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RESUMEN
La detección temprana de brotes de enfermedades es esencial de cara a una intervención
pronta en problemas de salud pública. Actualmente en Australia, las enfermedades notifica-
bles son recogidas y almacenadas, y referenciadas geográfica y temporalmente. Sin embar-
go, el proceso para la búsqueda de brotes de enfermedad sobre escalas espaciales distintas
no está bien definido.

Los brotes son de detección difícil. Algunas enfermedades aparecen relativamente rápido,
mientras otras requieren más tiempo para su incubación y sólo se hacen evidentes sobre lar-
gos intervalos temporales. En la práctica, los epidemiólogos combinan diferentes conjuntos
de evidencias para determinar la probabilidad de la existencia de un brote. Gracias al pro-
gresivo incremento de disponibilidad de bases de datos electrónicas y de los Sistemas de
Información Geográfica (SIG), el potencial para la utilización de técnicas de análisis espacial
para la visualización, exploración y modelado de notificaciones de enfermedades para la
detección temprana de brotes, es hoy mayor que en el pasado.

En este artículo, los autores presentan un algoritmo que emplea bases de datos de la admi-
nistración, análisis espacial y SIG para la detección de clusters de enfermedades en el Estado
de Australia Occidental. El algoritmo revisa los códigos postales de forma rutinaria hasta
encontrar un número de casos que supera los valores que serían esperados en la región con-
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siderada. El algoritmo está diseñado para su uso por profesionales de la salud pública para
asistir en la identificación y seguimiento de clusters en tiempo real.

Palabras Clave:
Cluster, SIG, análisis espacial, brotes de enfermedad

ABSTRACT
The early detection of disease outbreaks is essential for early intervention in potential public
health problems. Currently in Australia, disease notifications are recorded, temporally and
geographically referenced; however, the process of searching for outbreaks over different
spatial scales is not well defined. 

Disease outbreaks are difficult to detect. Some diseases appear relatively rapidly, while others
take time to gestate and become apparent over long time intervals. In practice, epidemiolo-
gists combine different sets of evidence in different ways and apply reasoning to determine
the likelihood of an outbreak. With an increase in the availability of electronic health-care
data and geographic information systems (GIS), there is great potential to use spatial analysis
techniques for the visualisation, exploration and modelling of disease notifications for the early
detection of disease outbreaks.

In this paper, the authors present an algorithm that uses administrative databases, spatial
analysis and GIS for the detection of disease clusters in Western Australia (WA). The algorithm
routinely tests administrative areas (postcodes) and highlights the areas in which counts exce-
ed the expected number for the particular region. This algorithm is intended to be used by
public health officials to identify and track clusters in localised geographic areas in real-time. 

Keywords:
Cluster, GIS, Spatial Analysis, Disease Outbreak
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1. INTRODUCTION

A challenge for public health professionals is
to identify an emerging outbreak of disease
in its early stages so they can intervene and
reduce its possible impact. In the past, a num-
ber of surveillance systems have been deve-
loped based on temporal analysis techni-
ques. However, because the problem of dise-

ase outbreak is often dependent on the spa-
tial diffusion of cases, many countries around
the world are currently developing spatial sur-
veillance systems. 

Spatial surveillance is intended to identify
deviations from the 'normal distribution of
events in a region' (Lawson and Kleinman
2005). However, programming a computer to
recognise if an abnormality has occurred is a



difficult task. As outlined by Haggett (2000),
the number of cases indicating the presence
of an outbreak can vary according to the
disease, the size and distribution of the popu-
lation exposed, a lack of previous exposure
and the diagnostic facilities available.
Additionally, the cluster does not only
depend on large numbers of cases or deaths.
A single case of a disease long absent from
the population, or the first invasion by a dise-
ase not previously recognised in that area,
can require immediate investigation. Similarly,
some surveillance systems adequately detect
abrupt changes that might be caused, for
example, by a serious bioterrorist attack. In
many cases of public health surveillance,
however, the change is gradual and difficult
to detect (Haggett 2000).

