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Abstract

Inference on selected population is concerned with the problem of selecting the best
population among the given k populations, and then doing inference on the parameter of selected
population. Suppose independent random samples (X;q,...,X;,),i =1,..,k are drawn from
U(0,0;) — population, respectively. Let X;=max(X,..., Xj;) and X gy <X (5 << Xy be the

order statistics of X 4,..., X . The population corresponding to largest X ) (or the smallest X () is

selected and the problem of estimation the parameter 6y, (or ;) of the selected population under

generalized Stein loss function is considered. We obtain the Uniformly Minimum Risk Unbiased
(UMRU) estimator of 6, (and ;) and show that the UMRU estimator of 6, is inadmissible. For

k =2, we derive the class of all linear admissible estimators of 6, and 6, , respectively.

Keywords: Estimation after selection, Generalized Stein loss function; Natural estimator;
UMRU estimator; Uniform population

Introduction

Estimation after selection is an important estimation problem related to ranking and selection
methodology, having wide practical applications. For example, we wish to select the most
productive machine from k different types of machines and then estimate the mean of the
production of the selected machine. The problem of estimation after selection has received
considerable attention by many researchers. Some references in this area include, Rubinstein (1961),
Stein (1964), Sackrowitz and Samuel-Cahn (1987), Vellaisamy et al. (1988), Misra et al. (2006a,
2006b), Kumar and Gangopadhyay (2005), Vellaisamy (1992a, 1992b), Kumar and Kar (2001a,b),
Vellaisamy and Punnen (2002), Vellaisamy (2003), Nematollahi and Motamed-Shariati (2009,
2012), Naghizadeh and Nematollahi (2012).

Let I1,,....IT, denote k (22) independent uniform population with associated probability

density functions (p.d.f.)
f(x|9i,a)=9i_,0<xsai,9i>o, i =..k 1)
1
respectively, where 6,...,6, are unknown scale parameters. Let (X;4,...,X;,) be a random sample
of size n drawn from the ith population, and X; =max(Xiy,...,X;5), i =1,...,k . Then X; is a
complete sufficient statistic for 8, and has p.d.f.
.
f(x;10;,0)= GI” , 0<x;£6;, 6;>0, i=1,...k. (2)

i
Let X gy <---< X denote the order statistics of X,..., X . For selecting the population

corresponding to the larger (or smaller) &'s , we use natural selection rule and select the population
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corresponding to the X (or X(4)). Therefore, the scale parameter associated with the larger and
smaller selected population are given by

k k

i= ji

and
k k

0, =26 {H(l—l Xi Xj ))} 4)
i=l | j=

respectively, where
1 a>b
I (a,b) = :
@b {0 a<b ©)
In this paper, we consider the estimation of 6, and &; under the generalized Stein loss
(GSL) function given by

(3 g2 ©®)
L(h(H),é)_[h(e)J qln(h(e)j 1, q=0.

This loss is asymmetric and convex in A:% when g =1 and quasi-convex otherwise,

has a unique minimum at A=1 s scale invariant and also is useful in situations where
underestimation and overestimation have not a same penalty. The GSL function with negative g

values penalizes overestimation more than underestimation while with positive g values acts vice-
versa. As a special case, when g =1, the loss function (6) reduce to Stein loss function and when
g =-1, loss function (6) reduce to entropy loss function. For estimation the parameter of selected

population under Stein and entropy loss functions, see Nematollahi and Motamed-Shariati (2009,
2012), respectively.

It is worth mentioning that near A=1,

q 2
[ij —q |n(i]_1z£q2(i_lj '
h(0) h(6) 2 \h(®)

and for small |q| values,
q
1) o 15 2
—— | —qIn| —— |-1~=qg“(Ind—-Inh(0))".
[hw)j ) [hw)j A @)

In this article, we consider the estimation of the selected parameter of uniform population,
6y and 6y given by (3) and (4), respectively, under the GSL function (6) with h(8) =6, or

h(0)=0J .
To this end, in Section 2, we derive the Uniformly Minimum Risk Unbiased (UMRU)
estimator of 6, and &; under GSL function. In Section 3, we obtain some admissibility result in

estimation of 6, and 6;, and in Section 4, we find minimax estimator of 6, when K =2_1In
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Section 5, we show that the UMRU estimator of 6,, is inadmissible. Finally, a discussion is given in
Section 6.

