provided by European Online Journal of Natural and So

Inference on Selected Population under Generalized Stein Loss Function

A. Pagheh^{1*}, N. Nematollahi²

¹Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran ²Department of Statistics, Allameh Tabataba'i University, Tehran, Iran *E-mail: pagheh@gmail.com

Abstract

Inference on selected population is concerned with the problem of selecting the best population among the given k populations, and then doing inference on the parameter of selected population. Suppose independent random samples $(X_{i1}, ..., X_{in}), i = 1, ..., k$ are drawn from $U(0, \theta_i)$ – population, respectively. Let $X_i = \max(X_{i1}, ..., X_{in})$ and $X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(k)}$ be the order statistics of $X_1, ..., X_k$. The population corresponding to largest $X_{(k)}$ (or the smallest $X_{(1)}$) is selected and the problem of estimation the parameter θ_M (or θ_J) of the selected population under generalized Stein loss function is considered. We obtain the Uniformly Minimum Risk Unbiased (UMRU) estimator of θ_M (and θ_J) and show that the UMRU estimator of θ_M is inadmissible. For k = 2, we derive the class of all linear admissible estimators of θ_M and θ_J , respectively.

Keywords: Estimation after selection, Generalized Stein loss function; Natural estimator; UMRU estimator; Uniform population

Introduction

Estimation after selection is an important estimation problem related to ranking and selection methodology, having wide practical applications. For example, we wish to select the most productive machine from k different types of machines and then estimate the mean of the production of the selected machine. The problem of estimation after selection has received considerable attention by many researchers. Some references in this area include, Rubinstein (1961), Stein (1964), Sackrowitz and Samuel-Cahn (1987), Vellaisamy et al. (1988), Misra et al. (2006a, 2006b), Kumar and Gangopadhyay (2005), Vellaisamy (1992a, 1992b), Kumar and Kar (2001a,b), Vellaisamy and Punnen (2002), Vellaisamy (2003), Nematollahi and Motamed-Shariati (2009, 2012), Naghizadeh and Nematollahi (2012).

Let $\Pi_1, ..., \Pi_k$ denote k (≥ 2) independent uniform population with associated probability density functions (p.d.f.)

$$f(\mathbf{x} \mid \theta_i, \sigma) = \frac{1}{\theta_i}, \ 0 < x \le \theta_i, \ \theta_i > 0, \ i =, ..., \mathbf{k},$$
(1)

respectively, where $\theta_1,...,\theta_k$ are unknown scale parameters. Let $(X_{i1},...,X_{in})$ be a random sample of size n drawn from the ith population, and $X_i = \max(X_{i1},...,X_{in})$, i = 1,...,k. Then X_i is a complete sufficient statistic for θ_i and has p.d.f.

$$f(x_i|\theta_i,\sigma) = \frac{nx_i^{n-1}}{\theta_i^n}, \quad 0 < x_i \pounds \theta_i, \quad \theta_i > 0, \quad i = 1,...,k.$$

$$(2)$$

Let $X_{(1)} \leq \cdots \leq X_{(k)}$ denote the order statistics of X_1, \dots, X_k . For selecting the population corresponding to the larger (or smaller) θ_i 's, we use natural selection rule and select the population

corresponding to the $X_{(k)}$ (or $X_{(1)}$). Therefore, the scale parameter associated with the larger and smaller selected population are given by

$$\theta_{M} = \sum_{i=1}^{k} \theta_{i} \left\{ \prod_{j \neq i}^{k} I(\mathbf{X}_{i}, \mathbf{X}_{j}) \right\}$$
(3)

and

$$\theta_J = \sum_{i=1}^k \theta_i \left\{ \prod_{j \neq i}^k (1 - I(\mathbf{X}_i, \mathbf{X}_j)) \right\},\tag{4}$$

respectively, where

$$I(\mathbf{a},\mathbf{b}) = \begin{cases} 1 & a \ge b \\ 0 & a < b \end{cases}$$
(5)

In this paper, we consider the estimation of θ_M and θ_J under the generalized Stein loss (GSL) function given by

$$L(\mathbf{h}(\theta), \delta) = \left(\frac{\delta}{h(\theta)}\right)^q - q \ln\left(\frac{\delta}{h(\theta)}\right) - 1, \qquad q \neq 0.$$
(6)

This loss is asymmetric and convex in $\Delta = \frac{\delta}{h(\theta)}$ when q = 1 and quasi-convex otherwise,

has a unique minimum at $\Delta = 1$, is scale invariant and also is useful in situations where underestimation and overestimation have not a same penalty. The GSL function with negative qvalues penalizes overestimation more than underestimation while with positive q values acts viceversa. As a special case, when q = 1, the loss function (6) reduce to Stein loss function and when q = -1, loss function (6) reduce to entropy loss function. For estimation the parameter of selected population under Stein and entropy loss functions, see Nematollahi and Motamed-Shariati (2009, 2012), respectively.

It is worth mentioning that near $\Delta = 1$,

$$\left(\frac{\delta}{h(\theta)}\right)^{q} - q \ln\left(\frac{\delta}{h(\theta)}\right) - 1 \approx \frac{1}{2}q^{2}\left(\frac{\delta}{h(\theta)} - 1\right)^{2},$$

and for small |q| values,

$$\left(\frac{\delta}{h(\theta)}\right)^{q} - q \ln\left(\frac{\delta}{h(\theta)}\right) - 1 \approx \frac{1}{2}q^{2} \left(\ln \delta - \ln h(\theta)\right)^{2}.$$

In this article, we consider the estimation of the selected parameter of uniform population, θ_M and θ_J given by (3) and (4), respectively, under the GSL function (6) with $h(\theta) = \theta_M$ or $h(\theta) = \theta_I$.