The objective of this research is to develop a
simple algorithm for the detection of clusters
in routinely collected surveillance data. To be
effective for public health professionals, the
algorithm should be simple to understand
and should produce unambiguous results. It
should be able to search data hierarchically
so that it can detect abnormalities at local,
regional and national geographic scales.
Most importantly, it must utilise existing survei-
llance data.

To achieve the objective, the algorithm pre-
sented within this paper applies a series of
local area statistics to National Notifiable
Disease Surveillance System (NNDSS) data to
determine the regions in which a cluster is
located. The paper has been structured into
three sections. Section 1 provides back-
ground information about the data and the
issues associated with detecting disease clus-
ters in routinely collected surveillance data.

Section 2 outlines the specifications and for-
malisation of an automated algorithm for the
early detection of disease outbreaks in
Australia. Section 3 illustrates the results based
on the detection of Ross River virus (RRv) out-
breaks in Western Australia.

1.1 The Problem

The fundamental characteristic distinguishing
spatial data from time series data is the spa-
tial arrangement or pattern of observations.
In spatial surveillance, the objective is to iden-
tify clusters or the occurrence of disease noti-
fications in a community or region that are in
excess of the number of cases normally
expected (Lawson and Kleinman 2005). 

Within spatial analysis theory, a number of
cluster detection methods have been deve-
loped. In general, the cluster detection
methods available can be grouped accor-
ding to the structure of the data available; for
example, point or area. The analysis of point
data involves analysing the distance betwe-
en points to determine if clustering is present.
Although this method is very accurate, the
method can only be used in circumstances
where the address of the person with the
disease is available. In Australia, to preserve
individual confidentiality, notification data
are aggregated to administrative bounda-
ries. To effectively analyse this data, a second
set of methods utilises disease counts aggre-
gated to administrative areas; for example,
postcodes.

Aggregated data is subject to two confoun-
ding problems that must be considered when
analysing data in this form. The first well docu-
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mented problem is the modifiable areal-unit
problem (MAUP) and the second is the spa-
tial hierarchy problem.

1.2 The Modifiable Areal-Unit
Problem

The MAUP is classic problem associated with
the design and display of boundaries. The
MAUP is 'a form of ecological fallacy associa-
ted with the aggregation of data into areal
units for geographical analysis'. This aggrega-
ted data is then treated as individuals in
analysis (Openshaw and Taylor 1981). An
example of this process is census data, which
is collected from every household but relea-
sed only at CD boundaries. When values are
averaged through the process of aggrega-
tion, variability in the dataset is lost, and the
values of statistics computed at various reso-
lutions will be different. This is called the scale
effect. Additionally, the data analyst gets dif-
ferent results depending on the placement of
the areal boundaries and how the spatial
aggregation occurs. This is called the zoning
effect. Hence, the choice of areal units is
important for determining how disease
counts are aggregated and analysed.

1.3 The Spatial Hierarchy
Problem

The spatial hierarchy problem has arisen due
to the increasing amount of data being
required and being integrated into a diverse
range of applications. These data are often
referenced to administrative and manage-
ment areas whose boundaries are intended
to align, but which do not because of histori-

cal and recording factors in the capture or
digitisation of boundary lines. Due to the
uncoordinated delineation of these bounda-
ries, cross-analysis between them is restricted.
Essentially, this problem has occurred becau-
se organisations historically hand drafted the
majority of boundaries on hardcopy maps.
With advances in technology, these hand-
drafted maps have been digitised for incor-
poration into GIS, a technology for which
they have not been adequately designed
(Eagleson et al. 2003). It is recognised that, in
the future, this problem may be overcome by
the development of 'mesh blocks'. These are
geographic units that have been specifically
designed to meet the administrative needs of
administrative agencies to protect indivi-
duals' confidentiality whilst enabling data
integration (Australian Bureau of Statistics
2004).