UMRU estimation

Let 0=(4,....6,),and X =(Xq,..., X ) we want to estimate a function of 8, say h(6), by
an estimator 6 under the loss function L (h(8),5). Following Lehmann (1951), an estimator 5(X)
of h(0) is said to be risk-unbiased if it satisfies

E,[L(h(8), (X)) < E4[L(h(&),5(X))], VO =6. (7

Under the GSL function (6), (7) reduces to E,[s%(X)]=h%(8). So, if h(®) is a random
parameter (e.g., Gy or 6;), then the estimator &(X) is a risk-unbiased estimator of h(@) if

Eg[5% (X)]=E,[h? (0)], 8)
otherwise, it is biased and its bias is defined as
B (6) = E4[67 (X)]-E4[h% (0)]. ©)

Nematollahi and Jafari Jozani (2014), considered the UMRU estimation of the random
parameter h(8) (= 6y, or 6y ) of the selected population under the general 7 -loss function

L (h(6),5) = (»(8) - 7(h(6)))*, (10)
which has the risk-unbiased condition E [y (5(X))]=Ey[7(h(&))]. They showed that under

the uniform model (2) and under the y-loss function (6), the UMRU estimators of 6, and &; are
given by respectively.

89 (00 =7 7xgp) + -0 1_£X<k-1>J 1)
n X()
and
& (X)=r" (X(l))"'zy( (I)) X ) {%J : (12)
(i)

Since the unbiased condition under GSL function (6) is equivalent to unbiased condition
under y — loss function (10) with »(x) =x 9, then from (11) and (12) the UMRU estimators of 6,

and 65 in uniform population under GSL function are given by respectively.
1

e

X q
5U (X) =X 1_,_&_& 2 kD (13)

) X
n ®
and
1
n—q a

& (X)=X g 1+qz[x(1’] , (14)

()
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Remark 2.1. Nematollahi and Motamed-Shariati (2012) obtained UMRU estimators of 6,

and &; under entropy loss function. Their results can be obtain from (13) and (14) by taking q = -1,
Ie.,
nX(l)

Sy (X) = 63 (X) =

and

Admissibility results

Consider the case of two population, i.e., K =2, Let X, and X, be two independent
random variables such that X;, i=1,...,k has p.d.f (2). In estimation of unknown random parameter
6y and 6y under the scale invariant loss function (6), the problem is invariant under the scale group
of transformation (X;,X,) — (cX;,cX,), ¢>0. Therefore, it is natural to consider only those
estimators which are scale invariant, i.e., estimators satisfying o(cX;,cX,)=co(Xy,X,) for all
¢ > 0. We consider the subclasses

Dy ={30 (X1, X5) =X () , ¢ >0} Dy ={85 (X1, X) =cX ¢ , € >0},

" and
of invariant estimators of 6, and 6;, respectively. In this section, we will characterize

admissible estimators of 6, and 8; within the subclasses D), and D;, respectively, under the
scale invariant loss function (6). The following lemma will be useful in driving the subsequent

results.
lzmin(él,ez)
Lemma3.l Let  MaX(61,62) tnen,
X ) 2
E[ (2)j __n 0 amay g0 g5,
i O n+q (n+qg)(2n+q) 2n+q
Xa ) 2
E( (l)j S L L n A g>-n.
i) 0, n+q 2n+g (n+9)(2n+q)

X
Elm 2@ oL Lo Lo
ii) Om n 2 2n

The proof of Lemma 3.1 is given in the Appendix. In subsequent Theorems, we characterize
the admissible estimators of 6, and 65 inthe classes D), and D; , respectively.

C*_(2n+qu *_(n+qjq

1= 2=

Theorem 3.1. Let 2n and n , then under the GSL function, the
estimators dy; (Xg,X5) =cX (5 are admissible within the subclass Dy, of invariant estimators of

Oy , ifand only if ¢ e[c;,c,] and g >-n.
Proof: The risk function of &, =cX (,) is given by

Openly accessible at http://www.european-science.com 1030



http://www.european-science.com/

A. Pagheh, N. Nematollahi

cX a cX X q X
R, .0,.) =E RO —qlIn @ 4|9l 2@ _qinc—gE| In @ |4
2N eN eN o,, (15)

For fixed 4, the risk function (15) takes its minimum at ¢ =c;(4) , where

X )| ¢
c=c1(z){5[ﬁ” . (16)

From Lemma 3.1.i, it is easy to check that c;(4) is a continuous function of A and is

decreasing on (0,1]. Therefore,
1 1

supcy(4) = lim ¢;(4) :(n 4 jq , infcy(4) =cy(2) :(Zn 9 jq
0<ist  A-0° n and 0<i<l 2n

Thus any value of ¢ [c;,c,) minimize the risk function R (6, ,5,) for some values of

0<A<1 and hence such a ¢ correspondence to an admissible estimator. The admissibility of the
estimator O.r follows from the continuity of the risk function.
2

Note that for each fixed 0< A <1, the risk function R (6, ,d,.) is an increasing function of

c if ¢ >c (1) and it is a decreasing function of ¢ if ¢ <c;(4). Since ¢; <c (1) <c,, V 0<A<1,

1
we conclude that the estimators &y (Xq, X;) =cX () for c e 01(2r12zq jq U (%)q ,00 | are

inadmissible in estimating 6y, , which completes the proof.