To this end, in Section 2, we derive the Uniformly Minimum Risk Unbiased (UMRU) estimator of θ_M and θ_J under GSL function. In Section 3, we obtain some admissibility result in estimation of θ_M and θ_J , and in Section 4, we find minimax estimator of θ_M when k = 2. In

Section 5, we show that the UMRU estimator of θ_M is inadmissible. Finally, a discussion is given in Section 6.

UMRU estimation

Let $\theta = (\theta_1, ..., \theta_k)$, and $X = (X_1, ..., X_k)$ we want to estimate a function of θ , say $h(\theta)$, by an estimator δ under the loss function $L(h(\theta), \delta)$. Following Lehmann (1951), an estimator $\delta(\mathbf{X})$ of $h(\theta)$ is said to be risk-unbiased if it satisfies

$$E_{\theta}[L(h(\theta), \delta(\mathbf{X}))] \le E_{\theta}[L(h(\theta'), \delta(\mathbf{X}))], \quad \forall \theta' \neq \theta.$$
(7)

Under the GSL function (6), (7) reduces to $E_{\theta}[\delta^q(\mathbf{X})] = h^q(\theta)$. So, if $h(\theta)$ is a random parameter (e.g., θ_M or θ_J), then the estimator $\delta(\mathbf{X})$ is a risk-unbiased estimator of $h(\theta)$ if

$$E_{\theta}[\delta^{q}(\mathbf{X})] = E_{\theta}[h^{q}(\theta)], \tag{8}$$

otherwise, it is biased and its bias is defined as

$$B(\delta) = E_{\theta}[\delta^{q}(\mathbf{X})] - E_{\theta}[h^{q}(\theta)].$$
⁽⁹⁾

Nematollahi and Jafari Jozani (2014), considered the UMRU estimation of the random parameter $h(\theta) (= \theta_M \text{ or } \theta_J)$ of the selected population under the general γ -loss function

$$L(\mathbf{h}(\theta), \delta) = (\gamma(\delta) - \gamma(\mathbf{h}(\theta)))^2, \tag{10}$$

which has the risk-unbiased condition $E_{\theta}[\gamma(\delta(X))] = E_{\theta}[\gamma(h(\theta))]$. They showed that under the uniform model (2) and under the γ -loss function (6), the UMRU estimators of θ_M and θ_J are given by respectively.

$$\delta_{M}^{U}(\mathbf{X}) = \gamma^{-1} \left(\gamma(\mathbf{X}_{(k)}) + \frac{\gamma'(\mathbf{X}_{(k)})}{n} X_{(k)} \left(1 - \left(\frac{\mathbf{X}_{(k-1)}}{\mathbf{X}_{(k)}} \right)^{n} \right) \right)$$
(11)

and

$$\delta_J^U(\mathbf{X}) = \gamma^{-1} \left(\gamma(X_{(1)}) + \sum_{i=1}^k \frac{\gamma'(X_{(i)})}{n} X_{(i)} \left(\frac{X_{(1)}}{X_{(i)}} \right)^n \right), \tag{12}$$

Since the unbiased condition under GSL function (6) is equivalent to unbiased condition under γ – loss function (10) with $\gamma(\mathbf{x}) = x^{q}$, then from (11) and (12) the UMRU estimators of θ_{M} and θ_{I} in uniform population under GSL function are given by respectively.

1

$$\delta_{M}^{U}(\mathbf{X}) = X_{(k)} \left(1 + \frac{q}{n} - \frac{q}{n} \left(\frac{X_{(k-1)}}{X_{(k)}} \right)^{n} \right)^{\frac{1}{q}}$$
(13)

and

$$\delta_J^U(\mathbf{X}) = X_{(1)} \left(1 + \frac{q}{n} \sum_{i=1}^k \left(\frac{X_{(1)}}{X_{(i)}} \right)^{n-q} \right)^{\frac{1}{q}}, \tag{14}$$

Openly accessible at http://www.european-science.com

1029

Remark 2.1. Nematollahi and Motamed-Shariati (2012) obtained UMRU estimators of θ_M and θ_J under entropy loss function. Their results can be obtain from (13) and (14) by taking q = -1, i.e.,

Admissibility results

Consider the case of two population, i.e., k = 2. Let X_1 and X_2 be two independent random variables such that X_i , i = 1,...,k has p.d.f (2). In estimation of unknown random parameter θ_M and θ_J under the scale invariant loss function (6), the problem is invariant under the scale group of transformation $(X_1, X_2) \rightarrow (cX_1, cX_2), c > 0$. Therefore, it is natural to consider only those estimators which are scale invariant, i.e., estimators satisfying $\delta(cX_1, cX_2) = c\delta(X_1, X_2)$ for all c > 0. We consider the subclasses

 $D_{M} = \left\{ \delta_{lc} (\mathbf{X}_{1}, \mathbf{X}_{2}) = cX_{(2)} , c > 0 \right\}, \text{ and } D_{J} = \left\{ \delta_{2c} (\mathbf{X}_{1}, \mathbf{X}_{2}) = cX_{(1)} , c > 0 \right\},$

of invariant estimators of θ_M and θ_J , respectively. In this section, we will characterize admissible estimators of θ_M and θ_J within the subclasses D_M and D_J , respectively, under the scale invariant loss function (6). The following lemma will be useful in driving the subsequent results.

