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Abstract 
Inference on selected population is concerned with the problem of selecting the best 

population among the given k  populations, and then doing inference on the parameter of selected 
population. Suppose independent random samples (𝑋𝑖1, … ,𝑋𝑖𝑛), 𝑖 = 1, … ,𝑘 are drawn from 
𝑈(0,𝜃𝑖) − population, respectively. Let 1max( ,..., )i i inX X X=  and (1) (2) (k)XX X≤ ≤ ≤  be the 

order statistics of 1,..., kX X . The population corresponding to largest (k)X  (or the smallest (1)X ) is 

selected and the problem of estimation the parameter Mθ  (or Jθ ) of the selected population under 
generalized Stein loss function is considered. We obtain the Uniformly Minimum Risk Unbiased 
(UMRU) estimator of Mθ  (and Jθ ) and show that the UMRU estimator of Mθ is inadmissible. For 

2k = , we derive the class of all linear admissible estimators of Mθ  and Jθ , respectively.  
Keywords: Estimation after selection, Generalized Stein loss function; Natural estimator; 

UMRU estimator; Uniform population 

Introduction 
Estimation after selection is an important estimation problem related to ranking and selection 

methodology, having wide practical applications. For example, we wish to select the most 
productive machine from  k different types of machines and then estimate the mean of the 
production of the selected machine. The problem of estimation after selection has received 
considerable attention by many researchers. Some references in this area include, Rubinstein (1961), 
Stein (1964), Sackrowitz and Samuel-Cahn (1987), Vellaisamy et al. (1988), Misra et al. (2006a, 
2006b), Kumar and Gangopadhyay (2005), Vellaisamy (1992a, 1992b), Kumar and Kar (2001a,b), 
Vellaisamy and Punnen (2002), Vellaisamy (2003), Nematollahi and Motamed-Shariati (2009, 
2012), Naghizadeh and Nematollahi (2012). 

Let 1 k,...,Π Π  denote k (≥2) independent uniform population with associated probability 
density functions (p.d.f.) 

1(x | , ) , 0 , 0, ,..., k,i i i
i

f x iθ σ θ θ
θ

= < ≤ > =
                                                           

respectively, where 1,..., kθ θ  are unknown scale parameters. Let 1(X ,...,X )i in  be a random sample 
of size n drawn from the ith population, and 1X max(X ,...,X )i i in= , 1,...,i k= . Then Xi  is a 
complete sufficient statistic for iθ and has p.d.f. 

 
n-1

i
i i i i in

i

nxf(x |θ ,σ)= , 0<x £θ , θ >0, i=1,...,k.
θ

                                                                

Let (1) (k)XX ≤ ≤  denote the order statistics of 1,..., kX X . For selecting the population 

corresponding to the larger (or smaller) 
,

i sθ , we use natural selection rule and select the population 

(1) 

(2) 
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corresponding to the (k) (1)(or )X X . Therefore, the scale parameter associated with the larger and 
smaller selected population are given by 

,
1

(X X )
kk

M i i j
i j i

Iθ θ
= ≠

  =  
  

∑ ∏
                                                                                          

and 

,
1

(1 (X X )) ,
kk

J i i j
i j i

Iθ θ
= ≠

  = − 
  

∑ ∏
                                                                                   

respectively, where   
1

(a, b) .
0

a b
I

a b
≥

=  <                                                                                                  
In this paper, we consider the estimation of Mθ and Jθ  under the generalized Stein loss 

(GSL) function given by 

(h( ), ) ln 1, 0 .
( ) ( )

q

L q q
h h
δ δθ δ
θ θ

   
= − − ≠   
                                                         

This loss is asymmetric and convex in 
( )h
δ
θ

∆ =  when 1q =  and quasi-convex otherwise, 

has a unique minimum at 1∆ = , is scale invariant and also is useful in situations where 
underestimation and overestimation have not a same penalty. The GSL function with negative q  
values penalizes overestimation more than underestimation while with positive q values acts vice-
versa. As a special case, when 1q = , the loss function (6) reduce to Stein loss function and when 

1q = − , loss function (6) reduce to entropy loss function. For estimation the parameter of selected 
population under Stein and entropy loss functions, see Nematollahi and Motamed-Shariati (2009, 
2012), respectively.   

