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0. Introduction

In this paper we consider an isotropic random walk on a distance-regular graph.
We describe the m-step transition probabilities of the walk in terms of the
spectral data of the graph. The distance-regularity of the graph plays an essential
role for deriving the spectral decomposition of the transition matrix of the walk

explicitly. Several examples are listed.

1. The structure of distance-regular graphs

Let G be a connected graph with vertex set V of cardinality |V|=n. The graph
distance of x, y&V is denoted by d(x, y). For x&V and jEZ., we write
S;(x)={yeV;d (x, y)=j}. The diameter of G is denoted by d. We say that G
is distance-regular if there exist b;, ¢;€Z. for 0=j=d such that |S;(y) NS;:1(x) |
=b; and | S;(») NS;-1(x) | =¢,; for any x, yEV at distance d(x, y)=,. Note that
G is a regular graph with valency by, c;=1, ¢o=b,=0, ,>0 (0=;<d) and ¢;>0
(1=j=d). Put a;=by—b;—c,; for 0=<j=d. Then a,=[S,(y) NS;(x) | where d(x, y)
=j. Let ko=1 and k;=b,- bj-;/ci -+ ¢; for 1=<j=<d. Then k,=|S;(x) | for any
xEV. We write ¢ (G)=1{by, ***, by-1; c1, ", cg} and call it the intersection array
of G. Let A;(0=i<d) be the nXn matrix with entry A;(x, y), where A;(x, y)=1
if d(x, y)=1i and 0 otherwise. Note that A,=1I and A, is the adjacency matrix
A of G. The matrix algebra A(G) of polynomials in A is called the adjacency
algebra of G. It is known ([1]) that (A)s;sq forms a basis of A(G) and

(1) AA=Eb,An (00 j=d)

where b;,=|S;(x) NS;(y) | with d(x, y)=k. Let (f;(A))os;<q4 be the sequence of

polynomials in A which is defined recursively by
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(2) fo(A)=1, fi(A)=21 and
cj+ij+1()\)+a;:fj()-)+bj—],fjvl(a):Afj(2~>

for 1£j<d—1. It follows from (1) with =1

(3) A=f;(A) for 0=j<d.

It is shown ([1]) that A has exactly d+1 distinct real eigenvalues A,=b¢> 4,> -
> A4 whose multiplicities we denote respectively by me=1, m,, -, m,. We write
SpecG={A4, ', A4; mo, ==*, my} and call it the spectra of G. Note that (1 ,)o<,<q4
are the roots of Af,(A)=a.f;(A)+bs1f;-1 (A1) and the multiplicities (m,)os,sq

are given by
d
(4) m,=n/_20 k(AR
=
Let (E)o<,<q be the complete set of projections to the eigenspaces of A. Note that

(5) EE=6,E (0=r, s=d), AE.=E,A=1.E,

trE.=m, 0=r=d) and I= éoE,.
Since A;=f;(A), the spectral decomposition of A; is given by
d
(6) A=% f,(2)E, for 0sj=d.

Let P:ép(f)A,- be any element of A(G) where p(;) EC (0<j=<d). From (6), we

can obtain

(7) Pzéop (NE,
where
®) pP=% £, )p() for 0=r=d.

To describe P"(m=0) as the linear combination of (A))o<;z,, we need the fol-

lowing two lemmas.

Lemma 1. Let F be the (d+1)X(d+1) matrix whose (r, j)-entry is f;(21,).
Put K=diag (ko, -+, ky) and M=diag (m,, **, my). Then

(9) ‘FMF=nK, that is, £ m.fi(X)f;(1)=nk5,;.
Proof. Since trA,=0 for k#0 and b;;,=k;5,,, it follows from (1)

(10) tr (AiAj)=nk,-5,~j.
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On the other hand using (6) we have AA;= gf,-(l,)f,-(l,)E,. This yields
(1 tr(AiA,«):gm,f,(l,)fj(l,).
Combining (10) with (1), we get the lemma. []
Lemma 2. The projections E, can be written as
1 E,Zn"m,éﬂ Ef(ADA, for 0=r=d.

