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The problem of path planning is studied for the case for a mobile car-like robot moving in an
environment filled with obstacles which shapes and positions are known. An algorithm based on a
description of the obstacles using a neural network is proposed, which allows to construct an almost
optimal path. The path is piecewise linear with changing directions at the corners of the obstacles.
The proposed algorithm is a signjficant improvement of the potential field algorithms because it
finds an optimal path without being trapped in local minimums and the calculation speed for the
proposed algorithm is comparatively fast. The algorithm solves the navigation problem in very
complex environments such as polygonal mazes. Simulation results show the effectiveness of the

proposed algorithm.

1 Introduction

In this paper we propose an algorithm for solv-
ing the path planning-problem for a polygonal robot
in a two-dimensional known environment, where
the obstacles are stationary polygons. The pro-
posed algorithm is in general based on the po-
tential field methods. It is well known that the
strength of these methods is that, with some lim-
ited engineering, it is possible to construct quite
efficient and relatively reliable motion planners [1].
But the potential field methods are usually incom-
plete and may fail to find a free path, even if one
exists, because they can get trapped in a local min-
imum [2, 3, 4]. Another problem with the potential
field methods is that they are not so much suitable
to generate optimal path.

Path planning for car-like robots is a funda-
mental issue in the field. In the recent years, the
navigation problem in known [1, 4] and unknown
[5, 6, 7, 8] environments was often addressed in
literature. The purpose of the path planner is to
compute a path from the start position of the vehi-
cle to the goal to be reached. The primary concern
of path planning is to compute collision-free paths.
Another important issue is to compute the optimal
path bringing the vehicle to the final position.

Lozano-Pérez and Wesley [9] have proposed an
algorithm (called VGRAPH algorithm) close to
the optimization approach, in which the path plan-

ning is accomplished by finding a path through a
graph connecting vertices of the forbidden regions
(obstacles). Their algorithm is not based on the
potential field methods but we refer it because it is
concerning the optimization problems. Hocaoglu
and Sanderson [10] have proposed an evolutionary
path planner for multidimensional paths, which
is much more effective than several existing algo-
rithms. The drawback in above works is that the
description of the all possible paths is quite com-
plicated. Because of this, even when the number
of the obstacles increases only by one, the rear-
rangement of the description becomes quite trou-
blesome and the computational cost seems to be
comparatively high.

The proposed in this paper algorithm is a sig-
nificant improvement of the proposed one by Sun
et al[4]. Tt solves the local minimum problems and
generates optimal path in relatively small num-
ber of iterations. The assumptions made in this
work are that there is finite number of station-
ary polygonal obstacles with finite number of ver-
tices, and that the robot polygon also has a fi-
nite number of vertices. In order to reduce the
problem of path planning to that of navigating a
point, the obstacles are enlarged by the robot’s
polygon dimensions to yield a new set of polyg-
onal obstacles. This “enlargement” of the obsta-
cles is a well-known method introduces formally
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by Lozano-Pérez and Wesley [9].

The paper is organized as follows. In the next
section we give a definition of the map representa-
tion. In Section 2 we describe the theoretical back-
ground for development of the algorithm. Section
3 is the central part of this paper and describes the
proposed algorithm for a path planner. In Section
4 we show the effectiveness of the proposed algo-
rithm by presenting two simulation results. In the
final section we are discussing the results and some
plans for future developments.

2 Preliminaries

In this section some preliminary results about
the description of the obstacles map and the cal-
culation of optimal path are given[4]. The section
consists of two subsections. First we show how
the obstacles are described and what kind of po-
tential function is chosen. Next, the path planner
description is presented briefly.

2.1 Obstacles description
Every obstacle is described by a neural network as
shown in Figure 1. The inputs of the network are
the coordinates of a point of a path. The output
neuron is described by the following expression,
which is called a repulsive penalty function (RPF)
and has a role of repulsive potential.

C = f(lo) (1)

where Ip is the output of the hidden layer and
takes a role of the induced local field of the neuron
function f(-).