It is worth mentioning that near 1∆ = , 
2

21ln 1 1 ,
( ) ( ) 2 ( )

q

q q
h h h
δ δ δ
θ θ θ

     
− − ≈ −     

       
and for small q  values, 

( )221ln 1 ln ln ( ) .
( ) ( ) 2

q

q q h
h h
δ δ δ θ
θ θ

   
− − ≈ −   

     
In this article, we consider the estimation of the selected parameter of uniform population, 

Mθ  and Jθ  given by (3) and (4), respectively, under the GSL function (6) with ( ) Mh θ θ=  or 
( ) Jh θ θ= .  

To this end, in Section 2, we derive the Uniformly Minimum Risk Unbiased (UMRU) 
estimator of Mθ  and Jθ  under GSL function. In Section 3, we obtain some admissibility result in 
estimation of Mθ  and Jθ , and in Section 4, we find minimax estimator of Mθ  when  2k = . In 

(3) 

(4) 

(5) 

(6) 
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Section 5, we show that the UMRU estimator of Mθ is inadmissible. Finally, a discussion is given in 
Section 6.   

UMRU estimation 
Let 1( ,..., )kθ θ θ= , and 1( ,..., )kX X=X  we want to estimate a function of θ , say ( )h θ , by 

an estimator δ  under the loss function (h( ), ).L θ δ  Following Lehmann (1951), an estimator ( )δ X  
of ( )h θ  is said to be risk-unbiased if it satisfies 

[L(h( ), ( ))] [L(h( ), ( ))], .E Eθ θθ δ θ δ θ θ′ ′≤ ∀ ≠X X                                                         
Under the GSL function (6), (7) reduces to [ ( )] ( )q qE hθ δ θ=X . So, if ( )h θ  is a random 

parameter (e.g., Mθ or Jθ ), then the estimator  ( )δ X  is a risk-unbiased estimator of ( )h θ  if 

[ ( )] [ ( )],q qE E hθ θδ θ=X                                                                                              
otherwise, it is biased and its bias is defined as 

( ) [ ( )] [ ( )].q qB E E hθ θδ δ θ= −X                                                                                     
Nematollahi and Jafari Jozani (2014), considered the UMRU estimation of the random 

parameter ( ) ( )M Jh orθ θ θ= of the selected population under the general γ -loss function 
2(h( ), ) ( ( ) ( ( ))) ,L hθ δ γ δ γ θ= −                                                                                     

which has the risk-unbiased condition [ ( (X))] [ (h( ))]E Eθ θγ δ γ θ= . They showed that under 
the uniform model (2) and under the γ -loss function (6), the UMRU estimators of Mθ and Jθ  are 
given by respectively. 

(k) (k 1)1
(k) (k)

(k)

(X ) X
( ) (X ) 1

X

n
U
M X

n
γ

δ γ γ −−
   ′  = + −         

X

                                                 
and 

(i) (1)1
(1) (i)

1 (i)

(X )
( ) (X ) ,

n
k

U
J

i

X
X

n X

γ
δ γ γ−

=

  ′  = +     
∑X

                                                       
Since the unbiased condition under GSL function (6) is equivalent to unbiased condition 

under γ −  loss function (10) with (x) qxγ = , then from (11) and (12) the UMRU estimators of Mθ
and Jθ  in uniform population under GSL function are given by  respectively. 

 

1

(k 1)
(k)

(k)
( ) 1

n q
U
M

Xq qX
n n X

δ −
   = + −      

X

                                                                      
and 

1

(1)
(1)

(i)1
( ) 1 ,

n q qk
U
J

i

XqX
n X

δ
−

=

   = +      
∑X

                                                                      

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 
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Remark 2.1. Nematollahi and Motamed-Shariati (2012) obtained UMRU estimators of Mθ

and Jθ  under entropy loss function. Their results can be obtain from (13) and (14) by taking 1q = − , 
i.e.,  

(k)

(k 1)

(k)

( )

1

U
M n

nX

X
n

X

δ
−

=
   − +      

X

           and         

(1)
1

(1)

(i)1

( ) .U
J nk

i

nX

X
n

X

δ
+

=

=
   −      

∑
X

 

Admissibility results 
Consider the case of two population, i.e., 2k = . Let 1X  and 2X  be two independent 

random variables such that , 1,..., kiX i =   has p.d.f (2). In estimation of unknown random parameter 