Proof. Since E,€A(G), it follows that E,=X C,;A; for some constants C,;.
7

From (6) we conclude that C,; is the (r, j)-entry of ‘F~'. The lemma follows
immediately since ‘F '=n"'MFK ' by Lemma 1. []

d
Theorem 1. Let P=Zop (DA, be an arbitrary element of the adjacency algebra
P

A(G) of a distance-regular graph G. Then for mEZ.

13 ”‘Zépm DA;

where

(14 pe(D=n"" S m (2P (" (0=j=d)
and pP=5 £ p() O=r=d.

Proof. It follows from (7) P"=Xp(r)"E,. Using (12, we have
Pr=3p(M"n 'm, Xk f;(1,)A;
r J

=Z{n 'k Em f;(A0p (DA U

2. lIsotropic random walks on distance-regular graphs
Let (X, )n.20 be an isotropic random walk on a distance-regular graph G.
Namely (X,),=0 is a Markov chain with state space V and the l-step transition

probabilities Pr [X,.;=y | X,,=x]=P(x, y), which depend only on d(x, y). The
d
transition matrix P=(P(x, y)), ,ev can be written as PZA):ZOp (JDA,; where p (j)

d
=P(x, y) with d(x, y)=j. Note that p(}) =0 (0=j=d) and Z‘O kp () =1.
P

Theorem 2. The m-step transition probabilities P,(x, y) of the isotropic random

walk (X,)nz0 on a distance-regular graph G are

P,.(x, y)=n"'k;" gom,fj(l,)ﬁ (r)™ where d(x, y)=].
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Proof. Since P, (x, y) is the (x, y)-entry of P™ the assertion of the theorem

is a direct consequence of Theorem 1. []

Fix an arbitrary x¢&V and put Y,=d(x, X,,). Then (Y,),z0 is a Markov

chain with state space {0, -:-, d}, whose l-step transition probabilities Pr [Y,.+,
=j1Y,=il=Q(, j) are given by QC, j)=ZS( )P(x, y) where xE8;(x,). Note that
yES§{xy
N d _ d
(19 Q(l, J) —’Eo yZ‘ESi(xo) HSA(X)P(X, y) —h§0 bjhip (h).

Theorem 3. Let (Y,),z0= (d(x0, X,))mzo be the Markov chain on {0, ---, d}
where (X,,) 20 is the isotropic random walk on a distance-regular graph G. Then

the transition matrix @=(QU, ))osi jca 0Of (Yn)nzo can be written as
Q=F'PF=n"'K'‘*FMPF

where the matrices F, K, M are as in Lemma 1, and P=diag 3 (0), - p(d)).

Furthermore the m-step transition probabilities Q,(i, j) are given by
19 Quliy, D=k Emp (D", (A)f, ().
Proof. Using (4, with m=1 and (15, we can write

G, ) =n_1)r2 m.p(r) % binikn ' (X)),
From (12 and (1),

AE=n"m.E k' [L(ADAA,

=n_1m,>i3 (% biiks ' fr(A DA,

On the other hand

AE=f,(QDE=n"m, Sk [ (2 )f,(A)A,
Hence
1n % binikn fa(A )=k fi(A)f; (X).
This yields

QaG, j>=n‘1k,-‘1>}m,ﬁ (MDFADF(A) (05, j=d),

which implies @=n"'K '*FMPF=F'PF. The second assertion is clear from
Q*=F'PrF. [
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3. Examples

Keeping the preceding notations, we consider the several examples. In most of
examples, we only afford the matrix F and its inverse F~'. If you want to
compute the m-step transition probabilities p,='(p,(0), -, p,(d)) by giving
p="((0), -, p(d), you compute p=:(p0), -, p(d))=Fp and then you get
pa=F1 WO, -, p(dm.