1
Theorem 3.2. Let ¢, = (qu and ¢, :((n +q2)(22n +q)jq , then under the GSL function,
n n

the estimators d,; (X1, X;) =cX () are admissible within the subclass D; of invariant estimators of

6, ,ifand only if ¢ [c,,c5] and g >-n .
Proof: The proof is similar to the proof of Theorem 3.1.
Remark 3.1. Nematollahi and Motamed-Shariati (2012) obtained the linear admissible

estimators of 6y, and &, in the classes Dy, and D, , respectively, under the entropy loss function.
Their results can be obtain from Theorem 3.1 and 3.2 by taking q = -1, i.e., Jic (X3,X5)=cX (5 Is

admissible in the class of linear invariant estimators of 6, , if and only if 22n 130 < I 1 and
n-— n-
Opc (X1, X3) =cX () is admissible in the class of linear invariant estimators of 6y, if and only if
2
N _.< 2n

n—1 (n-D@2n-1)
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Mimimax estimator of 6y,
Let X, and X, be two independent random variables such that X ; has a p.d.f as in (2). We

want to find minimax estimator of 6y, under the loss function (6).
Following Sackrowitz and Samuel-Cahn (1987), we first find the Bayesestimator in

component problem for 8, , i =1,2. So, consider the following prior for 6, , i =1,2.
2P @)=-)b e, 6 >b, r>1. 17)
Since X; |6 has p.d.f (2), the posterior density is
(n+r=2)e M pr1  y. <p
(6 1%;) = ] i (18)
(n+r—1)9 (n+r)Xin+r 1 X; >b

It is easy to see that the Bayes estimator of & under loss function (6) is equal to
1

(L”—qub < <b
<

1
1 a n+r-1
5ﬂr‘b(xi):[E[0_q|Xijj = 1 ! (19)
i 1Yy
(w)qxi x >b
n+r-1

and the posterior risk of 57[”, (X;) is given by

5., 0) Y .. (%) 1 ntr-1 q
r(x,, 6 ., (x)=E| | = —qin| = ~1x |=In| El —x ||[+qE(I6 |x)=1n + :
4 0, 0, ,9:' n+q+r-1/ n+r-1

Since the posterior risk does not depend on X; , the Bayes risk of §”r,b (xj)is also

r (7,6 ;) =In ntr-l ), d Ci=12. (20)
7 n+g+r-1) n+r-1
Now consider Bayes estimation of &y, under GSL function. Suppose 6, i =12 are

independent and has p.d.f (17). Then from (19) and using Lemma 3.2 of Sackrowitz and Samuel-
Cahn (1987), the unique Bayes rule of 6, is given by

1
(L”—l]q b X@<b

n+r-1

é;rr,b (X]_’XZ): 1 y

n+q+r-1\q
— 1 "X X
( n+r-1 j 2 @ >b

where 7" = (z/®,z5®). Since the posterior risk (20) for the component problem is
independent of x =(X;,X,), we conclude from Theorem 3.1 of Sackrowitz and Samuel-Cahn

(1987) that the Bayes risk r*(fzr'b,ﬁﬁ,,b) of 6 rp (X1, X,) is the same as the one given in (20), i.e.,

S ) =@ S )=t T 4 gy
™ 7i n+g+r-1) n+r-1
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Now from Theorem 3.2 of Sackrowitz and Samuel-Cahn (1987), the estimator Jy; (X{, X,)
Is minimax for 6, if

R(6y .ov)<limr (z™® s . ,)=In|—— |+ (21)
OO r—1 (7 0 (n+q] n
bh—0

In the following Theorem we find the minimax estimator of 6, .