The output neuron input is:

M
Io=">_ On, +0r (2)

m=1

where Or is a bias, equal to the negative num-
ber of the vertices of an obstacle decreased by 0.5.
This choice makes the value of Ip become less than
0.5, which assures small pseudotemperature for the
output neuron function. Op,_, in equation (2) is
the output of the m-th neuron of the middle layer
and

OH,,. = f(IHm))

where Iy _ is the input of the m-th neuron of the
middle layer and has a role of induced local field
of the neuron function. The neuron function f(-)
has the form:

1
f(z) = = (4)
where T is the pseudotemperature and the induced
local field of the neuron z is equal to Ip for equa-

m=1,...,M 3)

Output neuron

On, Hidden layer

Input layer
Fig. 1: Obstacle description network

tion (1) or equal to Iy, in the case of equation
(3). The pseudotemperature is given as:

__ Bo
T® = log(1 + t)

Finally, Iy, is given by the activating function

(5)

IH,.l = WemZi + Wym¥Yi + aHm (6)

where z; and y; are the coordinates of i-th point
of the path, w,m, and wy, are weights, and 8y,
is a bias, which is equal to the z or y coordinates
of the vertices of an obstacle. In other words the
number of the neurons in the hidden layer is equal
to the number of the vertices of an obstacle, and
every obstacle is described with a network as in
Figure 1.

Example 1: Figure 2 shows a description of
rectangle obstacle. The vertices have coordinates
(0.2,0.2), (0.8, 0.2), (0.8, 0.7), and (0.2, 0.7). The
obstacle is described by the following equations.

z-02>0
y—-02>0

-z4+08>0

-y+07>0

All the weights are chosen as shown in the figure.
2.2 Path planning

The state of the path is described by the following
energy function.

E=wE +wkE, (7)

where w; and w, are weights (w; + w. = 1), E,
depicts the squared length of the path

N-1

N-1
E = Z L? = Z ((zig1 —zi)2+(yi+1 —yi)2),(8)

=1 =1

and E, is given by the expression.

K
> ck (9)

k=1

M=

E.=
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Fig. 2: Description network for a rectangle

where N is the number of the points between the
start and goal and K is the number of the obsta-
cles.

The idea is to minimize equation (7) which
means to obtain an optimal in length path, which
does not collide with any of the obstacles. In or-
der to minimize (7) the classical function analy-
sis methods are applied. First, we find the time
derivative of E:

ENj( on oL f e
+(wz(f;§f v 3§y )+ wc; i 10
Letting
b = —n(wl<§§f+%)+w af")
o= —ntu(GE %Hw %C’k (1)

we can redefine the minimization problem as
N

dE 1 . .

&=y L@+ <o (12)
i=1

where 7 is a scaling factor. Now, from equations
(11),

oL?  oLE,

—2x;41 +4z; — 235

Ox; Oz;

21;:2 + 6;3?: = —2yiy1 +4yi — 2y (13)
and

ack aCkt 9(Io)t

1.6 - —

08 -

04+ _

Fig. 3: Trapezoidal obstacle (Example 2): the
pseudotemperatures are equal to each other, i. e.
Bm = 0.5
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Fig. 4: Form of the RPF for Example 2



210 Jianli Yu Valeri Kroumov and Hiroyuki Naridisa

M
= (U)X fu, () wky). (14)

m=1

This leads to the final form of the function:

z; = —n2w(2r; —Ticy — Tit1)
K M
+we Y F(T)NS Fir, (T, ) whnm))
k=1 m=1
i = —n2wi(2y; — Yi-1 — Yit+1)

K M
+we Y F(U)DY fia, ((Ta,)5)whn)) (15)
m=1

k=1

where f' is given by the following expressions
PO = RO 0)
() = a1 fr () (16)

In equations (15) the first member in the rights
side is for the path length optimization and the
second one is for the obstacle avoidance. '

2.3 Discussion
One of the important advantages of above algo-
rithm is that it allows parallelism in the calcula-
tions of the neural network outputs, which leads to
increasing the speed of the calculations. Unfortu-
nately, as a common problem of the potential field
algorithms, some difficulties arise in adjustment of
the pseudotemperatures in the equation (4). As
it is shown in the examples below, in some cases
the algorithm cannot produce optimal in length
path and even can generate paths which might be
unrealizable.