Lemma 3.1. Let

$$\lambda = \frac{\min(\theta_1, \theta_2)}{\max(\theta_1, \theta_2)}, \text{ then,}$$
i)

$$E\left(\frac{X_{(2)}}{\theta_M}\right)^q = \frac{n}{n+q} - \frac{n^2}{(n+q)(2n+q)}\lambda^{n+q} + \frac{n}{2n+q}\lambda^n, \quad q > -n.$$
ii)

$$E\left(\frac{X_{(1)}}{\theta_J}\right)^q = \frac{n}{n+q} - \frac{n}{2n+q}\lambda^n + \frac{n^2}{(n+q)(2n+q)}\lambda^{n+q}, \quad q > -n.$$
iii)

$$E\left(\ln\left(\frac{X_{(2)}}{\theta_M}\right)\right) = -\frac{1}{n} - \frac{1}{2}\lambda^n \ln \lambda + \frac{1}{2n}\lambda^n.$$

The proof of Lemma 3.1 is given in the Appendix. In subsequent Theorems, we characterize the admissible estimators of θ_M and θ_J in the classes D_M and D_J , respectively.

$$c_1^* = \left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}$$
 and $c_2^* = \left(\frac{n+q}{n}\right)^{\frac{1}{q}}$.

Theorem 3.1. Let (2n) and (n), then under the GSL function, the estimators $\delta_{lc}(X_1, X_2) = cX_{(2)}$ are admissible within the subclass D_M of invariant estimators of θ_M , if and only if $c \in [c_1^*, c_2^*]$ and q > -n.

Proof: The risk function of $\delta_{lc} = cX_{(2)}$ is given by

$$R(\theta_{M}, \delta_{1c}) = E\left(\left(\frac{cX_{(2)}}{\theta_{M}}\right)^{q} - q \ln \frac{cX_{(2)}}{\theta_{M}} - 1\right) = c^{q} E\left(\frac{X_{(2)}}{\theta_{M}}\right)^{q} - q \ln c - q E\left(\ln \frac{X_{(2)}}{\theta_{M}}\right) - 1$$
(15)

For fixed λ , the risk function (15) takes its minimum at $c = c_1(\lambda)$, where

$$c = c_1(\lambda) = \left[E\left(\frac{X_{(2)}}{\theta_M}\right)^q \right]^{-\frac{1}{q}}.$$
(16)

From Lemma 3.1.i, it is easy to check that $c_1(\lambda)$ is a continuous function of λ and is decreasing on (0,1]. Therefore,

$$\sup_{\substack{0<\lambda\leq 1\\0<\lambda\leq 1}} c_1(\lambda) = \lim_{\lambda\to 0^+} c_1(\lambda) = \left(\frac{n+q}{n}\right)^{\frac{1}{q}}, \qquad \text{and} \qquad \inf_{\substack{0<\lambda\leq 1\\0<\lambda\leq 1}} c_1(1) = \left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}$$

Thus any value of $c \in [c_1^*, c_2^*)$ minimize the risk function $R(\theta_M, \delta_{lc})$ for some values of $0 < \lambda \le 1$ and hence such a *c* correspondence to an admissible estimator. The admissibility of the estimator $\delta_{lc_2^*}$ follows from the continuity of the risk function.

Note that for each fixed $0 < \lambda \le 1$, the risk function $R(\theta_M, \delta_{lc})$ is an increasing function of c if $c > c_1(\lambda)$ and it is a decreasing function of c if $c < c_1(\lambda)$. Since $c_1^* \le c_1(\lambda) \le c_2^*$, $\forall 0 < \lambda \le 1$, we conclude that the estimators $\delta_{lc}(X_1, X_2) = cX_{(2)}$ for $c \in \left(0, \left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}\right) \cup \left(\left(\frac{n+q}{n}\right)^{\frac{1}{q}}, \infty\right)$ are

inadmissible in estimating θ_M , which completes the proof.

Theorem 3.2. Let $c_2^* = \left(\frac{n+q}{n}\right)^{\frac{1}{q}}$ and $c_3^* = \left(\frac{(n+q)(2n+q)}{2n^2}\right)^{\frac{1}{q}}$, then under the GSL function,

the estimators $\delta_{2c}(X_1, X_2) = cX_{(1)}$ are admissible within the subclass D_J of invariant estimators of θ_J , if and only if $c \in [c_2^*, c_3^*]$ and q > -n.

Proof: The proof is similar to the proof of Theorem 3.1.

Remark 3.1. Nematollahi and Motamed-Shariati (2012) obtained the linear admissible estimators of θ_M and θ_J in the classes D_M and D_J , respectively, under the entropy loss function. Their results can be obtain from Theorem 3.1 and 3.2 by taking q = -1, i.e., $\delta_{lc}(X_1, X_2) = cX_{(2)}$ is admissible in the class of linear invariant estimators of θ_M , if and only if $\frac{2n}{2n-1} \le c \le \frac{n}{n-1}$, and $\delta_{2c}(X_1, X_2) = cX_{(1)}$ is admissible in the class of linear invariant estimators of θ_J , if and only if $\frac{n}{n-1} \le c \le \frac{2n^2}{(n-1)(2n-1)}$.

Mimimax estimator of θ_M

Let X_1 and X_2 be two independent random variables such that X_i has a p.d.f as in (2). We want to find minimax estimator of θ_M under the loss function (6).