Theorem 4.1. Let X, and X, be two independent random variables such that X; has a
1

N+q.q : . :
+q)q X (2) 1s @ minimax estimator of 6, under the loss

p.d.f as in (2). Then &y (Xq,X5) =( .

function (6), when q >-n.
Proof: We have

q q
X X
R(Ou . 0w)=E urs —qIn—5M S LA A R B R
O O N oy n On

2
_n+qp_n n PLEISNLINPLE M LS SIS LINY LI L
n {n+qg (n+qg)(2n+Q) 2n+q n+q n 2 2n

ST LI P DU LI LA L LT S B L L P
n+q,/ n 2n+q 2n+q 2 2n n+q,/ n

1AL ] INSLE Lkl IR I RCI FRC PP T BT (LU T S L PO
2n+q \2n+q 2n 2 n+q/ n

2 2
Note thatg'(1) = ! q°(n+q) |_q°In4 >0 for 0<A<1, g>-n, so g(4) is a
2941 | 2n(2n+q) 2

2

strictly increasing function of 4 and g(1)<g(@) = =

—————< 0. Thus which complete the proof.
2n(2n+q)

n q
R (6 ,5 In +—
(Om 0Mm ) < (n+qJ N

Remark 4.1. Nematollahi and Motamed-Shariati (2012) obtained a minimax estimator of 6y,
under entropy loss function. Their result can be obtain from Theorem 4.1 by taking q =-1, i.e., the

estimator 5y, (Xq,X,) = (Ll)x (2) is @ minimax estimator of 6y, under the entropy loss function.
n —

Improving the UMRU estimator of O
In this section, for the case of k =2, we show that the UMRU estimator of 6y, under the
loss function (6) is inadmissible. Let

Dy ={3, 18, (X1, X5) =X w(V) }, (22)

X
whereY = ~ @ and w(-) is some real valued function defined on (0,1]. Let Z :% then
2 2
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Xl
XZ‘/’(X ) X <X, X, w(2) Z <1
2
S, (X1, X,) =X w(Y) = = 1 . (23)
Xz X,Zy(=) z=1
Xy l//(x—) X, =X, z
1

So, 6, (X1, X3) =X, 9(Z), where

v (2) Z <1
(24)

7) =

7(2) Zt//(zi) Z>1

In this section we use the technique of Brewester and Ziedeck (1974) to find estimators of
the form 5WS (X1, X3) =Xy s (Y) =X, @5 (Z), which are dominate the estimators in class (22),
3, (X1, X3) =Xy w(Y) =X, 9(2). The following theorem gives a sufficient condition for
inadmissibility of the estimators &, € Dy .

Theorem 5.1. Let X, and X, be two independent random variables such that X; has a

p.d.fasin (2). Let 5, (X1, X;) =X, ¢(Z) € Dy be an invariant estimator of 6y, . If
1

(2n+qjq 7 -1

2n

1

z (2”+qu 7 >1
2n

and Py(e(Z2) > ¢(2)) >0, vez(el,ez)eRz, then under loss function (6) the invariant
estimator 5, (X1, X;) =X, ¢(Z) is inadmissible for estimating 6y and is dominated by
Sy, (X1, X5) =X, o5 (Z) , where

o(2) e D)< (2) (26)

75 (@) =max((2),p2)) = { D Do

Proof: We have

q q
A=R(‘9M’5W)_R(‘9M’5WS)=E[(XL(Z)j _(XLS(Z)j —qln (D(Z)J

N Om »s (2)
X, ya
—E {[ﬁj (§0q (2) - (Z)) +qln fj((z))J_ Eo (Do (D)), @7
q
where DH(Z)=(¢q 2)- ot (Z))E [(;—ZJ 1Z J+q In ¢; ((ZZ)) (28)
M

Similar to Vellaisamy et al. (1988) the conditional p.d.f of X , given Z = % =z is given by
2
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6,
0,
fy iz (Xo|2)=1 * .
2|2 \2
%x%”‘lzzn 0<x2<ﬁ, >4
o] z 0,
Note that,
1
. “CE(x§1Z2=2) z<1
X, 0,
E[[e J |Z—ZJ L
M =l 9|7 _
qu(X2|Z Z) Z>1
1
From (30) we have
f 2n+q—1
[22™2 — gx, z <1
[0} 9227"
E(Xg IZ=Z):4 ﬂznxzr‘*q B B
n
_[ 92n dx, Z =1
1
For 6, <6, we conclude that
2n
2n +q O0<z<A
a g
El[X2] 1z27 =] A i<,
O 2n+q z1
2 i z >1
2n+q z1
where /I=M. Similarly for &, > 6, we have
max(é,,6,)
2n z<1
2n +qQ
q
el| 22| z=2 2N g0 qep<t
HM 2n +q
n 1,1
2n+q z4
In either cases, for g <0 we have
2n
X q —2n+ z <1 1
inf E 1z=z |= a . ,
0<A<l HM 2n 1.4 o
2n +q z4

and for g >0 we have
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(30)