Mθ and Jθ  under the scale invariant loss function (6), the problem is invariant under the scale group 
of transformation 1 2 1 2(X ,X ) (cX ,cX ), c 0→ > . Therefore, it is natural to consider only those 
estimators which are scale invariant, i.e., estimators satisfying 1 2 1 2(cX ,cX ) (X , X )cδ δ=  for all 
c 0> . We consider the subclasses 

{ }1 1 2 (2)(X ,X ) , 0 ,M cD cX cδ= = >
 and   { }2 1 2 (1)(X ,X ) , 0 ,J cD cX cδ= = >

 
of invariant estimators of Mθ and Jθ , respectively. In this section, we will characterize 

admissible estimators of Mθ and Jθ  within the subclasses MD  and JD , respectively, under the 
scale invariant loss function (6). The following lemma will be useful in driving the subsequent 
results. 

Lemma 3.1. Let 
1 2

1 2

min( , )
max( , )

θ θλ
θ θ

=
, then, 

i) 

2
(2) , .

( )(2n q) 2

q
n q n

M

X n n nE q n
n q n q n q

λ λ
θ

+ 
= − + > −  + + + +   

ii) 

2
(1) , .

2 ( )(2n q)

q
n n q

J

X n n nE q n
n q n q n q

λ λ
θ

+ 
= − + > −  + + + +   

iii) 

(2) 1 1 1ln ln .
2 2

n n

M

X
E

n n
λ λ λ

θ
  

= − − +       
The proof of Lemma 3.1 is given in the Appendix. In subsequent Theorems, we characterize 

the admissible estimators of Mθ and Jθ  in the classes MD  and JD , respectively. 

Theorem 3.1.  Let 

1
*
1

2
2

qn qc
n
+ =  

   and 

1
*
2

qn qc
n
+ =  

  , then under the GSL function, the 
estimators 1 1 2 (2)(X ,X )c cXδ =  are admissible within the subclass MD  of invariant estimators of 

Mθ , if and only if * *
1 2[c ,c ]c ∈  and q n> − . 

Proof: The risk function of 1 (2)c cXδ =  is given by 
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(2) (2) (2) (2)
1( , ) E ln 1 ln ln 1

q q
q

M c
M M M M

cX cX X X
R q c E q c qEθ δ

θ θ θ θ
= − − = − − −

      
             

 For  fixed λ , the risk function (15) takes its minimum at 1( )c c λ= , where 
1

(2)
1( ) .

q q

M

X
c c Eλ

θ

−
   = =  
                                                                                         

From Lemma 3.1.i, it is easy to check that 1( )c λ  is a continuous function of λ  and is 
decreasing on (0,1] . Therefore, 

            

1

1 1
00 1

sup ( ) lim ( ) ,qn qc c
nλλ

λ λ
+→< ≤

+ = =  
               and                 

1

1 1
0 1

2inf ( ) (1)
2

qn qc c
nλ

λ
< ≤

+ = =  
           

Thus any value of * *
1 2[c ,c )c ∈  minimize the risk function 1( , )M cR θ δ  for some values of 

0 1λ< ≤  and hence such a c  correspondence to an admissible estimator. The admissibility of the 
estimator *

21cδ  follows from the continuity of the risk function. 

Note that for each fixed 0 1λ< ≤ , the risk function 1( , )M cR θ δ  is an increasing function of 

c if 1( )c c λ>  and it is a decreasing function of c  if 1( )c c λ< . Since * *
1 1 2( ) cc c λ≤ ≤ , 0 1λ∀ < ≤ , 

we conclude that the estimators 1 1 2 (2)(X ,X )c cXδ =  for 

1 1
20, ,

2
q qn q n qc

n n

   
+ +      ∈ ∞            

   

  are 

inadmissible in estimating Mθ , which completes the proof.   

Theorem 3.2. Let 
1

*
2

qn qc
n
+ =  

 
 and 

1
*
3 2

( )(2 )
2

qn q n qc
n

+ + =  
 

, then under the GSL function, 

the estimators 2 1 2 (1)(X ,X )c cXδ =  are admissible within the subclass JD  of invariant estimators of 

Jθ , if and only if * *
2 3[c ,c ]c ∈  and q n> − .  