Example 2: A typical example is when the
shape of the obstacle is not a regular polygon. One
example is the trapezoidal shape as shown in figure
3. In this case the penalty function changes as
shown in figure 4 and as a result of this it appears
that, from the point of view of the algorithm, the
path is the shortest one and does not collide with
the obstacle (figure 3). In this case there are no
points lying inside the obstacle, but in fact the
path does not avoid the obstacle. This is because
the RPF increases faster for long edges, and forms
a maximum at the longest side. After decreasing
the value of the pseudotemperature for the long
edge a perfect avoidance is done (see figures 6 and
5). As shown in figure 5, after the decreasing the
initial value of the pseudotemperature for the long
edge, the maximum of the RPF is moved inside
the surface of the RPF and the repulsion of the
points of the path becomes as in figure 6.

Example 3: Another problem, which arises
when the above algorithm is used, is that in many

Fig. 5: The growth of the RPF with modified
pseudotemperatures for Example 2

cases the calculation may not give an optimal path.
A typical example is shown in figure 7. This usu-
ally happens because even when the path does not
collide with any obstacle the minimization proce-
dure for the repulsive part of equation (15) con-
tinues. Finally, this might lead to producing of
trajectories, which are sometimes almost unusable
or even unrealizable. In addition, it often happens
that the condition for finishing of the calculations
might not be satisfied easily, because of which the
number of the iterations increases drastically. Ac-
tually, after all the points of the path leave the
obstacles, there is no need to continue the calcula-
tions for the repulsion of the points. This is shown
in the next section.

3 Algorithm

In this section a modification of the algorithm
shown in Section 2 is proposed. The calculations
for the path are conceptually composed by the fol-
lowing steps:

1. Initial step

(a) Let the start position of the robot is
(z0,¥0), and the goal position is denoted
as (Tn-1,YN-1)-

(b) At t = 0the coordinates of the points of
the initial path (straight line) (z;,y:; =
1,2,...,N —2) are assigned as

zi=ro+i(TNn_1—20)/(N—1)
¥i=(yn-1—¥0)(Ti—Z0)/(TN-1 —Z0) +Yo (17)

i. e. the distance between the points is
equal.
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Fig. 6: Perfect obstacle avoidance for Example Fig. 7: Example 3: The path is not optimal

2: th

e initial pseudotemperatures are modified as

81 =05, 5 =0.5,08; =02, 84 =0.5 .
as explained below, are used for every layer
of the neural network. In equations (18), g,
The obstacles here are enlarged by the robot’s is a small enough so that the local minimums
polygon dimensions[9]. be continuously searched, while 7, is chosen
2. For the points (z;,y;) of the path which lie ngh bigger to allow ‘decreasmg of the num-
o . . . er of steps for reaching shorter path.
inside some obstacle, the iterations continue
according to the following equations: 3. Perform p times the calculations of step 2,
i.e. find z;(t+p), ys(t+p) (i =1,2,...,N—
& = —mQuwi(2z; — zic1 — Tig1) 2), where p is any suitable number, say p =
K . M . 100.
+we Y ' ((10))(Y Fit, ()i whm))
k=1 me=1 4. Test for convergence
¥i = —mQwi(2y; — yi—1 — Yi+1) Calculate the distance between the points
K M (zi(t), i(?)), and the points (z;(¢+p), yi(t +
+we Y F (o)) fa, ((Tn,)H)whna)),  (18) p)(i=12..,N-2),ie
k=1 m=1
i = 1,2,...,N—-2
For the points (z;,y;) situated outside th =’
or the points (z;,y;) situated outside the — ) o ($))2
obstacles, then instead of equations (18) use d ; ((@:(t +p) — ()

the following equations:

+(yi(t +p) — yi(8))?)*/? (20)

T; = —172wl(2:l:,' - Tj-1 — $i+1) 3 i

= = vt — vers) (19) o If d < £ then the algorithm terminates

Vi Mwi{2Yi = Yi-1 — Yi+1 with the conclusion that the goal is reached
i.e. for the points of the path lying outside via an optimal path.

obstacles, we continue the calculation with
the goal to minimize only the length of the
path.

o If d > ¢, then GO TO step 2

where € is a small constant, say € = 0.1.

