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Abstract

We here discuss the optimization of coefficients of lists of polynomials
using evolutionary computation. The given polynomials have 5 variables,
namely t, a1, a2, a3, a4, and integer coefficients. The goal is to find integer
values αi, with i ∈ {1, 2, 3, 4}, substituting ai such that, after crossing out
the gcd (greatest common divisor) of all coefficients of the polynomials, the
resulting integers are minimized in absolute value. Evolution strategies, a
special class of heuristic, evolutionary algorithms, are here used for solving
this problem. In this paper we describe this approach in detail and analyze
test results achieved for two benchmark problem instances; we also show a
visual analysis of the fitness landscapes of these problem instances.

Keywords: Optimization of parametrizations, symbolic computation, evolu-
tionary computation, evolution strategies.

MSC: 65K10, 68T05, 68W30

1. Problem statement

In this section, trying to avoid as much as possible mathematical technicalities, we
describe the problem, and we explain its interest in the field of mathematics.

Annales Mathematicae et Informaticae
44 (2015) pp. 177–185
http://ami.ektf.hu

177



The problem statement. We are given a list with infinitely many (at least 3)
non-constant polynomials (L = [p1; p2; . . . ; pn]). These polynomials have 5 vari-
ables, namely t, a1, a2, a3, a4, and integer coefficients. The problem consists in
finding integer values α1, α2, α3, and α4 for a1, a2, a3, and a4 such that:

1. α1α4 − α2α3 6= 0

2. We substitute a1 = α1, a2 = α2, a3 = α3, a4 = α4, in L. This yields L′(α), a
list of polynomials with one variable, namely t, and integer coefficients. We
cross out the greatest common divisor (gcd) of all non-zero coefficients of the
polynomials in L′(α) to get a new list L′′(α).

The goal is to find that substitution ai = αi, i ∈ {1, 2, 3, 4}, so that the maximum
of the absolute values of all the coefficients of all polynomials in L′′(α) is minimum.

An illustrating example. We consider the list with three polynomials L =
[p1; p2; p3] where

p1(t) = 13923t2a1
2 + 5474t2a1a3 − 1904t2a3

2 + 27846ta1a2 + 5474ta1a4

+ 5474ta2a3 − 3808ta3a4 + 13923a2
2 + 5474a2a4 − 1904a4

2

p2(t) = 7564t2a1
2 − 10298t2a1a3 − 990t2a3

2 + 15128ta1a2 − 10298ta1a4

− 10298ta2a3 − 1980ta3a4 + 7564a2
2 − 10298a2a4 − 990a4

2

p3(t) = 15845t2a1
2 − 106t2a1a3 + 2146t2a3

2 + 31690ta1a2 − 106ta1a4

− 106ta2a3 + 4292ta3a4 + 15845a2
2 − 106a2a4 + 2146a4

2

If we substitute a1 = 1, a2 = 1, a3 = 1, a4 = 1 we get

L′(α) = [17493t2+34986t+17493;−3724t2−7448t−3724; 17885t2+35770t+17885]

Since gcd(17493, 34986, 17493,−3724,−7448,−3724, 17885,35770, 17885) = 49, one
gets L′′(α) = 1/49L′(α), that is

L′′(α) = [357t2 + 714t+ 357;−76t2 − 152t− 76; 365t2 + 730t+ 365]

and the maximum, in absolute value, is 730. However, if we take a1 = 45, a2 =
11, a3 = 31, a4 = −122 the new list is

L′(α) = [34000561t2 − 34000561; 68001122t; 34000561t2 + 34000561].

The corresponding gcd is now 34000561. Therefore

L′′(α) =
1

34000561
L′(α) = [t2 − 1; 2t; t2 + 1]

whose maximum, in absolute value, is 2.
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The mathematical origin of the problem. This optimization question, we
are dealing with, comes from a central problem in the field of the symbolic com-
putation of algebraic curves (see [6] for further details), appears in many compu-
tational aspects of the practical applications of curves and is, to our knowledge,
not solved. Let us first motivate the problem: In many practical applications, such
as in computed aided geometric design, in physics, etc., one deals with parametric
representations of a curve. For instance, if we have to compute a line integral along
an arc of the curve of equation y3 = x2, we might use the parametric representation
x = t3, y = t2 of the curve. In general a rational parametrization of a curve, say
for simplicity planar, is a nonconstant pair

(
p1(t)

q(t)
,
p2(t)

q(t)

)

where p1, p2, q are polynomials in the variable t. The difficulty here is the fol-
lowing: If we replace t by a polynomial or by a rational function, then we get
another parametrization of the same object; for instance, in the example above,
(1000t3, 100t2) and ((t2 + 1)3, (t2 + 1)2) are also parametrizations of y3 = x2.
Thus, we have infinitely many possibilities, but some parametrizations are more
complicated and increase the computational time when using them. The question
is how to choose the simplest parametrization. Achieving an optimal degree in the
polynomials is solved by means of symbolic deterministic algorithms (see [6]). How-
ever, the question of determining a parametrization with the smallest (in absolute
value) integer coefficients is open. Here, in this paper, we show how to approach
the problem by means of evolutionary algorithms.