Proof: The proof is similar to the proof of Theorem 3.1. 
Remark 3.1. Nematollahi and Motamed-Shariati (2012) obtained the linear admissible 

estimators of Mθ and Jθ  in the classes MD  and JD , respectively, under the entropy loss function. 
Their results can be obtain from Theorem 3.1 and 3.2 by taking 1q = − , i.e., 1 1 2 (2)(X ,X )c cXδ =  is 

admissible in the class of linear invariant estimators of Mθ , if and only if 2
2 1 1

n nc
n n

≤ ≤
− −

, and 

2 1 2 (1)(X ,X )c cXδ =  is admissible in the class of linear invariant estimators of Jθ , if and only if 
22

1 ( 1)(2 1)
n nc

n n n
≤ ≤

− − −
.  

 
 

(15) 

(16) 
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Mimimax estimator of Mθ  
Let 1X  and 2X  be two independent random variables such that iX  has a p.d.f as in (2). We 

want to find minimax estimator of Mθ under the loss function (6). 
Following Sackrowitz and Samuel-Cahn (1987), we first find the Bayesestimator in 

component problem for iθ , 1, 2i = . So, consider the following prior for iθ , 1, 2i = .  
, 1( ) (r 1) b , , 1.r b r r

i i ii b rπ θ θ θ− −= − > >                                                                 
Since |i iX θ  has p.d.f  (2), the posterior density is  

(n r) 1

(n r) 1

(n r 1)
( | X )

(n r 1)

n r
i

i i n r ii

b x b
x bx

θ
π θ

θ

− + + −

− + + −

 + − ≤=  >+ −
                                                             

It is easy to see that the Bayes estimator of iθ under loss function (6) is equal to 

,

1
1

1

1
11(x ) | ,

1
1

r b

q
iq

i iq
i q

i i

n q r b x b
n r

E x
n q r x x b

n r

πδ θ

−


+ + −  ≤    + −   = =        + + −  > + − 

                                        

and the posterior risk of , (x )r b iπδ  is given by 

( ) ( ), ,

,

(x ) (x ) 1 1
.(x , (x )) E ln 1 | ln E | E ln | ln

1 1

r b r b

r b

q

i i

i i i i i iq
i i i

n r q
r q x x q x

n q r n r

π π

π

δ δ
δ θ

θ θ θ

+ −
= − − = + = +

+ + − + −

       
               

 Since the posterior risk does not depend on ix , the Bayes risk of , (x )r b iπδ is also 

,b
* ,b 1( , ) ln , 1, 2.

1 1r
i

r
i

n r qr i
n q r n rππ δ

 + −
= + = + + − + − 

                                                  

Now consider Bayes estimation of Mθ under GSL function. Suppose iθ , 1, 2i =  are 
independent and has p.d.f (17). Then from (19) and using Lemma 3.2 of Sackrowitz and Samuel-
Cahn (1987), the unique Bayes rule of Mθ  is given by 

,

1

(2)

1 2 1

(2)(2)

1
1

( ,X ) ,
1

1

r b

q

q

n q r X bb
n r

X
n q r XX b

n r

πδ


+ + −  ≤  + −  = 

 + + −  > + − 

 

where , , ,
1 2( , )r b r b r bπ π π= . Since the posterior risk (20) for the component problem is 

independent of 1 2(x , x )x = , we conclude from Theorem 3.1 of Sackrowitz and Samuel-Cahn 

(1987) that the Bayes risk ,b
* ,b( , )r

rr ππ δ  of , 1 2( ,X )r b Xπδ  is the same as the one given in (20), i.e., 

,b ,b
* ,b * ,b 1( , ) ( , ) ln , 1, 2.

1 1r r
i

r r
i

n r qr r i
n q r n rπ ππ δ π δ

 + −
= = + = + + − + − 

 

(17) 

(18) 

(19) 

(20) 
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Now from Theorem 3.2 of Sackrowitz and Samuel-Cahn (1987), the estimator 1 2(X ,X )Mδ  

is minimax for Mθ  if 

,
* ,

1
0

( , ) lim ( , ) lnr b
r b

M M
r
b

n qR r
n q nπθ δ π δ

→
→

 
≤ = + + 

                                                        

In the following Theorem we find the minimax estimator of Mθ . 
Theorem 4.1. Let 1X  and 2X  be two independent random variables such that iX  has a 

p.d.f as in (2). Then 
1

1 2 (2)(X ,X ) ( )q
M

n q X
n

δ +
=  is a minimax estimator of Mθ  under the loss 

function (6), when q n> − . 
Proof: We have 

(2) (2)