Following Sackrowitz and Samuel-Cahn (1987), we first find the Bayesestimator in component problem for θ_i , i = 1, 2. So, consider the following prior for θ_i , i = 1, 2.

$$\pi_i^{r,b}(\theta_i) = (r-1)b^{r-1}\theta_i^{-r}, \quad \theta_i > b, \quad r > 1.$$
(17)

Since $X_i | \theta_i$ has p.d.f (2), the posterior density is

$$\pi(\theta_i \mid X_i) = \begin{cases} (n+r-1)\theta^{-(n+r)}b^{n+r-1} & x_i \le b\\ (n+r-1)\theta^{-(n+r)}x_i^{n+r-1} & x_i > b \end{cases}$$
(18)

It is easy to see that the Bayes estimator of θ_i under loss function (6) is equal to

$$\delta_{\pi^{r,b}}(\mathbf{x}_{i}) = \left(E\left(\frac{1}{\theta_{i}^{q}} \mid x_{i}\right)\right)^{-\frac{1}{q}} = \begin{cases} \left(\frac{n+q+r-1}{n+r-1}\right)^{\frac{1}{q}} b & x_{i} \le b \\ \\ \left(\frac{n+q+r-1}{n+r-1}\right)^{\frac{1}{q}} x_{i} & x_{i} > b \end{cases}$$
(19)

and the posterior risk of $\delta_{\pi^{r,b}}(\mathbf{x}_i)$ is given by

$$r(\mathbf{x}_{i}, \delta_{\pi^{r,b}}(\mathbf{x}_{i})) = \mathbb{E}\left(\left(\frac{\delta_{\pi^{r,b}}(\mathbf{x}_{i})}{\theta_{i}}\right)^{q} - q \ln\left(\frac{\delta_{\pi^{r,b}}(\mathbf{x}_{i})}{\theta_{i}}\right) - 1 \mid x_{i}\right) = \ln\left(\mathbb{E}\left(\frac{1}{\theta_{i}^{q}} \mid x_{i}\right)\right) + q \mathbb{E}\left(\ln \theta_{i} \mid x_{i}\right) = \ln\left(\frac{n+r-1}{n+q+r-1}\right) + \frac{q}{n+r-1}$$

Since the posterior risk does not depend on x_i , the Bayes risk of $\delta_{\pi^{r,b}}(\mathbf{x}_i)$ is also

$$r^{*}(\pi_{i}^{r,b},\delta_{\pi_{i}^{r,b}}) = \ln\left(\frac{n+r-1}{n+q+r-1}\right) + \frac{q}{n+r-1}, \quad i = 1,2.$$
(20)

Now consider Bayes estimation of θ_M under GSL function. Suppose θ_i , i = 1, 2 are independent and has p.d.f (17). Then from (19) and using Lemma 3.2 of Sackrowitz and Samuel-Cahn (1987), the unique Bayes rule of θ_M is given by

$$\delta_{\pi^{r,b}}(X_{1}, X_{2}) = \begin{cases} \left(\frac{n+q+r-1}{n+r-1}\right)^{\frac{1}{q}}b & X_{(2)} \le b \\ \left(\frac{n+q+r-1}{n+r-1}\right)^{\frac{1}{q}}X_{(2)} & X_{(2)} > b \end{cases}$$

where $\pi^{r,b} = (\pi_1^{r,b}, \pi_2^{r,b})$. Since the posterior risk (20) for the component problem is independent of $x = (x_1, x_2)$, we conclude from Theorem 3.1 of Sackrowitz and Samuel-Cahn (1987) that the Bayes risk $r^*(\pi^{r,b}, \delta_{\pi^{r,b}})$ of $\delta_{\pi^{r,b}}(X_1, X_2)$ is the same as the one given in (20), i.e.,

$$r^{*}(\pi^{r,b},\delta_{\pi^{r,b}}) = r^{*}(\pi^{r,b}_{i},\delta_{\pi^{r,b}_{i}}) = \ln\left(\frac{n+r-1}{n+q+r-1}\right) + \frac{q}{n+r-1}, \quad i = 1,2.$$

Now from Theorem 3.2 of Sackrowitz and Samuel-Cahn (1987), the estimator $\delta_M(X_1, X_2)$ is minimax for θ_M if

$$R(\theta_M, \delta_M) \le \lim_{\substack{r \to 1 \\ b \to 0}} r^*(\pi^{r,b}, \delta_{\pi^{r,b}}) = \ln\left(\frac{n}{n+q}\right) + \frac{q}{n}$$
(21)

In the following Theorem we find the minimax estimator of θ_M .

Theorem 4.1. Let X_1 and X_2 be two independent random variables such that X_i has a

p.d.f as in (2). Then $\delta_M(X_1, X_2) = (\frac{n+q}{n})^{\frac{1}{q}} X_{(2)}$ is a minimax estimator of θ_M under the loss function (6), when q > -n.

Proof: We have

$$\begin{split} R(\theta_M, \delta_M) &= \mathrm{E}\left(\left(\frac{\delta_M}{\theta_M}\right)^q - q \ln \frac{\delta_M}{\theta_M} - 1\right) = \frac{n+q}{n} E\left(\frac{X_{(2)}}{\theta_M}\right)^q - \ln \frac{n+q}{n} - q E\left(\ln \frac{X_{(2)}}{\theta_M}\right) - 1 \\ &= \frac{n+q}{n} \left(\frac{n}{n+q} - \frac{n^2}{(n+q)(2n+q)} \lambda^{n+q} + \frac{n}{2n+q} \lambda^n\right) + \ln\left(\frac{n}{n+q}\right) + q(\frac{1}{n} + \frac{1}{2} \lambda^n \ln \lambda - \frac{1}{2n} \lambda^n) - 1 \\ &= \ln\left(\frac{n}{n+q}\right) + \frac{q}{n} - \frac{n}{2n+q} \lambda^{n+q} + \frac{n+q}{2n+q} \lambda^n + \frac{q}{2} \lambda^n \ln \lambda - \frac{q}{2n} \lambda^n = \ln\left(\frac{n}{n+q}\right) + \frac{q}{n} \\ &+ \lambda^{n+q} \left(-\frac{n}{2n+q} + \left(\frac{n+q}{2n+q} - \frac{q}{2n}\right) \lambda^{-q} + \frac{q}{2} \lambda^{-q} \ln \lambda\right) = \ln\left(\frac{n}{n+q}\right) + \frac{q}{n} + \lambda^{n+q} g(\lambda) \\ &\text{Note that } g'(\lambda) = \frac{1}{\lambda^{q+1}} \left\{ \left(\frac{q^2(n+q)}{2n(2n+q)}\right) - \frac{q^2 \ln \lambda}{2} \right\} > 0 \quad \text{for } 0 < \lambda \le 1, \ q > -n \,, \text{ so } g(\lambda) \text{ is a} \end{split}$$

strictly increasing function of λ and $g(\lambda) \le g(1) = \frac{-q^2}{2n(2n+q)} < 0$. Thus which complete the proof.