Here equations (18) are almost the same as
equations (15) with the difference that in-
stead of only one RPF, different functions,

Here again every obstacle is described using a neu-
ral network as shown in Figure 1, but we define
different pseudotemperatures for every layer. The
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Fig. 8: Simulation 1: fp = 0.4, d = 2.03331,
w,.=0.5,w;=0.5,7;=0.1, 1,=30, 3000 iterations,
z(0) = 0.25,y(0) = 1.7, z(N-1) = 14,y(N-1) =
0.6

output neuron is described again by equation (1),
the neuron function f(-) is same as equation (4)
and the pseudotemperature is as in equation (5).
The hidden layer’s inputs are as in equation (2)
but the outputs Oy, now become

On,, = fu,.Ux,,),

with Iy becoming the induced local field of the
neuron function fy . :

1

m=1...,.M (21)

fo.Un,) = 1+ e~Trm /T ® (22)
and

_ b
T (1) = log(1 +t) #)

Finally, Iy _ is given by the activating function
(6). Note, that the equations (4) and (22) have
different pseudotemperatures which is one of the
important conditions for convergence of the algo-
rithm and generation of almost optimal path.

4 Simulation results

To show the effectiveness of the proposed in
this paper algorithm, two simulation examples are
given in this section. Figures 8 and 9 show the
results of simulation of path planning in a com-
plicated environment. The obstacles are shown in
their original shapes, i.e. without “enlargement”.

2 T I I T
12k \-/ B -
0.8 | .
I : _

0 ' ' ' '
0 04 08 12 16 2

Fig. 9: Simulation 2: Gy = 04, d = 2.5, w, =
0.5, wy = 0.5, ;; = 0.1, n, = 30, 2850 iterations,
z(0) = 0.25, y(0) = 1.75, z(N - 1) = 1.4, y(N —
1)=0.1

In these simulations the number of the points be-
tween the start position and the goal was set to
80 (comparatively small number of points). In
the both examples the values of the coefficients
in equations of the algorithm were not changed
and as shown in the figures the number of the it-
erations is small (approximately 3000 iterations).
In fact, the authors have performed several simu-
lations using different environments, in which the
obstacles were situated in many different ways. In
all the simulations the paths were successfully gen-
erated and the time for the calculations were much
smaller compared to these for the original algo-
rithm. Figure 10 shows the final shape of the RPF
for the simulation environment.

Compared to the original algorithm the pro-
posed here is not so much sensitive to the values
of the coefficients. It was confirmed by simulations
that the coefficients should be chosen as follows. 7,
can take any value between 0.1 and 0.3. 7; may
have any value between 0.1 and 30, and as big 7,
is the shortest length of the path is reached faster.
Bm may be successfully between 0.1 and 0.5.

It becomes clear from the above simulations
that the practicability of the proposed algorithm
depends on the development of some mechanism
for choosing the initial values of the pseudotem-
peratures 8,,. This is the subject of research now
in progress.
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5 Conclusions

In this paper we have proposed an algorithm,
which guarantees a planning of near optimal in
length path for car-like robots moving in a priori
known environment. The proposed algorithm con-
cerns only two-dimensional world, which is com-
paratively strong restriction. However, the de-
scription of the obstacles which we apply, allows
easily extending the algorithm for three-dimensional
environment. This will allow to construct more re-
alistic paths.

The proposed algorithm is a significant improve-
ment of the potential field algorithms because it
finds an optimal path without being trapped in
local minimums and the calculation speed for the
proposed algorithm is comparatively fast. The
algorithm solves the navigation problem in very
complex environments such as polygonal mazes.
This is because the only assumptions made are
that the obstacles are stationary polygons with
a finite number of vertices. The calculations for
the optimization of the path and these for the ob-
stacle avoidance are separated. Because of this,
when there is no need to search for a short path
the iterations can be stopped after the avoidance
is completed.

There are several problems left to be solved.
For example, when in the initial time, the start
and the goal points lie exactly on a line which co-
incide with the axis of symmetry of an obstacle,
the path collide with the obstacle. This is a com-
mon problem for most of the algorithms, based in
potential field and there is a need to take special
measures against such cases.

We have assumed throughout this paper that
the robot performs exact motion. This assumption
is not practical because the phenomenon of wheel
slippage, which creates errors between the planned
and the actual path executed by the robot. This
assumption may be omitted if a feedback for com-
parison the actual position of the robot and calcu-
lated one is introduced and if a difference occurs
a respective correction in the path be included.
We are in process of experimental realization of
the proposed algorithm using a “Khepera” car-like
robot by which we are planning to solve the prob-
lems arising when not exact motion is performed.
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