2

( , ) E ln 1 ln ln 1

1 1 1
ln ( ln ) 1

( )(2 n q) 2 2 2

ln
2 n q 2

qq
M M

M M
M M M M

n q n n n

n q n

X Xn q n q
R q E qE

n n

n q n n n n
q

n n q n q n q n q n n

n q n n q q
n q n n q

δ δ
θ δ

θ θ θ θ

λ λ λ λ λ

λ λ

+

+

+ +
= − − = − − −

+
= − + + + + − −

+ + + + +

+
= + − + +

+ + +

                   
   
       

 
 
 

ln ln
2 2

ln ln ( )
2 n q 2 2 2

n n

n q q q n q

q n q
n n q n

n n q q q n q
g

n q n n q n

λ λ λ

λ λ λ λ λ λ+ − − +

− = +
+

+
+ − + − + = + +

+ + +

 
 
 

    
    

    

 

Note that
2 2

1
1 (n q) ln( ) 0

2 (2n q) 2q
q qg
n

λλ
λ +

  + ′ = − >   +   
 for 0 1λ< ≤ , q n> − , so ( )g λ  is a 

strictly increasing function of λ  and 
2

( ) (1) 0
2 (2n q)

qg g
n

λ −
≤ = <

+
. Thus  which complete the proof. 

,( , ) lnM M
n qR

n q n
θ δ

 
< + + 

 

Remark 4.1. Nematollahi and Motamed-Shariati (2012) obtained a minimax estimator of Mθ  
under entropy loss function. Their result can be obtain from Theorem 4.1 by taking 1q = − , i.e., the 

estimator 1 2 (2)(X ,X ) ( )
1M

n X
n

δ =
−

 is a minimax estimator of Mθ  under the entropy loss function. 

Improving the UMRU estimator of Mθ   
In this section, for the case of 2k = , we show that the UMRU estimator of Mθ under the 

loss function (6) is inadmissible. Let 

{ }1 2 (2): (X ,X ) X (Y) ,UD ψ ψδ δ ψ= =                                                                                  

where (1)

(2)

X
Y

X
=  and .( )ψ  is some real valued function defined on (0,1] . Let 1

2

XZ
X

=  then  

(21) 

(22) 
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1

2 1 2 2
2

1 2 (2)
2 2

1 1 2
1

X
X ( ) X X X (Z) 1X

(X , X ) X (Y) .1
X X ( ) 1X ( ) X X
X

Z

Z Z
Z

ψ

ψ ψ
δ ψ

ψ
ψ

< <
= = =

≥
≥


 

 
 

   

So, 1 2 2(X ,X ) X (Z),ψδ ϕ= where 

(Z) 1
(Z) 1( ) 1

Z

Z Z
Z

ψ
ϕ

ψ

 <=
≥

                                                                                                     

 In this section we use the technique of Brewester and Ziedeck (1974) to find estimators of 
the form  1 2 (2) 2(X ,X ) X (Y) X (Z)

S S Sψδ ψ ϕ= = , which are dominate the estimators in class (22), 

1 2 (2) 2(X ,X ) X (Y) X (Z)ψδ ψ ϕ= = . The following theorem gives a sufficient condition for 

inadmissibility of the estimators UDψδ ∈ . 
Theorem 5.1.  Let 1X  and 2X  be two independent random variables such that iX  has a 

p.d.f as in (2). Let 1 2 2(X ,X ) X (Z) DUψδ ϕ= ∈ be an invariant estimator of Mθ . If 
1

1 1

2 1
2

(Z) ,
2

1
2

q

q

n q Z
n

n qZ Z
n

ϕ


+  <   = 

 +  ≥   

                                                                             

and 2
1 1 2( (Z) (Z)) 0, ( , ) R ,Pθ ϕ ϕ θ θ θ> > ∀ = ∈ then under loss function (6) the invariant 

estimator 1 2 2(X ,X ) X (Z)ψδ ϕ=  is inadmissible for estimating  Mθ  and is dominated by 

1 2 2(X ,X ) X (Z)
S Sψδ ϕ= , where 

11
1

1

(Z) (Z)(Z)
(Z) max( (Z), (Z))

(Z) (Z)(Z)S
ϕ ϕϕ

ϕ ϕ ϕ
ϕ ϕϕ

≤
= =  >

                                                              