$$R\left(\theta_{M},\delta_{M}\right) < \ln\left(\frac{n}{n+q}\right) + \frac{q}{n},$$

Remark 4.1. Nematollahi and Motamed-Shariati (2012) obtained a minimax estimator of θ_M under entropy loss function. Their result can be obtain from Theorem 4.1 by taking q = -1, i.e., the estimator $\delta_M(X_1, X_2) = (\frac{n}{n-1})X_{(2)}$ is a minimax estimator of θ_M under the entropy loss function.

Improving the UMRU estimator of θ_M

In this section, for the case of k = 2, we show that the UMRU estimator of θ_M under the loss function (6) is inadmissible. Let

$$D_{U} = \left\{ \delta_{\psi} : \delta_{\psi}(X_{1}, X_{2}) = X_{(2)} \psi(Y) \right\},$$
(22)
$$X_{(1)}$$

$$X_{(1)}$$

where
$$Y = \frac{X_{(1)}}{X_{(2)}}$$
 and $\psi(\cdot)$ is some real valued function defined on (0,1]. Let $Z = \frac{X_1}{X_2}$ then

Openly accessible at http://www.european-science.com

1033

$$\delta_{\psi}(\mathbf{X}_{1},\mathbf{X}_{2}) = \mathbf{X}_{(2)} \psi(\mathbf{Y}) = \begin{cases} \mathbf{X}_{2} \psi(\frac{\mathbf{X}_{1}}{\mathbf{X}_{2}}) & \mathbf{X}_{1} < \mathbf{X}_{2} \\ \mathbf{X}_{1} \psi(\frac{\mathbf{X}_{2}}{\mathbf{X}_{1}}) & \mathbf{X}_{1} \ge \mathbf{X}_{2} \end{cases} = \begin{cases} \mathbf{X}_{2} \psi(\mathbf{Z}) & \mathbf{Z} < 1 \\ \mathbf{X}_{2} \mathbf{Z} \psi(\frac{1}{\mathbf{Z}}) & \mathbf{Z} \ge 1 \end{cases}$$
(23)

So,
$$\delta_{\psi}(X_1, X_2) = X_2 \varphi(Z)$$
, where

$$\varphi(Z) = \begin{cases} \psi(Z) & Z < 1 \\ Z \psi(\frac{1}{Z}) & Z \ge 1 \end{cases}$$
(24)

In this section we use the technique of Brewester and Ziedeck (1974) to find estimators of the form $\delta_{\psi_S}(X_1, X_2) = X_{(2)} \psi_S(Y) = X_2 \varphi_S(Z)$, which are dominate the estimators in class (22), $\delta_{\psi}(X_1, X_2) = X_{(2)} \psi(Y) = X_2 \varphi(Z)$. The following theorem gives a sufficient condition for inadmissibility of the estimators $\delta_{\psi} \in D_U$.

Theorem 5.1. Let X_1 and X_2 be two independent random variables such that X_i has a p.d.f as in (2). Let $\delta_{\psi}(X_1, X_2) = X_2 \varphi(Z) \in D_U$ be an invariant estimator of θ_M . If

$$\varphi_{1}(Z) = \begin{cases} \left(\frac{2n+q}{2n}\right)^{\frac{1}{q}} & Z < 1\\ Z\left(\frac{2n+q}{2n}\right)^{\frac{1}{q}} & Z \ge 1 \end{cases}$$
(25)

and $P_{\theta}(\varphi(Z) > \varphi_1(Z)) > 0$, $\forall \theta = (\theta_1, \theta_2) \in \mathbb{R}^2$, then under loss function (6) the invariant estimator $\delta_{\psi}(X_1, X_2) = X_2 \varphi(Z)$ is inadmissible for estimating θ_M and is dominated by $\delta_{\psi_S}(X_1, X_2) = X_2 \varphi_S(Z)$, where

$$\varphi_{S}(Z) = \max(\varphi_{1}(Z), \varphi(Z)) = \begin{cases} \varphi_{1}(Z) & \varphi(Z) \le \varphi_{1}(Z) \\ \varphi(Z) & \varphi(Z) > \varphi_{1}(Z) \end{cases}$$
(26)

Proof: We have

$$\Delta = R(\theta_M, \delta_{\psi}) - R(\theta_M, \delta_{\psi_S}) = E\left(\left(\frac{X_2\varphi(Z)}{\theta_M}\right)^q - \left(\frac{X_2\varphi_S(Z)}{\theta_M}\right)^q - q\ln\frac{\varphi(Z)}{\varphi_S(Z)}\right)$$

$$= E\left[\left(\frac{X_2}{\theta_M}\right)^q \left(\varphi^q(\mathbf{Z}) - \varphi^q_S(\mathbf{Z})\right) + q \ln \frac{\varphi_S(\mathbf{Z})}{\varphi(\mathbf{Z})}\right] = E_\theta\left(D_\theta(\mathbf{Z})\right),\tag{27}$$

where
$$D_{\theta}(Z) = \left(\varphi^{q}(Z) - \varphi^{q}_{S}(Z)\right) E\left(\left(\frac{X_{2}}{\theta_{M}}\right)^{q} \mid Z\right) + q \ln \frac{\varphi_{S}(Z)}{\varphi(Z)}$$
 (28)