In order to translate the original parametrization problem into the the prob-
lem stated above, we use Lüroth’s theorem that establishes how all parametriza-
tions, with optimal degree, are related. More precisely, if P(t) = (P1(t)

Q(t) ,
P2(t)
Q(t) ) is

a parametrization with optimal degree and integer coefficients, then all the other
parametrizations with optimal degree and integer coefficients are of the form

P
(
a1t+ a2
a3t+ a4

)
=



P1

(
a1t+ a2
a3t+ a4

)

Q

(
a1t+ a2
a3t+ a4

) ,
P2

(
a1t+ a2
a3t+ a4

)

Q

(
a1t+ a2
a3t+ a4

)


 ,

where a1, a2, a3, a4 are integers such that a1a4−a2a3 6= 0. Simplifying this expres-
sion, we get the three polynomials in the variables t, a1, a2, a3, a4.

Revisiting the illustrating problem. We are given the parametrization

P(t) =
(
13923 t2 + 5474 t− 1904

15845 t2 − 106 t+ 2146
,
7564 t2 − 10298 t− 990

15845 t2 − 106 t+ 2146

)

Performing the formal substitution t = a1t+a2

a3t+a4
, simplifying expressions and collect-

ing numerators and denominators in a list we get the list L = [p1; p2; p3] of the three
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polynomials shown above. Now, after taking a1 = 45, a2 = 11, a3 = 31, a4 = −122,
we get the parametrization

P
(

45t+ 11

31t− 122

)
=

(
t2 − 1

t2 + 1
,

2t

t2 + 1

)
.

The parametrization in this example corresponds to the unit circle x2 + y2 = 1.

2. Parameter optimization by evolutionary
algorithms

Evolution strategies (ES; [4], [5]), beside genetic algorithms (GA; [2], [1]) the second
major representative of evolutionary computation, are here used for optimizing
α1, . . . , α4. ES are population based, i.e., each optimization process works with
a population of potential solution candidates that are initially created randomly
and then iteratively optimized. In each generation, new solution candidates are
generated by randomly selecting parent individuals and forming new individuals
applying mutation and (optionally) crossover operators; λ children are produced
by µ parent individuals.

By offspring selection, the best children are chosen and become the parents of
the next generation. Typically, parent selection in ES is performed randomly with
no regard to fitness; survival in ESs simply saves the µ best individuals, which is
only based on the relative ordering of their fitness values. Basically, there are two
selection strategies for ESs:

• The (µ, λ)-strategy (“comma selection”): µ parents produce λ children; the
best µ children are selected and form the next generation’s parents.

• The (µ+λ)-strategy (“plus selection”): µ parents produce λ offspring; parents
and children form a pool of potential new parents, and the best µ individuals
are selected from this pool to become the next generation’s parents.

Thus, the main driving forces of optimization in ESs are offspring selection
and mutation. For the optimization of vectors of real values, mutation is usually
implemented as additive Gaussian perturbation with zero mean or multiplicative
Gaussian perturbation with mean 1.0. Mutation strength control [4] is based on
the quotient of the number of the successful mutants (i.e., those that are better
than their parents): If this quotient is greater than 1/5, then the mutation variance
is to be increased; if the quotient is less than 1/5, the mutation variance should be
reduced.
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Figure 1: The main workflow of an evolution strategy

3. Test series

3.1. Problem instances
We have used the following two test instances:

• The example (Ex1) introduced in Section 1

• The second example (Ex2) is defined as L2 = [p1; p2; p3] with

p1 = 1685t2a1
2 + 2252t2a1a3 + 769t2a3

2 + 3370ta1a2 + 2252ta1a4

+ 2252ta2a3 + 1538ta3a4 + 1685a2
2 + 2252a2a4 + 769a4

2

p2 = −627t2a12 − 1148t2a1a3 − 481t2a3
2 − 1254ta1a2 − 1148ta1a4

− 1148ta2a3 − 962ta3a4 − 627a2
2 − 1148a2a4 − 481a4

2

p3 = 2467t2a1
2 + 3235t2a1a3 + 1069t2a3

2 + 4934ta1a2 + 3235ta1a4

+ 3235ta2a3 + 2138ta3a4 + 2467a2
2 + 3235a2a4 + 1069a4

2

For this example, taking α1 = −25, α2 = 12, α3 = 34, α4 = −23 (note that
α1α4 − α2α3 = 167 6= 0) we get

L′ = [27889t2 + 27889; 27889t2 − 27889; 27889t2 + 27889t+ 27889].