1.4 Cluster Detection Techniques

One of the most important tools in determi-
ning clusters is visualisation. This allows the
analyst to inspect the data and to quickly
identify abnormalities, relationships and inter-
actions between regions on a map. The cho-
ropleth map is the most common method for
displaying and visualising disease rates
(Boscoe et al. 2003). Although popular, this
method of analysis can be deceiving for two
reasons. First, the legend classifications cho-
sen to display the data often affect the inter-
pretation. Second, in sparsely populated
regions data are aggregated to large geo-
graphic areas that dominate the map (Talbot
et al. 2000) whilst smaller areas with large
populations 'at risk' from infectious diseases
are not identified. This can cause spatial pat-
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terns to be identified where none actually
exist, and inferences can be made on invalid
assumptions (Jacquez 1998). 

As an alternative to mapping the number of
cases, data used in health applications can
be mapped according to a measure of rela-
tive risk where the maps are calculated by
standardising the observed count in each
postcode by the corresponding population.
Alternatively, probability maps can be gene-
rated that illustrate the probability of obtai-
ning a count that is more 'extreme' than that
actually observed. 

A further alternative involves Bayesian statis-
tics, where maps are produced using prior
knowledge or beliefs about parameters of
interest. Bayesian statistics utilise three kinds of
information: 

1. the observed disease events in an
area;
2. prior information on the variability of
disease rates in the overall map; and
3. information on the disease rates in an
area's neighbours since geographic areas
in proximity tend to have similar rates of
disease. 

By combining this information about the rates
in surrounding areas, estimates for postcodes
with small populations can be effectively
smoothed. Techniques for creating these
maps are fully described by Bailey and
Gatrell (1995). It should be noted that, to be
effective, the map being analysed should be
based on smoothed estimates, cleaned of
noise and adjusted for variations in the 'at risk'
population (Berke 2004). 

As an alternative to mapping, spatial statistics
can be used to measure the values for each
geographic feature since the statistics are
independent of how the map is displayed.
These statistics are commonly divided into
two categories: global and local. Global sta-
tistics indicate if the overall pattern is autoco-
rrelated. In contrast to global statistics, local
area statistics have been developed to iden-
tify significant clustering in a local neighbour-
hood. One of the major disadvantages of
using local area indicators to determine clus-
tering is the error associated with the design
of the neighbourhood and how much each
neighbour contributes to that local area. This
information is recorded in what is referred to
as a weights matrix. Such errors can be in the
form of the design parameters of the weights
matrix or the design of the administrative units
used in the analysis. Where possible, techni-
ques such as Moran's I autocorrelation statis-
tics should only be used in regions that are of
similar size and arranged in a regular pattern,
as is the case for image analysis where these
models originated (Wakefield 2003).
Additionally, the scale at which the analysis is
undertaken can affect the display of the
results and, therefore, the perception of signi-
ficance recorded by the analyst. To overco-
me these limitations, a number of researchers
have developed methods that scan the map
searching for abnormalities or regions in
which the observations exceed those expec-
ted. These techniques are often referred to as
'moving window statistics' or 'scan statistics'. 

Moving Window Statistics
Moving window statistics are based on the
null hypothesis that the incidence rate is the
same over the region. The alternative hypo-
thesis is that the incidence rate is higher than
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that in the given neighbourhood. Three of the
most recognised methods for implementing
moving window statistics are Openshaw's
geographical analysis machine (GAM),
Besag and Newell's test for clusters, and
Kulldorff's spatial scan statistics. 

The geographical analysis machine was
developed by Openshaw et al. (1987) for the
exploratory analysis of points or data atta-
ched to small areal units. It works by using
points on a regular grid spacing on a map as
the centroids for generating a series of con-
centric, equal-sized circles. For each circle,
the number of events falling within the circle
are counted and compared with the expec-
ted number (assuming a random generating
process). If the circle contains a significantly
higher number of events than expected, a
circle is drawn on the map (O'Sullivan and
Unwin 2002). 