Similar to Vellaisamy et al. (1988) the conditional p.d.f of X_2 given $Z = \frac{X_1}{X_2} = z$ is given by

$$f_{X_{2}|Z}(\mathbf{x}_{2} \mid \mathbf{z}) = \begin{cases} \frac{2n}{\theta_{1}^{2n}} x_{2}^{2n-1} & 0 < x_{2} < \theta_{2}, \ 0 < z < \frac{\theta_{1}}{\theta_{2}} \\ \frac{2n}{\theta_{1}^{2n}} x_{2}^{2n-1} z^{2n} & 0 < x_{2} < \frac{\theta_{1}}{z}, \ z > \frac{\theta_{1}}{\theta_{2}} \end{cases}.$$
(29)

Note that,

$$E\left(\left(\frac{X_2}{\theta_M}\right)^q \mid Z=z\right) = \begin{cases} \frac{1}{\theta_2^q} E\left(X_2^q \mid Z=z\right) & Z < 1\\ \frac{1}{\theta_1^q} E\left(X_2^q \mid Z=z\right) & Z \ge 1 \end{cases}$$
(30)

From (30) we have

$$E\left(\mathbf{X}_{2}^{q} \mid \mathbf{Z}=z\right) = \begin{cases} \int_{0}^{\theta_{2}} \frac{2nx_{2}^{2n+q-1}}{\theta_{2}^{2n}} dx_{2} \quad \mathbf{Z}<1\\ \int_{0}^{\theta_{1}} \frac{2nx_{2}^{2n+q-1}}{\theta_{1}^{2n}} z^{2n} dx_{2} \mathbf{Z} \ge 1 \end{cases} = \begin{cases} \frac{2n}{2n+q} \theta_{2}^{q} \quad \mathbf{Z}<\frac{\theta_{1}}{\theta_{2}} \\ \frac{2n}{2n+q} \theta_{2}^{q} \quad \mathbf{Z}>\frac{\theta_{1}}{\theta_{2}} \\ \frac{2n}{2n+q} \frac{\theta_{1}^{q}}{z^{q}} \quad \mathbf{Z}>\frac{\theta_{1}}{\theta_{2}} \end{cases}$$
(31)

For $\theta_1 < \theta_2$ we conclude that

$$E\left(\left(\frac{X_2}{\theta_M}\right)^q \mid Z=z\right) = \begin{cases} \frac{2n}{2n+q} & 0 < z \le \lambda\\ \frac{2n}{2n+q} \frac{\lambda^q}{z^q} & \lambda < z \le 1\\ \frac{2n}{2n+q} \frac{1}{z^q} & z > 1 \end{cases}$$

1

where $\lambda = \frac{\min(\theta_1, \theta_2)}{\max(\theta_1, \theta_2)}$. Similarly for $\theta_1 > \theta_2$ we have

$$E\left(\left(\frac{X_2}{\theta_M}\right)^q \mid Z=z\right) = \begin{cases} \frac{2n}{2n+q} & z \le 1\\ \frac{2n}{2n+q}\lambda^q & 1 < z \le \frac{1}{\lambda}\\ \frac{2n}{2n+q}\frac{1}{z^q} & z > \frac{1}{\lambda} \end{cases}$$

In either cases, for q < 0 we have

$$\inf_{0<\lambda\leq 1} E\left(\left(\frac{X_2}{\theta_M}\right)^q \mid Z=z\right) = \begin{cases} \frac{2n}{2n+q} & z<1\\ \frac{2n}{2n+q} & z>1 \end{cases} = \frac{1}{\varphi_1^q(Z)},$$
(32)

and for q > 0 we have

Openly accessible at http://www.european-science.com

1035

$$\sup_{0<\lambda\leq 1} E\left(\left(\frac{X_{2}}{\theta_{M}}\right)^{q} \mid Z=z\right) = \begin{cases} \frac{2n}{2n+q} \quad z<1\\ \frac{2n}{2n+q} \quad z>1 \end{cases} = \frac{1}{\varphi_{1}^{q}(Z)}.$$
(33)

Now from (26) and (27), if $\varphi_1(Z) \le \varphi(Z)$, then $D_{\theta}(Z) = 0$. For $\varphi_1(Z) > \varphi(Z)$, we have $\varphi_S(Z) = \varphi_1(Z)$, and from (28), (32) and (33) we have

$$D_{\theta}(\mathbf{Z}) \ge \left(\varphi^{q}(\mathbf{Z}) - \varphi_{1}^{q}(\mathbf{Z})\right) \frac{1}{\varphi_{1}^{q}(\mathbf{Z})} - q \ln \frac{\varphi(\mathbf{Z})}{\varphi_{1}(\mathbf{Z})} = \left(\frac{\varphi(\mathbf{Z})}{\varphi_{1}(\mathbf{Z})}\right)^{q} - \ln \left(\frac{\varphi(\mathbf{Z})}{\varphi_{1}(\mathbf{Z})}\right)^{q} - 1 > 0,$$

which completes the proof.