The gcd is 27899 and L′′ = [t2 +1; t2− 1; t2 + t+1] and the maximum of the
absolute values is 1, which is clearly optimal.

3.2. Algorithm configurations
The following 10 algorithm variants have been used for solving the problems defined
in the previous section:
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Population Number of Selection
size (µ) children (λ) mechanism

Settings 1 100 1,000 comma
Settings 2 100 10,000 comma
Settings 3 100 1,000 plus
Settings 4 100 10,000 plus
Settings 5 1,000 10,000 comma
Settings 6 1,000 100,000 comma
Settings 7 1,000 10,000 plus
Settings 8 1,000 100,000 plus
Settings 9 10,000 100,000 comma
Settings 10 10,000 100,000 plus

Table 1: Algorithm parameter settings used for solving the here
discussed coefficients optimization problem.

The range of values for initial solution candidates was set to ±200. For cre-
ating offspring we have used multiplicative mutation: The average value of the
multiplication factors µ was set to 1.0, the standard deviation σ was initially set
to 1.0 and according to the 1/5 success rule updated after each generation (with
multiplicative factor / divisor 0.9).

3.3. Results

We have executed ES test series using all parameter configurations defined previ-
ously; each algorithm configuration was executed 5 times independently, and for
guaranteeing a fair comparison of results the maximum number of evaluations used
as termination criterion was set to 1,000,000. Thus, the number of generations ex-
ecuted was not equal for all test configurations.

The results achieved in these test series are summarized in Table 2.

We see that the success rate for small populations is very low, when using bigger
populations (with size 1,000 or 10,000) the results are significantly better; when
using populations of size 1,000, then significantly better results are achieved using
higher selection pressure, i.e. selecting the 1,000 best out of 100,000 offspring each
generation.

Problem Ex1 seems to be harder for the algorithm than Ex2. For Ex1 the
algorithm was able to find the optimal solution at least once using settings 8 and
10; for Ex2 the algorithm was successful in finding the optimum in 4 or 5 out of 5
runs using the settings 6, 8, 9, and 10.
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Problem instance Ex1 Problem instance Ex2
Settings 1 4807.4 483.6
Settings 2 1270.6 402.2
Settings 3 2136.6 671.0
Settings 4 438.2 3.8
Settings 5 854.4 110.6
Settings 6 160.0 1.0
Settings 7 120.4 21.2
Settings 8 58.2 1.2
Settings 9 230.8 1.4
Settings 10 35.4 1.6

Table 2: Test results. For each algorithm configuration we give
the average result qualities achieved for problem instances Ex1 and

Ex2.

Fitness Landscape analysis [3] methods can be used for estimating an optimiza-
tion problem’s hardness. As we see in Figures 2 and 3, the fitness landscape of the
here used problem instances Ex1 and Ex2 are very rugged, which makes it very
hard for optimization algorithms to find optimal solutions.

Figure 2: Fitness landscape analysis for example Ex1. We have
created 40,000 solution candidates for Ex1 that are arranged on
the x-y-plane; the optimal solution discussed in Section 1 (a1 =
45, a2 = 11, a3 = 31, a4 = −122) is positioned at (1,1), and at all
other cells are assigned solution candidates that are produced by
mutating one of their neighbors (using σ = 1.0). On the z-axis
we draw the fitness of the so created solution candidates for Ex1.
We see high fluctuations of the fitness values which indicates that

fitness values of neighboring solutions vary significantly.
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Figure 3: Fitness landscape analysis for example Ex2. All possible
solution candidates for the here used problem with α1 and α3 set
optimally (α1 = −25, α3 = −34) are created, their fitness is drawn
on the z-axis. We see that even when setting two of four parameters

optimally, the resulting fitness landscape is very rugged.

4. Conclusion, outlook

Future work will concentrate on the improvement of mutation and selection opera-
tors for this problem class in order to solve problem instances involving significantly
bigger coefficients. Additionally, we are working on strategies to decrease the search
space. We are also working on the integration of the here discussed class of prob-
lems in HeuristicLab [7], a framework for heuristic and evolutionary algorithms that
is developed by members of the Heuristic and Evolutionary Algorithms Laboratory
(HEAL).
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