Proof: We have  

( ) ( )

22

2

(Z)(Z) (Z)( , ) ( , ) ln
(Z)

(Z)(Z) (Z) ln (Z) ,
(Z)

S

q q
S

M M
M M S

q
qq S
S

M

XXR R E q

XE q E D

ψ ψ

θ θ

ϕϕ ϕθ δ θ δ
θ θ ϕ

ϕϕ ϕ
θ ϕ

     ∆ = − = − −        
   = − + =    

 where ( ) 2 (Z)(Z) (Z) (Z) | ln
(Z)

q
qq S
S

M

XD E Z qθ
ϕ

ϕ ϕ
θ ϕ

   = − +    
                                            

          Similar to Vellaisamy et al. (1988) the conditional p.d.f of 2X  given 1

2

XZ z
X

= =  is given by 

(23) 

(27) 

(24) 

(25) 

(26) 

(28) 
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2

2 1 1
2 2 22

1 2
| 2

2 1 2 1 1
2 22

21

2
0 , 0

(x | z) .
2 0 ,

n
n

X Z
n n

n

n x x z
f

n x z x z
z

θθ
θ θ

θ θ
θθ

−

−


< < < <

= 
 < < >


                                                

Note that, 

   
( )

( )

2
22

2
1

1 | Z 1
| Z

1 | Z 1

q
q q

qM
q

E X z Z
XE z

E X z Z

θ
θ

θ

 = <    = =      =  ≥

                                                       

From (30) we have  

( )
2

1

2 1
2 1

2 220
22

2 2 1 1122
220 21

2 2
1

2
X | Z

22 1
2

n q
q

n
q

qn q
nz qn
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n q z

θ

θ

θ
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θθ

θθ
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+ −

<<
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∫

∫
             

  For 1 2θ θ<  we conclude that 

           2

2
02

2| Z 1 ,
2

2 1
1

2

q q

q
M

q

n
zn q

X nE z z
n q z

n
z

n q z

λ

λ λ
θ


< ≤ +

     = = < ≤  +    


>
+

        

where  1 2

1 2

min( , )
max( , )

θ θλ
θ θ

= . Similarly for 1 2θ θ>  we have  

             2

2 1
2
2 1| Z 1 .

2
12 1

2

q
q

M

q

n z
n q

X nE z z
n q

n z
n q z

λ
θ λ

λ

 ≤
 +    = = < ≤  +    


>
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In either cases, for 0q <  we have 

2
0 1 1

2
1

2 1 ,inf | Z
2 1 (Z)1

2

q

q
M

q

n
z

n qXE z
n z

n q z
λ θ ϕ< ≤


<  +   = = =     > 

 +

                                             

           and for 0q >  we have  

(31) 

(29) 

(30) 

(32) 
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2 (Z)1

2

q

q
M

n
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n qXE z
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n q
λ θ ϕ< ≤
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Now from (26) and (27), if 1(Z) (Z)ϕ ϕ≤ , then (Z) 0Dθ = . For 1(Z) (Z)ϕ ϕ> , we have 

1(Z) (Z)Sϕ ϕ= , and from (28), (32) and (33) we have 

( )1
1 1 11

1 (Z) (Z) (Z)(Z) (Z) (Z) ln ln 1 0,
(Z) (Z) (Z)(Z)

q q
qq

qD qθ
ϕ ϕ ϕϕ ϕ
ϕ ϕ ϕϕ

   
≥ − − = − − >   

   
 

which completes the proof. 
Corollary 5.1. For 2k = , the UMRU estimator given in (13) is inadmissible and it 

dominated by 
1

1 1 n q
q q (1)D U

M (2) M (2)
(2)

X2n+q 2n+q q q
δ (X)=max X , δ (X) =X max , 1+ -

2n 2n n n X

                              

   

 Proof: Let 
1

1

1 1
(Z)

11 1
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q
n

q q Z Z
n n

q qZ Z
n n Z

ϕ


  + − ≤   = 

   + − >   

                                                                          

Then 2( ) X (Z) (X)U
M ψδ ϕ δ= =X . Now, if 

1
1 1
2

n Z  < < 
 

 then 
1

1 qnq q Z
n n

 + − < 
 

 