Corollary 5.1. For k = 2, the UMRU estimator given in (13) is inadmissible and it dominated by

$$\delta_{M}^{D}(X) = \max\left(X_{(2)}\left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}, \ \delta_{M}^{U}(X)\right) = X_{(2)}\max\left(\left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}, \left(1+\frac{q}{n}-\frac{q}{n}\left(\frac{X_{(1)}}{X_{(2)}}\right)^{n}\right)^{\frac{1}{q}}\right)$$
(34)

Proof: Let

$$\varphi(\mathbf{Z}) = \begin{cases} \left(1 + \frac{q}{n} - \frac{q}{n} \mathbf{Z}^{n}\right)^{\frac{1}{q}} & \mathbf{Z} \le 1 \\ Z \left(1 + \frac{q}{n} - \frac{q}{n} \frac{1}{\mathbf{Z}^{n}}\right)^{\frac{1}{q}} & \mathbf{Z} > 1 \end{cases}$$
(35)

Then $\delta_M^U(\mathbf{X}) = X_2 \varphi(Z) = \delta_{\psi}(X)$. Now, if $\left(\frac{1}{2}\right)^{\frac{1}{n}} < Z < 1$ then $\left(1 + \frac{q}{n} - \frac{q}{n}Z^n\right)^{\frac{1}{q}} < \left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}$ and if $1 < Z < 2^{\frac{1}{n}}$ then $Z\left(1 + \frac{q}{n} - \frac{q}{n}Z^{-n}\right)^{\frac{1}{q}} < Z\left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}$. So from Theorem 5.1, $\delta_M^U(\mathbf{X}) = \delta_{\psi}(X)$ is

inadmissible and dominated by

$$\delta_{M}^{D}(X) = X_{2} \max(\phi_{1}(Z), \phi(Z)) = \begin{cases} X_{2} \max\left(\left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}, \left(1+\frac{q}{n}, -\frac{q}{n}Z^{n}\right)^{\frac{1}{q}}\right) & Z \pounds 1 \\ X_{2} \max\left(Z\left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}, Z\left(1+\frac{q}{n}, -\frac{q}{n}Z^{n}\right)^{\frac{1}{q}}\right) & Z \pounds 1 \\ X_{2} \max\left(Z\left(\frac{2n+q}{2n}\right)^{\frac{1}{q}}, Z\left(1+\frac{q}{n}, -\frac{q}{n}Z^{n}\right)^{\frac{1}{q}}\right) & Z \ge 1 \end{cases}$$

Remark 5.1. Nematollahi and Motamed-Shariati (2012) found improved estimator of θ_M under entropy loss function. Their result can be obtain from Theorem 5.1 by taking q = -1, i.e., the estimator dominate the UMRU estimator of θ_M under entropy loss function.

$$\delta_{\varphi}^{*} = X_{(2)} \max\left(\frac{2n}{2n-1}, \frac{n}{n-1+\left(\frac{X_{(1)}}{X_{(2)}}\right)^{n}}\right)$$

Discussion and Conclusion

In this paper, we find UMRU estimator and admissible linear estimators of θ_M and θ_J under the GSL function (6) in selected uniform population. Also, minimax estimator of θ_M and dominating estimator of UMRU estimator of θ_M were obtained under GSL function. For selected Pareto distribution, similar results could be obtained. Also, when q = 1, the GSL function reduce to Stein loss function and in this case we have the following results

(i)
$$\delta_M^U(\mathbf{X}) = \frac{X_{(k)}}{n} \left(n + 1 - \left(\frac{X_{(k-1)}}{X_{(k)}} \right)^n \right)$$
 is UMRU estimator of θ_M (Misra and Mulen , 2001).
(ii) $\delta_J^U(\mathbf{X}) = \frac{X_{(1)}}{n} \left(n - \sum_{i=1}^k \left(\frac{X_{(1)}}{X_{(i)}} \right)^{n-1} \right)$ is UMRU estimator of θ_J (Misra and Mulen, 2001).

(iii) $\delta_{lc}(X_1, X_2) = cX_{(2)}$ is admissible in the class of linear invariant estimators of θ_M , if and only if $\frac{2n+1}{2n} \le c \le \frac{n+1}{n}$.

(iv) $\delta_{2c}(X_1, X_2) = cX_{(1)}$ is admissible in the class of linear invariant estimators of θ_J , if and only if $\frac{n+1}{n} \le c \le \frac{(n+1)(2n+1)}{2n^2}$. (v) $\delta_M(X_1, X_2) = (\frac{n+1}{n})X_{(2)}$ is minimax estimator of θ_M .

(vi) The UMRU estimator of
$$\theta_M$$
, i.e., $\delta_M^U(\mathbf{X}) = \frac{X_{(2)}}{n} \left(n + 1 - \left(\frac{X_{(1)}}{X_{(2)}} \right)^n \right)$ is inadmissible and

dominated by

$$\delta_{M}^{D} = X_{(2)} \max\left(\frac{2n+1}{2n}, \frac{1}{n}\left(n+1-\left(\frac{X_{(1)}}{X_{(2)}}\right)^{n}\right)\right).$$