Example 1. The complete graph K,.
t (K,)=1{n—1;1}, |VI=n, Spec(K,)={n—1, —1;1, n—1},

1 n—1
F= and F '=n"'F.
1 -1

Hence

{pm(o) } , { PO+ O-DpN"+(—-D GO —p@)™
=n
Pu(l) @+ @—Dp)™ — (O —p)™

Example 2. The complete bipartite graph K, ,.
t (K, )=1n, n—1;1, n}, |V|=2n, Spec(K, ,)=1n, 0, —n;1, 2n—2, 1},

1 n n—1 1 2n—2 1
F=1|1 0 —1|,F'=1/2n| 1 0 —1
1 —n n-—1 1 =2 1

Example 3. The triangular graph 7T (n)=J(n, 2).
() =1{2n—4, 031, 4}, IV | =(} ), Spec(T ()

={2n—4, n—4, —2:1, n—1, n(n—3)/2},

1 2n—4 (—2D(n—3)/2
F= |1 n—4 —(n—3) ,
1 -2 1
1 n—1 n(n—3)/2
F’lz(;)_l 1 i—D(-49/20—2 —nn—3)/2(—2)
|1 —2—-1)/(n—2) n/(n—2)

Example 4. The Hamming graph H(d, ¢) (d, ¢=2).
t (Hd, @)=1{bj= (q—Dd—j O=j=d—1 ;¢=j A=j=d)}, |V | =¢%,
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Spec(H(d, ) =1{1.=(q—Dd—qr 0=r=d) : m,:<q~1>r(‘j) O<r=d)},
F=(£.(2))os,. ;a where f;(1,) =% (—1)a<q—1>f-a(;)(;l_-;) and F'=g“F.

Example 5. The Petersen graph.

¢ (G)=18, 2;1, 1}, |V |=10, SpecG=1{3, 1, —2; 1, 5, 4},

1 3 6 1 5 4
F= 1 1 =2 |, F'=1/10 | 1 5/3 —8/38
1 -2 1 1 —5/3 2/3

Example 6. The Johnson graph J(14, 7).
¢ (J4, D)=1{49, 36, 25, 16, 9, 4, 1;1, 4, 9, 16, 25, 36, 49}, |V [=3432,
Spec (J (14, 7)) = {49, 35, 23, 13, 5, —1, —5, —7; 1, 13, 77, 273, 637, 1001, 1001, 429},

(1 49 441 1225 1225 441 49 1 |

1 35 189 175 —175 —189 —35 —1

1 23 51 =75 =175 51 23 1
118 -9 45 45 9 —13 -1
=1 s —a 15 15 —-21 5 1|

1 -1 -9 25  —25 9 1 -1

1 -5 9 -5 —5 9 -5 1

1 =7 21 -35 3 —-21 7 -1
1 13 71 273 637 1001 1001 429
1 65/7 253/1  507/17 65 —143/7 —T715/7 —429/7
1 39/7 187/21 -—39/7 —91/3 —143/7  143/7 143/7

13432 1 13/7 —383/7 —351/35  39/5  143/7 —143/35 —429/35‘

1 —13/7 —33/7 351/35  39/5 —143/7 —143/35  429/35
1 —39/7 187/21  39/7 —91/3  143/7  143/7 —143/7
1 —65/7 253/7 —507/7 65 143/7 —115/7 429/7
1 -13 77 —273 637  —1001 1001 —429

Example 7. The Foster graph, bipartite, antipodal 3-cover of the incidence
graph of GQ (2, 2).

t(@®=13,2,2,22,1,1,1;1,1,1,1, 2,2, 2, 3}, |V[=90,
SpecG=13, +/6, 2,1, 0, —1, —2, —+6, —3;1, 12, 9, 18, 10, 18, 9, 12, 1},



F7'=1/90
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