then EF increased in the afternoon. In winter the 

EF presented an inverted U diurnal shape reaching higher EF values in the 

afternoon. Following the findings of Gentine et al. (2007) we could explain these 

differences in the EF evolution during the year. The authors showed that soil EF 
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(EFS) presented very low variation during the day, especially when low LAI values 

occur. In our study site, the grassland layer in summer becomes cured with very 

low LAI values and, therefore, we also expect that the EF measured by the EC 

system is mostly controlled by EFS. The opposite happens during spring or autumn, 

where the constant values during the morning and the rapid increase in the 

afternoon suggest that the EF is mainly controlled by canopy EF (EFC) (Figure 45). 

Finally, in winter the diurnal evolution suggest a combination of both EF=EFS+EFC 

coincident with the period were both vegetation and soil are not water limited. 

These differences in the shape indicate a much larger difference between the 

EF calculated during the sensor overpass time and the daily EF, especially in winter, 

which could lead to larger errors in the daily ET estimates (Crago and Brutsaert 

1996; Gentine et al. 2007; Lhomme and Elguero 1999; Peng et al. 2013) in this type 

of climate and ecosystem. On the other hand these differences between daily and 

overpass estimates are much lower during spring and summer, and therefore 

allowing the retrieval of ET using the EF self-preservation more accurately.  

 

Figure 45. Modeled EFC and EFS for LAI value of 2.5. Modified after Gentine et al. (2007). 
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The modified triangle approach using the LAI instead of a VI showed good 

results. The substitution of the VI offered some advantages. Firstly, LAI is a 

biophysical parameter which provides to the interpretation of the triangle a more 

physical meaning and helps in the calculation of the edges as it removes the effect of 

saturation of VI for very dense canopies (de Tomás et al. 2014). The Vari Max VI 

method used to define the wet edge guaranteed that the minimum temperature 

calculation is based on the areas with most dense vegetation. In this study the LAI 

was downscaled from MODIS LAI resolution (1 km) to Landsat resolution (30 m) 

using a trained regression tree algorithm. Results strongly depend on how the 

training stage is carried out. In our study case a total of 45 Landsat scenes were 

used and a total of 14 LAI classes were defined in the training stage. Though usually 

application of filters is not recommended as they modified the pixel value, in our 

case this was preferred to reduce the noise of the Landsat resolution LAI outputs 

and remove most of the spikes present in the histogram (Figure 46). 

MODIS LAI product has been already validated ensuring the quality of the 

product (McColl et al. 2011; Weiss et al. 2007). Most of this validation have been 

carried out over homogenous areas, however, recently a study validated the quality 

of this product over the study area (Durá et al. 2013) showing that although there 

are some problems with the LAI estimation in this type of ecosystem, the use of a 

product that combines Terra and Aqua (MCD15) reduced the errors in LAI 

estimates. 
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Figure 46. Histograms showing the effect of applying the low pass filter effect on LAI. 

Only those dates in which the definition of the edges of the triangle was 

properly calculated were used in the analysis. One of the weaknesses of the triangle 

method is that often requires a qualitative visual check of the triangles and the edge 

definition. This reduces the applicability of the method making it less operational 

and increases the uncertainties of the results. In our study the selection was carried 

out using an simple automatic criteria based on the triangle statistics obtained for 

each date, just based on the window size and the number of pixels. This process 

makes the triangle technique more operational and robust when dealing with long 

time series as automatically removes those dates subject to errors due to a poor 

definition of the triangle space. Many studies applied the triangle technique to 

calculate EF (de Tomás et al. 2014; Garcia et al. 2014; Sandholt et al. 2002; Stisen et 

al. 2008b; Venturini et al. 2004; Venturini et al. 2008; Wang et al. 2006b), however, 

in these studies it is not fully clear the criteria used to select the usable data, and 

how the filtering of the data was performed 

Estimates of EF using Landsat were compared in this study to daily and 

overpass EF using bootstrap techniques. The results of this comparison presented 
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better statistics when using overpass EF rather than daily EF (Table 10) which was 

expected as these values are closer in time and therefore the chances of varying 

weather conditions that could introduce noisy data is smaller. On the other hand 

the differences in the performing statistics are not that large. We hypothesize that 

this is a consequence of the method used to retrieve EF from Landsat. As it was 

previously mentioned in the discussion, in this study we selected the best data 

based on the triangle statistics. This method removed most of the days in the rainy 

periods, in which the triangle method showed some problems. In addition most of 

the dates selected for this study are coincident with those in which the EF 

presented very low daily variation and consequently, daily and overpass EF are 

very similar (Peng et al. 2013). We expect that a larger temporal dataset covering a 

larger range of EF would have resulted in larger differences between daily and 

overpass EF; however, this statement needs to be confirmed in future studies 

increasing the Landsat time series with the new Landsat 8 sensor. 

The methodology used in this study using the footprint contributions to first 

get a EF value from Landsat and later compare it with the EC EF measurements 

ensures the spatial comparability of the data and, to our knowledge, this type of 

comparison has not been carried out to validate EF estimates though it was done in 

the case of ET (Guzinski et al. 2014). In our study EF showed small differences 

between pixel and footprint values. As mentioned on section 2.3 and showed on 

Figure 41, the largest footprint contributions are within the area nearby the EC. On 

the other hand, we used Landsat 7 that presents a striping problem that leads to 

some unusable date. We fixed this issue by using only the pixels free of problems as 

contributors of the total footprint. This solution seemed to work well as the EF in 

the ecosystem is very homogeneous. 