References

- Brewester, J. F., & Ziedeck, J. V. (1974). Improving on equivariant estimators. Ann. Statist, 2, 21-38.
- Kumar, S., & Kar, A. (2001a). Estimating quantiles of a selected exponential population. Statistics & Probability Letters, 52, 9-19.
- Kumar, S., & Kar, A. (2001b). Minimum variance unbiased estimation of quantile of a selected exponential population. Amer. J. Math. Management Sci, 21, (1-2), 183-191.
- Kumar, S., & Gangopadhyay, A. K. (2005). Estimating parameters of a selected pareto population. Statistical methodology, 2, 121-130.
- Lehmann, E.L. (1951). A general concept of unbiasedness, Ann. Math. Statist, 22, 578–592.
- Misra, N., & Meulen, E. C. V. (2001). On estimation following selection from non-regular distributions. Commun. Statist. Theory and Methods, 30 (12), 2543-2561.
- Misra, N., Van der Meulen, E.C., & Branden, K.V. (2006a). On estimating the scale parameter of the selected gamma population under the scale invariant squared error loss function. Journal of Computational and Applied Mathematics, 186, 268-282.
- Misra, N., van der Meulen, E.C., & Branden, K.V. (2006b). On some inadmissibility results for the scale parameters of selected gamma populations. Journal of Statistical Planning and Inference, 136, 2340-2351.
- Naghizadeh Qomi, M., & Nematollahi, N. (2012). Estimation following selection under LINEX loss function. Proceeding of the 11th Iranian statistical conference, 398-404.
- Nematollahi, N., & Jafari Jozani, M. (2014). On risk unbiased estimation after selection. Accepted to be appear in Brazilian Journal of Probability and Statistics.
- Nematollahi, N., & Motamed-Shariati, F. (2009). Estimation of the scale parameter of the selected gamma population under the entropy loss function. Commun. Statist. Theory and Methods, 38, 208-221.
- Nematollahi, N., & Motamed-Shariati, F. (2012). Estimation of the parameter of the selected uniform population under the entropy loss function. Journal of Statistical Planning and Inference, 142, 2190-2202.
- Rubinstein, D. (1965). Estimation of failure rates in a dynamic reliability program. Rep.65-RGO-7, Tech. Info. Service, GE Co.
- Sackrowitz, H.B., & Samuel-Cahn, E. (1987). Evaluating the chosen population. A Bayesian minimax approach. Adaptive statistical procedures and related topics, Institute of Mathematical Statistics, Hayward, CA, 386- 395.
- Stein, C. (1964). Contribution to the discussion of Bayesian and non Bayesian decision theory. Handout, IMS Meeting, Amherst, MA.
- Vellaisamy, P. (1992a). Average worth and simultaneous estimation of the selected subset, Ann. Inst. Statist. Math, 44, 551-562.
- Vellaisamy, P. (1992b). Inadmissibility results for the selected scale parameters. Ann. Statist., 20, 2183-2191.
- Vellaisamy, P. (2003). Quantile estimation of the selected exponential population. Journal of Statistical Planning and Inference, 115, 461-470.
- Vellaisamy, P., & Punnen, A. P. (2002). Improved estimators for the selected location parameters. Statist. Papers, 43, 291-299.
- Vellaisamy, P., Kumar, S., & Sharma, D. (1988). Estimating the mean of the selected uniform population. Commun. Statist. Theory and Methods, 17, 3447–3475.

Appendix

Proof of lemma 3.1. (i) If $\theta_1 > \theta_2$ then $E\left(\frac{X_{(2)}}{\theta_{11}}\right)^{q} = \int_{0}^{\theta_{2}} \int_{x_{2}}^{\theta_{1}} \left(\frac{x_{1}}{\theta_{1}}\right)^{q} \frac{nx_{1}^{n-1}}{\theta_{1}^{n}} \frac{nx_{2}^{n-1}}{\theta_{1}^{n}} dx_{1} dx_{2} + \int_{0}^{\theta_{2}} \int_{0}^{x_{2}} \left(\frac{x_{2}}{\theta_{2}}\right)^{q} \frac{nx_{1}^{n-1}}{\theta_{1}^{n}} \frac{nx_{2}^{n-1}}{\theta_{1}^{n}} dx_{1} dx_{2}$ $=\frac{n}{n+q}-\frac{n^2}{(n+q)(2n+q)}\left(\frac{\theta_2}{\theta_1}\right)^{n+q}+\frac{n}{2n+q}\left(\frac{\theta_2}{\theta_1}\right)^n.$ Similarly, for $\theta_1 < \theta_2$ we have $E\left(\frac{X_{(2)}}{\theta_M}\right)^q = \frac{n}{n+q} - \frac{n^2}{(n+q)(2n+q)} \left(\frac{\theta_1}{\theta_2}\right)^{n+q} + \frac{n}{2n+q} \left(\frac{\theta_1}{\theta_2}\right)^n.$ So. $E\left(\frac{X_{(2)}}{\theta_M}\right)^q = \frac{n}{n+q} - \frac{n^2}{(n+q)(2n+q)}\lambda^{n+q} + \frac{n}{2n+a}\lambda^n,$ $\lambda = \frac{\min(\theta_1, \theta_2)}{\max(\theta_1, \theta_2)}$ where (ii) If $\theta_1 > \theta_2$ then $E\left(\frac{X_{(1)}}{\theta_{T}}\right)^{q} = \int_{0}^{\theta_{2}} \int_{x_{2}}^{\theta_{1}} \left(\frac{x_{2}}{\theta_{2}}\right)^{q} \frac{nx_{1}^{n-1}}{\theta_{1}^{n}} \frac{nx_{2}^{n-1}}{\theta_{2}^{n}} dx_{1} dx_{2} + \int_{0}^{\theta_{2}} \int_{0}^{x_{2}} \left(\frac{x_{1}}{\theta_{1}}\right)^{q} \frac{nx_{1}^{n-1}}{\theta_{1}^{n}} \frac{nx_{2}^{n-1}}{\theta_{2}^{n}} dx_{1} dx_{2}$ $= \frac{n}{n+a} + \frac{n^2}{(n+q)(2n+q)} \left(\frac{\theta_2}{\theta_1}\right)^{n+q} - \frac{n}{2n+q} \left(\frac{\theta_2}{\theta_1}\right)^n.$ Similar result can be obtain for $\theta_1 < \theta_2$. Therefore,

$$E\left(\frac{X_{(1)}}{\theta_J}\right)^q = \frac{n}{n+q} + \frac{n^2}{(n+q)(2n+q)}\lambda^{n+q} - \frac{n}{2n+q}\lambda^n$$

(iii) See Nematollahi and Motamed-Shariati (2012).