The method of Besag and Newell (1991)
works using a predefined cluster size k. For
each postcode in turn, a circle is drawn, cen-
tred on the case with a radius such that the
kth nearest neighbour is included in the
analysis. Unlike the geographical analysis
machine, the circles are comparable since
they are all based on k number of cases. This
can be a disadvantage as the method is
highly dependent on the choice of k
(Wakefield et al. 2001). Testing of this method
indicates that it is sensitive to inputs and works
well for low disease counts (Wakefield et al.
2001).

Moving window statistics aid the analyst in
determining the regions in which clusters in
the data may occur. In particular, they have
the advantage of being less sensitive to the

effects of scale than the visual and autoco-
rrelation techniques. They are, however, limi-
ted in the way they search for clusters using
discrete circles. In fact, disease outbreaks
spread based on gradients following trajecto-
ries, such as common routes of transport or
wind dispersion patterns.

In the search for emerging diseases, the pri-
mary interest is the changing pattern of the
disease through space and time. This is parti-
cularly important because the spread of dise-
ase is a dynamic process, and the pattern at
a fixed point in time is not very informative
about the way the pattern has emerged
through time (Bailey and Gatrell 1995). Within
the literature, there is very little practical
experience of space-time geographic analy-
sis because, until recently, there were little
relevant data available and very few statisti-
cal methods developed for detecting or
measuring space-time patterns. 

2. ALGORITHM
DEVELOPMENT

This section of the paper details the develop-
ment of the algorithm. It begins with a des-
cription of the routinely collected surveillance
data collected in Australia. This is followed by
the specifications for the algorithm and an
outline of the algorithm's components. 

2.1 Surveillance Data

In Australia, there are approximately sixty dif-
ferent notifiable diseases. Each time a person
is diagnosed with one of these diseases, a
notification is made to the appropriate health
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authority. Every fortnight these notifications
are compiled into the National Notifiable
Diseases Surveillance System (NNDSS). To pre-
serve individual confidentiality, notification
data are aggregated to the postcode of resi-
dence. 

Due to the large quantity of data currently
collected within the NNDSS, an effective
algorithm is required to effectively search this
data for clusters. To achieve this, the authors
have developed an algorithm specific to the
problem of spatially searching NNDSS data
for abnormalities or clusters, for a time interval
allocated by the user. To be certain that the
algorithm meets the objectives of the users,
the following specifications have been deve-
loped. 

2.2 Algorithm Specifications and
Requirements

The basis of the method involves matching
the user requirements and specifications with
the data and techniques available for analy-
sis. The components outlined below are the
specifications for the algorithm.

1. Automated: The automated approach
to the detection of disease outbreaks has
the advantage of being fast, repeatable
and flexible. The flexibility of the system
enables thresholds to be set and changed
according to the disease and level of
enquiry by the user.

2. Simple: The simplicity of the algorithm
means that the process of searching the
data can be easily understood and modi-
fied by the operators. The system should
be able to be changed as needed, and
changes should require minimal time, per-
sonnel or other resources.

3. Hierarchical: The ability of the system to
search the data hierarchically means that
abnormalities can be detected at local,
regional and national scales.

4. Portable: The algorithm should be able
to be duplicated to another setting
without additional resources.

5. Surveillance Data: The system is being
designed such that it uses routinely collec-
ted surveillance data. This means the data
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Surveillance data Input: 
Observed counts (NNDSS) 
Expected counts (NNDSS) 

User Input: 
Disease 

Date/Interval of interest 
Expert threshold 

Other Data: 
Postcodes (MapInfo) 

Population (ABS Census) 

Data Input Subroutines Output 
Individual postcode 

evaluation 

Adjacent postcode 
evaluation 

Threshold evaluation 

New shape file created 

Table of results 

Graphical user interface 
(GUI) for the exploration of 

results. 

Figure 1.- The flow of inputs, algorithm subroutines and outputs.
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processing standards are in place, and the
data format and structure has been pre-
viously determined.