Recent studies have used a very similar approach to calculate EF to the one 

used in this study (de Tomás et al. 2014) using scintillometer field data for EF 

validation and over a cropland. The results for Landsat differ slightly from the ones 

presented here, they obtained slightly higher R2 (R2= 0.77). In our case the 

validation was carried out using EC instead of scintillometer measurements. 
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Moreover, in their case the validation was carried for only 7 dates, whilst in our 

case a larger data set was used. This indicates that the methodology used in this 

study is fully operational for this type of ecosystem achieving similar results to 

those over more homogenous areas such as croplands  
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This study showed a profound analysis of water fluxes by analyzing different 

processes, such as water content on vegetation, soil moisture and evaporative 

fraction/evapotranspiration, at different spatio-temporal scales. We used SEVIRI, 

MODIS; Landsat and proximal remote sensing as sources of spectral and thermal 

information and different in situ measurements collected either manually, like in 

the case of the vegetation variables, or using different instruments that measure in 

continuous.  

The capabilities of remote sensing platforms to retrieve different vegetation 

biophysical variables were shown at two different spatial scales, MODIS and 

proximal sensing. A complete analysis of three metrics, EWT, FMC and CWC, to 

measure vegetation water content at two scales was presented, followed by other 

variables like Dm and LAI. Regarding the temporal changes in water content 

metrics, it can be concluded that these changes are more critical than their spatial 

variation within the MODIS pixel, and more effort should be done collecting 

temporal variations rather than spatial variations. Differences in the estimation of 

the field variables from spectral data depending on the field protocol used were 

found with higher correlations between field measured and estimated FMC and 

CWC when sampling strategy consist on collecting all plants included in the 

sampling quadrant instead of visually selecting a representative sample from 

outside. This can be due to subjective decisions taken by the operator when 

collecting the EWTSample. Protocol standardization in order to make different 

datasets comparable should be seriously considered by the community to make 

different dataset comparable both spatially and temporally.   

The analysis of other variables showed that, due to the high seasonal Dm 

variability, a constant annual value should not be used to estimate EWT from FMC 

in this ecosystem. Among the evaluated spectral indices of this study, VARI 

provided the worst results in all cases. The empirical estimators differed between 

sensors. Better correlations between field and spectral data were found using 
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MODIS than proximal sensing, probably due to differences in view angles and 

canopy observed.  The comparison between RTM estimates and empirical methods 

showed that the later ones improves results obtained from RTM inversions 

proposed to estimate FMC (Jurdao et al. 2013) and CWC (Trombetti et al. 2008). 

Regarding soil moisture estimation, we presented an evaluation of how some of 

the factors involved in the triangle parameterization affect the final TVDI value and 

the implications in the final model performance for estimating SM. NDII results 

overcame NDVI for SM monitoring at all soil depths. The variations in the results at 

different depths pointed out the importance of the viewing geometry of the sensor 

and spatial resolution. The Simple method showed better results than Tang for the 

definition of the dry edge using MODIS but Tang worked better with SEVIRI. The 

comparison between the methods for defining the wet edge did not show significant 

differences. The spatial scale of SEVIRI and its viewing geometry showed difficulties 

in finding pure pixels to define the edges of the triangle.  

Our recommendations for future applications of the triangle method in 

Mediterranean climates are: 

• NDII or other NIR/SWIR indices in the triangle definition is recommended 

instead of NDVI, as it improves the model performance to estimate SM. 

• Over complex areas combining different ecosystems, high spatial resolution 

or mid resolution data performs better. Low viewing angle differentiates 

pure surfaces (bare soil and pure vegetation cover) helping to properly 

calculate the edges.  

• The method to define the dry edge that presents less steep slopes should be 

used as this usually presents better results. 

Further research is needed to address how the substitution of NDVI with NDII or 

similar indices based on SWIR data perform for different ecosystems, eg. in energy 

limited systems vs. water limited systems and for environments different than the 

Mediterranean. 

In the last part of this thesis we aimed to estimate EF using the triangle 

method. A new triangle modification was evaluated using LAI, resulting in good EF 

estimates. Regarding the selection of valid triangles, a simple method was 
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presented which is less prone to errors and user interpretations. Furthermore, we 

showed that the assumption of constant daily EF values may not be valid for this 

type of ecosystem under certain conditions and even during clear sky days. We 

studied the temporal evolution of EF using and EC system showing that EF present 

a temporal evolution, seasonally and daily, that can lead to good results of daily ET 

estimates during summer but large errors during other seasons of the year. This 

suggests that before applying the triangle technique to retrieve daily ET the EF 

temporal evolution of the ecosystem should be previously understood in order to 

evaluate its applicability. 

Finally small differences were found when instead of a single pixel all 

footprint contributions were calculated. However in other regions, especially if the 

EC tower is located close to other ecosystems, the footprint contributions should be 

calculated.  
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