1
2

2
qn q

n
+ 

 
 

and if 
1

1 2nZ< <  then 
1 1

21
2

q qnq q n qZ Z Z
n n n

− +   + − <   
   

 . So from Theorem 5.1, 

( ) (X)U
M ψδ δ=X  is  

inadmissible and dominated by 
1 1
q qn

12 1 n q
q (1)D

M 2 1 (2)1 1 (2)
q q

2 n

2n+q q q
X max , 1+ - Z Z£1

2n n n
X2n+q q q

δ (X)=X max(φ (Z),φ(Z))= =X max , 1+ -
2n n n X

2n+q q q 1 Z>1X max Z ,Z 1+ -
2n n n Z

  
     
                                              

 








 

Remark 5.1. Nematollahi and Motamed-Shariati (2012) found improved estimator of Mθ  
under entropy loss function. Their result can be obtain from Theorem 5.1 by taking 1q = − , i.e., the 
estimator dominate the UMRU estimator of Mθ under entropy loss function.  

(33) 

(35) 

(34) 
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2 1

1
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ϕδ

 
 
 
 =

−  
 − +      

 

Discussion and Conclusion 
In this paper, we find UMRU estimator and admissible linear estimators of Mθ and Jθ  under 

the GSL function (6) in selected uniform population. Also, minimax estimator of Mθ and 
dominating estimator of UMRU estimator of Mθ were obtained under GSL function. For selected 
Pareto distribution, similar results could be obtained. Also, when  1q = , the GSL function reduce to 
Stein loss function and in this case we have the following results  

            (i) (k) (k 1)

(k)
( ) 1

n
U
M

X X
n

n X
δ −

   = + −      

X  is UMRU estimator of Mθ (Misra and Mulen , 2001).  

           (ii) 
1

(1) (1)

(i)1
( )

nk
U
J

i

X X
n

n X
δ

−

=

   = −      
∑X  is UMRU estimator of Jθ  (Misra and Mulen, 2001). 

(iii) 1 1 2 (2)(X ,X )c cXδ =  is admissible in the class of linear invariant estimators of Mθ , if 

and only if 2 1 1
2
n nc

n n
+ +

≤ ≤ .  

 (iv) 2 1 2 (1)(X ,X )c cXδ =  is admissible in the class of linear invariant estimators of Jθ , if and 

only if 2
1 ( 1)(2 1)

2
n n nc

n n
+ + +

≤ ≤ . 

(v) 1 2 (2)
1(X ,X ) ( )M

n X
n

δ +
=  is minimax estimator of Mθ . 

(vi) The UMRU estimator of Mθ , i.e., (2) (1)

(2)
( ) 1

n
U
M

X X
n

n X
δ

   = + −      

X  is inadmissible and 

dominated by 

(1)
(2)

(2)

2 1 1max , 1 .
2

n
D
M

XnX n
n n X

δ
   +  = + −         
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Appendix 
Proof of  lemma 3.1. 

(i) If 1 2θ θ>  then, 

2 1 2 2

2

1 1 1 1
(2) 1 1 2 2 1 2

1 2 1 20 0 01 21 2 1 2

2
2 2

1 1
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(n q)(2n q) 2

q q qn n n nx
n n n nxM
n q n
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n q n q

θ θ θ

θ θ θθ θ θ θ

θ θ
θ θ

− − − −

+

     
= +     

    

   
= − +   + + + +   

∫ ∫ ∫ ∫
 

Similarly, for 1 2θ θ<  we have 
2

(2) 1 1

2 2
.

(n q)(2n q) 2

q n q n

M

X n n nE
n q n q

θ θ
θ θ θ

+     
= − +     + + + +      

So, 
2

(2) ,
(n q)(2n q) 2

q
n q n

M

X n n nE
n q n q

λ λ
θ

+ 
= − +  + + + +   

where  
1 2

1 2

min( , )
max( , )

θ θλ
θ θ

=
. 

(ii) If 1 2θ θ>  then 

2 1 2 2

2

1 1 1 1
(1) 2 1 2 1 1 2
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2
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(n q)(2n q) 2
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θ θ θ
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= +     
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∫ ∫ ∫ ∫
 

Similar result can be obtain for 1 2θ θ< . Therefore, 
2

(1)

(n q)(2 n q) 2

q
n q n

J

X n n nE
n q n q

λ λ
θ

+ 
= + −  + + + +   

(iii) See Nematollahi and Motamed-Shariati (2012). 
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