6. Sensitivity: The sensitivity of the system is
the ability of the system to detect unusual
events. If the main objective of the system
is to monitor trends, a constant sensitivity
with a reasonably low number of false
alarms may be acceptable. However, if
the objective is to detect outbreaks befo-
re they become widespread, the system
must be highly sensitive to small changes in
the number of notifications.

2.3 Algorithm Components 

The user invokes a script that implements the
algorithm, either directly through the Python
interface or through the ArcGIS interface. The
algorithm can be best described using the
flow of events shown in Figure 1. Each of
these events, data inputs, algorithm compo-
nents and outputs are further detailed below.

2.4 Data Input
User Input

The user inputs three of the six inputs required
by the algorithm. These are the disease being
investigated, the date or time interval for
investigation, and the threshold. The thres-
hold is based on the experts' opinion of the
number of notifications beyond the expec-
ted number of observations. An expert must
determine these inputs, as they will affect the
sensitivity of the system.

Surveillance System Input
The observed and expected counts are
retrieved from the National Notifiable Disease
Surveillance System (NNDSS) data and pro-
cessed for input into the algorithm as follows

• Observed: This is the number of notifica-
tions recorded for the period of interest.
Depending on the disease, the user can
indicate if this is to be a daily or weekly
count. Alternately, they can specify a
date range.

• Expected: This is the number of notifica-
tions that would be expected. There are
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Figure 2.- (a) Initial polygon selection and comparison. (b) Intersection of adjacent polygons
and comparison.
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many different ways to calculate the
expected number of notifications. In this
instance, the value is an average of the
number of counts received over the past
three years within the same time interval as
set for the observed number of notifica-
tions. 

Other data sets that can be used by the
algorithm include the population counts for
each postcode, which is available from the
Australian Bureau of Statistics, and the pos-
tcode boundaries obtained from MapInfo
Australia.

2.5 Subroutines

The algorithm consists of three subroutines.
Each of these has been developed to meet
the user requirements. 

1. Postcode evaluation: For each postco-
de, the number of diseases observed for a
given time interval is subtracted from the
expected number of disease notifications
recorded. If the difference between the
observed and expected exceeds the allo-
wable threshold then an alert is sent.

2. Adjacent postcode evaluation: This rou-
tine involves comparing notifications
aggregated for adjacent postcodes to
determine if the neighbourhood is excee-
ding the expected values. In some instan-
ces, postcode values may be abnormal
and this may not be cause for alarm.
However, if the individual postcode and
the surrounding postcodes are exceeding
expectations then it could be significant.
This configuration can also shed light on if

the disease has begun to diffuse out from
its central source of contamination.

3. Threshold evaluation: Given the variable
size of postcodes across WA, it is important
that the user is not just alerted to a particu-
lar area because of its large size. One way
to overcome this problem is to alert the
user to a specific area that exceeds the
normal expectation. This routine is compu-
ted by using the expert-derived threshold
per person and multiplying this value by
the population in each postcode. If the
observed number of notifications within
the postcodes exceeds the threshold then
the regions exceeding the threshold are
displayed using a natural breaks classifica-
tion. 

3. CASE STUDY: ROSS ROVER
VIRUS IN WESTERN
AUSTRALIA

This case study investigates clustering of one
disease: Ross River virus (RRv). As outlined in
the introduction, this study is focused on the
detection of outbreaks based on routinely
collected disease notification data. RRv has
been chosen for this study because of the
relatively large number of notifications. Even
with under-reporting, major peaks in activity
can be identified. 

The study area for this investigation is Western
Australia (WA). WA is the largest state in
Australia. It is comprised of over 380 postcode
code units, which contrast in shape from very
compact postcodes in urban areas to highly
irregular postcodes along the coast and rural
regions. They also vary in size from very small
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postcodes of approximately 200 m2 to very
large postcodes approximately 300 km2.