(31)

(32)
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2n
X q —2n q z <1 1
sup E [—ZJ |Z=z |= = (33)
0<a<t |\ Ou an o1 A@
2n +q

Now from (26) and (27), if ¢(Z)<@(Z), then Dy(Z2)=0. For ¢ (Z) > ¢(Z), we have
o5 (Z2) = ¢, (2) , and from (28), (32) and (33) we have

q q
De(Z)Z((oq(Z)—gof(Z))(pfl(Z)—qIn (/(fl((ZZ)):(gZ((ZZ))] 4{%) ~1>0,

which completes the proof.
Corollary 5.1. For k =2, the UMRU estimator given in (13) is inadmissible and it

dominated by

1 1 i

D B 2n+q \q U B 2n+q \q a af Xa " )a 34

Sy (X)=max | X | —— s Sy (X)) | =X (pymax | 1+=-=] —= ( )
2n 2n n n{ Xg

Proof: Let

o(2) = 1 (35)

Then & (X)=X,0(2)=6,(X). Now, if Gj"d <1 then (1+9—ﬂz”jq<
n n

1 1 1 L
(Zn;qjqand if 1<Z <20 then Z (1+3—ﬂz—”jq <Z (2”2—“‘)"' . So from Theorem 5.1,
n n n n

o (X) =6, (X) is
inadmissible and dominated by

S (X=X ,max (g, (Z),0(Z))=

2n

. 1
n

| g (qu 1+ﬂ_ﬂ(ﬂ}

)q} 2n n n{Xg

Remark 5.1. Nematollahi and Motamed-Shariati (2012) found improved estimator of 6,
under entropy loss function. Their result can be obtain from Theorem 5.1 by taking q =-1, i.e., the
estimator dominate the UMRU estimator of 6,, under entropy loss function.

1
szax[z(znﬂ)q ,Z(1+ﬂ-ﬂi
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2n n

2n-1" n
X
n —1+[(1)]
X (2)

Discussion and Conclusion
In this paper, we find UMRU estimator and admissible linear estimators of 6, and &; under

the GSL function (6) in selected uniform population. Also, minimax estimator of 6,, and
dominating estimator of UMRU estimator of 6y, were obtained under GSL function. For selected

Pareto distribution, similar results could be obtained. Also, when q =1, the GSL function reduce to
Stein loss function and in this case we have the following results

§¢ =X (2) max

n

X X (k=

0] 5& (X) :% n +1—(%} Is UMRU estimator of 6y, (Misra and Mulen , 2001).
()

-1
X K (X )
(i) oY (X) = -2 n—z(ﬂ] is UMRU estimator of #; (Misra and Mulen, 2001).

izl %)

(i) oy (Xq,X3) =CX (5 is admissible in the class of linear invariant estimators of 6 , if

2n+1<C<n+1
n

(iv) Oyc (X1, X5) =€X gy is admissible in the class of linear invariant estimators of 6, , if and

(n+1(2n +1)

2n?

(V) oy (X1, X5) = (n—+1)X (2) Is minimax estimator of 6, .

and only if

only if 12 <c <
n

: : : X(2) X ) oo
(vi) The UMRU estimator of 6y, , i.e., 5,\U,| (X) = n+1- o is inadmissible and
(2

dominated by

n
X
52 =X ;o max 2n+1’£ n+1—| —@
M ) 2n n X (2
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Appendix
Proof of lemma 3.1.

(Dﬁ%>%mm,

X o o a .n-1 _.,n-1
(2) J' 2 ( J nX1 nX2 XmdXZ +J‘ > IXZ (ﬁj nX1 nX2 XmdXZ
o 6’2" 07016 6;

n n? 6, LN 6 Y
n+q T (n+q)(2n+q) 6, 2n+ql 6 )

g}

Similarly, for <6 we have

EX(Z)q_ n ) n2 ﬁn+q+ n ﬁn
O n+q (n+g)2n+q)l 6, 2n+ql 6, )

X 2 A n? n
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where

anﬁ@>%mm
n-1 n-1

X q
\6) o 9” ‘91 ‘91 03
n n? 6?2 n (6 "
n+q (n+q)(2n+q) ] 2n+q 6 )
Similar result can be obtain for o< 92. Therefore,

Xo) n n? n
E — + ﬂn+q __ﬂ’n
6, n+gqg (n+qg)(2n+qQ) 2n +q

(iii) See Nematollahi and Motamed-Shariati (2012).
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