Figure 3 illustrates an example choropleth
map of RRv disease rates aggregated to pos-
tcodes for WA. The inset map identifies the
Perth metropolitan region and surrounding
areas. Although popular, this method of
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Figure 3.- Raw counts for RRv, WA January 2004

Figure 4.- Disease count comparison (Expected - Observed). The expected data is the ave-
rage from 1999 to 2003, and the observed data is the total number of notifications received
in 2004.
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Figure 5.- Smoothed difference map. This is calculated using the adjacent postcode subrouti-
ne in which each postcode and its adjoining postcodes are compared as a group to expec-
ted counts. (This is calculated as the average for the previous 4 years.) 

analysis can be deceiving for three reasons.
First, the legend classifications chosen to dis-
play the data often affect the interpretation.
Second, in sparsely populated regions data
are aggregated to large geographic regions
that dominate the map (Talbot et al. 2000).
Third, the raw counts do not take into
account the number of cases expected in a
non-outbreak period. Within Figure 3, it appe-
ars that the outbreak is dispersed primarily
within the metropolitan region.

Implementing the algorithm for RRv notifica-
tions has yielded the following results.

First, the results of the postcode evaluation
(Figure 4) illustrate the difference between
the observed and expected number of notifi-
cations for RRv in the month of January 2004
in Western Australia. It can be seen that the

majority of regions are 0-2 notifications from
the expected values. It can also be seen that,
within the insert of the Perth metropolitan
area, there appears to be more cases obser-
ved than expected. This is typical of the out-
break period selected for analysis. What this
map does is inform analysts where the inten-
sity of notifications is greatest. This intensity,
whist still present in the metropolitan region,
appears to be significant in some of the rural
postcodes to the north and south of the state.
Some of these areas have recorded more
than 17 additional cases over that calculated
in the baseline. 

Second, the results of the postcode intersec-
tion evaluation (Figure 5) illustrate the smoo-
thed number of cases; that is, the combined
value of the postcode when added with all
intersecting postcodes. This process smoothes
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the data and provides information on the
group of postcodes. This method is not appro-
priate in large rural areas where it appears to
be giving a distorted interpolation of the
data. This is a result of the large and irregular
shape of postcodes in these areas. Results for
the urban area are, however, consistent with
research from the Department of Health and
Ageing's Communicable Diseases
Surveillance Report (2004). This states that the
majority of cases from the 2004 outbreak of
RRv were '... reported from the south-west
region of the state in residents of, or visitors to,
coastal areas stretching from Mandurah to
Busselton. Transmission has also occurred
across the Perth metropolitan area, particu-
larly around the fringes.'  

Third, the results of the threshold evaluation
were computed based on the expert kno-
wledge of two experienced epidemiologists.

To determine an appropriate threshold, the
epidemiologists reviewed the mean of non-
outbreak days versus the mean of outbreak
days within the NNDSS database over the
past ten years. For the individual outbreaks
identified, the mean number of cases repor-
ted per day for the whole outbreak period
was as low as 0.9 cases per day for the sma-
ller outbreaks in 1993 and 1995. It was as high
as 8.4 cases per day for a large outbreak in
1996. The mean number of cases reported for
all outbreak days was 3.1 cases per day, and
the variance was 2.94 cases per day. 

Using these values, the smallest outbreak figu-
re of 0.9 notifications per day was chosen for
the 1,962,100 people in WA. This threshold was
then adjusted to reflect the number of resi-
dents in each postcode area to determine if
the postcode was exhibiting values above or
below the threshold. The results illustrate that
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Figure 6.- Threshold evaluation
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the majority of cases exceeding the threshold
are in the southwest and metropolitan areas
of the state.

It appears that second process, that of group
calculation, is clearer for urban regions in
which the postcodes are smaller and more
compact. This set of analyses is likely to be
affected by the MAUP because the data are
aggregated to large postcode areas that
cover a large area on the map.

3.1 Discussion

The results from the algorithm clearly indicate
the regions in which elevated levels of disea-
se activity have occurred. This is consistent
with the results from the research from the
Department of Health and Ageing's
Communicable Diseases Surveillance Report
(2004). Although the overall trends obtained
from using the methods are similar, the sensiti-
vity of the methods varies. It appears that in
urban areas, where the postcodes are more
regular in shape, the method of postcode
intersection evaluation is appropriate. In con-
trast, in regions in which the postcodes are
irregular in their design and size methods,
threshold evaluation and individual postcode
evaluation are more appropriate. 

One of the fundamental impediments to be
overcome in the development of an effecti-
ve algorithm for the spatial analysis of disease
outbreaks in Australia is the design of the
administrative boundaries to which the data
is aggregated. Currently, the data used in this
analysis are aggregated to postcodes.
Originally, postcodes were designed to aid
the distribution of mail. This meant they were

publicly recognisable units from which it was
easy for organisations to collect and attribute
information. However, Australia Post's boun-
dary design does not adequately facilitate
spatial analysis. It is recognised that this pro-
blem may, in the future, be overcome by the
development of 'mesh blocks' (Australian
Bureau of Statistics 2004). Alternatively, within
each state or health district where address
level data is stored, point-pattern analysis
techniques may provide more accurate
results. 

3.2 Limitations

This investigation has a number of limitations.
Retrospective review is not an absolute stan-
dard. Additionally, the algorithm is based on
a number of assumptions. These assumptions
are as follows:

Calculation of Expected
Major outbreaks of RRv occurred approxima-
tely every four years between 1992 and 2004.
The multiple-year disease cycle is associated
with large variation in baseline statistics when
baseline periods of less than four years are
used due to the timing of the epidemic (1992-
1996) and inter-epidemic years. 

Consequently, the calculation of the expec-
ted number of counts and the sensitivity of
the system is highly dependent upon the
baseline chosen in the analysis and major
outbreaks during this time. One of the further
developments of the system will involve remo-
ving past outbreaks from the baseline calcu-
lation as well as integrating the results betwe-
en the three subroutines. For instance,
because the threshold evaluation is indepen-
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dent of baseline calculations these results
could be used to weight the values within the
postcode adjacency evaluation to provide a
more robust results. 

Stability of the Population
Typically, the occurrences of a disease are
expected to vary with the at-risk population.
In the simplest case, everybody is equally at
risk. More than likely, the at-risk population
varies with the demographics of the region;
for example, the percentage of children
(O'Sullivan and Unwin 2002). When direct
comparisons are made between observed
and expected counts within a region, the
assumption made is that the population and
the demographics within the population
have remained constant between the
periods of analysis. This assumption may not
be true, especially with the increasing num-
ber of coastal developments to which peo-
ple of retirement age are migrating. Further
research will involve the integration of popu-
lation statistics into the algorithm. 

NNDSS Data
The analysis in this paper is based on routinely
collected surveillance data. In using survei-
llance data, the following assumptions have
been made:

1. People acquire infection with RRv near
their homes. However, in some circumstan-
ces people acquire diseases whilst on holi-
day in areas of increased activity.

2. The analysis is based on the registration
of diagnosed cases. In reality, this may
have its limitations as it is reliant on access
to consultation by the patient, the correct
diagnosis by the doctor, appropriate and

accurate laboratory testing, and the case
being reported to authorities.

Real-time detection of outbreaks requires
that real-time data are available. Although
processing systems are constantly being
improved, it is recognised that diseases take
time to gestate and to be diagnosed.

3.3 Further Research
Testing and Evaluation

Patterns of outbreaks can vary and have a
significant impact on the performance of dif-
ferent detection methods. To improve the
sensitivity of the system for the early detection
of disease outbreaks, the algorithm thresholds
will need to be calibrated to the specific dise-
ase. One way of doing this will be to run a
temporal model in parallel to the algorithm.
The temporal model will improve the sensiti-
vity of the system to know when an outbreak
is occurring, whilst the spatial algorithm deve-
loped above will provide information on
where. 

The model derived in this research is highly
dependent upon accurate and current
expected data sets as the input for the data
analysis; however, it is recognised that this
level of data sophistication may not always
be available for surveillance. With further
research, it is anticipated that indicators such
as syndromic and sentinel indicators maybe
incorporated into the algorithm.

The selection of baseline parameters to
which the algorithm compares observed
counts is based on available historic data.
Changes in surveillance methods over time,
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including case notification methods and
case definitions, can produce apparent
changes in disease incidence when no real
change in incidence has occurred. There is
little specific information available to guide
the selection of baselines in public health sur-
veillance applications. Further research being
undertaken by the authors will explore the
influence of the selection of different baseline
periods and, thus, the influence of variations
in estimated baseline parameters on the
accurate detection of disease outbreaks. 

Temporal Analysis
The problem with detecting emerging disea-
se outbreaks using only spatial tests is the low
power to detect recently emerging clusters
(Kulldorff 2001). This problem can be partially
resolved by assigning the appropriate period
in which to undertake the analysis. However,
the appropriate number of years or cases to
include is often unknown. If too few years are
included, this might decrease the power to
detect a low-to-moderate excess risk that has
been present for considerable time. If too
many years are included, the power to
detect a very recent, high-excess cluster is
reduced. A more rigorous solution to solving
the problem is by integrating space-time
analysis techniques.

The approaches outlined in this paper are
spatial and largely ignore valuable attribute
and temporal information that is often availa-
ble. It is recognised that detection procedu-
res need to incorporate many types of evi-
dence to be effective for the early detection
of outbreaks (Wagner et al. 2000). In practice,
an epidemiologist combines the evidence in
different ways to reason about potential out-
breaks. Example datasets that aid the analyst

include demographics, historical information,
current notifications and expert knowledge.

Predictive Modelling
Once we are able to provide a descriptive
illustration of the patterns for a given point in
time, the next question of interest will be
'What will happen in the future?'. Directional
bias and associated physical distance in dise-
ase transmission are two important attributes
that can be modelled and monitored using
spatial data. One technique used to make
predictions into the future is Bayesian mode-
lling. A Bayesian model defines prior and con-
ditional probability distributions for each node
and then uses combination rules to propaga-
te conditional probability distributions through
the model. The probability distributions can
be derived from a combination of data and
expert opinion. This process of combining pro-
babilities produces conditional probabilities
for each possible outcome (Bonham-Carter
1994). This approach will be further investiga-
ted in subsequent stages of the research pro-
ject.

Implementation
Once complete, the algorithm will be incor-
porated with other spatial information - for
example, data from hospitals and schools - in
a GIS and made available to health officials.
There are a number of options for the provi-
sion of this tool. These include distributing the
Python script and providing the output files
through a secured Internet site. 

It is expected that the way to offer the analyst
the most satisfactory solution will be to provi-
de the results of the algorithm along with tools
that will allow analysts to view and review
their data to select appropriate representa-
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tions. This information coupled with their trai-
ning and expertise will then lead to the early
detection of disease outbreaks.

4. CONCLUSION

GIS can offer quantitative and statistical
measures along with visualisation tools to exa-
mine patterns of disease spread with respect
to disease clusters (Lai et al. 2004). When
applied to surveillance data in real-time, it
can also aid in monitoring and enhancing the
understanding of the transmission dynamics
of an infectious agent. This facilitates the
design, implementation and evaluation of
potential intervention strategies.

This paper identifies current problems associa-
ted with disease outbreak detection in
Australia. In response to these problems, the
primary objective of this research has been to
develop a new method through which spa-
tial analysis and surveillance data can be
used for the early detection of disease out-
breaks.

The proposed solution involves the routine
calculation of local area statistics using GIS.
Initial results indicate that the process is pro-
mising, and future research will involve testing
this algorithm with trained epidemiologists to
assess the value of using the algorithm for the
detection of disease outbreaks. At the very
least, the tool developed will extend the
capability of public health officials to analyse
the spatial distribution of routinely collected
surveillance data in Australia.
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