EFEK Cul TERHADAP KONDUKTIVITAS DAN ENERGI AKTIVASI (Cul)_x(Agl)_{1-x} (x = 0,5 - 0,9)

(EFFECT OF Cul ON CONDUCTIVITY AND ACTIVATION ENERGY OF $(Cul)_x(Agl)_{1-x}$ (x = 0.5 to 0.9))

Patricius Purwanto

Pusat Teknologi Bahan Industri Nuklir, BATAN Kawasan Puspiptek, Serpong 15314, Tangerang Selatan

E-mail : patricius@batan.go.id

Received : 6 Juni 2011; revised : 15 Juni 2011; accepted : 11 Juli 2011

ABSTRAK

Pembuatan bahan konduktor padat telah dilakukan dengan cara mencampurkan Cul dan Agl. Kedua bahan dibuat dalam bentuk pelet dan dipanaskan pada suhu 300 °C selama 3 jam. Pengukuran konduktivitas $(Cul)_{xi}(Agl)_{1-x}$ dilakukan dengan alat LCR-meter pada frekuensi 0,1 Hz sampai 100 kHz dan sebagai fungsi suhu. Penentuan struktur kristal $(Cul)_{xi}(Agl)_{1-x}$ dan regangan kisi dilakukan dengan difraksi sinar-X. Hasil penelitian menunjukkan regangan kisi konduktor padat $(Cul)_{xi}(Agl)_{1-x}$ turun seiring dengan naiknya fraksi berat Cul. Puncak difraksi sinar-X untuk konduktor padat $(Cul)_{xi}(Agl)_{1-x}$ menunjukkan puncak-puncak Cul, sedangkan puncak-puncak Agl tidak tampak. Konduktivitas konduktor padat $(Cul)_{xi}(Agl)_{1-x}$ naik seiring dengan naiknya suhu pemanasan. Energi aktivasi naik seiring dengan bertambahnya konsentrasi Cul.

Kata kunci : Bahan konduktor padat, Difraksi sinar-X, Konduktivitas, Termal, Struktur mikro

ABSTRACT

The solid conductor $(Cul)_x(Agl)_{1-x}$ has been made by mixing of Cul with Agl powders. The mixture was compacted and heated at of 300 °C for 3 hours. Measurement of conductivity had been done by LCR-meter at frequency range of 0.1Hz to 100 kHz as function of temperature. The crystal structure of $(Cul)_x(Agl)_{1-x}$ has been analyzed by x-ray diffraction. The result shows that the strain of lattice of $(Cul)_x(Agl)_{1-x}$ decreased with the increasing of weight fraction of Cul. The x-ray diffraction curve of $(Cul)_x(Agl)_{1-x}$ was dominated by peak of Cul. The conductivity of solid state conductor of $(Cul)_x(Agl)_{1-x}$ increased with the increasing of heating temperature. Activation energy increased with the addition of Cul.

Key words : Solid state electrolyte, X-ray diffraction, Conductivity, Thermal, Micro structure

PENDAHULUAN

Bahan Cul memiliki sistem kristal kubik berpusat muka (fcc) dan berfasa- γ pada suhu ruang, sedangkan pada suhu di atas 400 °C mempunyai fasa- α . Di sisi lain pada suhu ruang Agl mempunyai dua fasa yaitu fasa- γ berstruktur kubik dan fasa- β berstruktur heksagonal. Agl mempunyai konduktivitas listrik sekitar 10⁻⁷ S/cm. Di atas suhu transisi, Agl mengalami transisi dari fasa- β ke fasa- α . Agl fasa- α mempunyai sifat superionik dengan nilai konduktivitas sekitar 10⁻⁴ S/cm. (Chandra dan Laskar 1990)

Penelitian sebelumnya telah dilakukan terhadap bahan Cul, Agl dan KI dengan berbasis β -Al₂O₃ dengan proses perlakuan panas maupun radiasi-y, dan memiliki konduktivitas $2,43 \times 10^{-5}$ hingga $1,58 \times 10^{-2}$ S/cm (Purwanto dkk 2006). Selanjutnya akan dikembangkan penelitian tentang bahan menggunakan konduktor padat bahan (Cul)_x(Agl)_{1-x} dengan variasi konsentrasi Cul dan suhu. Dengan variasi konsentrasi Cul diharapkan terjadi suatu regangan kisi pada konduktor padat (Cul)_x(Agl)_{1-x} dan cacat kristal yang akan meningkatkan konduktivitas bahan.

Efek Cul Terhadap Konduktivitas Patricius Purwanto

Untuk mengetahui adanya regangan kisi, maka dilakukan pengujian dengan difraksi sinar-X. Menurut S. Chandra (1990), cacat kristal yang ditunjukkan oleh adanya regangan berhubungan erat dengan tingkat kisi konduktivitas. Dengan percobaan ini diharapkan diperoleh bahan (Cul)_x(Agl)_{1-x} sebagai bahan konduktor padat yang memiliki konduktivitas yang baik sebagai fungsi suhu.

BAHAN DAN METODE

Bahan

Bahan yang digunakan adalah Cul dan Agl produksi PT Alfa Aesar dengan kemurnian masing-masing 99,9% dan 99,99%. Peralatan yang digunakan terdiri dari: timbangan analitik, mortar, alat pres, pemanas, *x-ray difractometer (XRD)*, alat ukur kondukivitas (LCR-meter).

Metode

Penelitian dibagi dalam beberapa kegiatan, yaitu :

- (a) Serbuk Cul dan Agl dicampur dengan perbandingan fraksi berat tertentu. Kedua campuran digerus dengan mortal dan dibuat pelet dengan tekanan 3000 psi (~206,84×10⁷ N/m²) dan dilanjutkan dengan dipanaskan pada suhu 300 °C selama 3 jam.
- (b) Pengukuran dengan difraksi sinar-X untuk menentukan struktur kristal dan regangan kisi (Cul)_x(Agl)_{1-x} dengan menggunakan persamaan pada pustaka Klug and Alexander (1962), yaitu:

 $(\beta \cos \theta)/\lambda = 0.9/D + (2 \eta \sin \theta)/\lambda$(1)

dimana: β adalah lebar setengah puncak difraksi (FWHM), θ adalah sudut Bragg, λ adalah panjang gelombang sinar-X, D adalah ukuran butir dan η adalah regangan.

(c) Pengukuran konduktivitas menggunakan LCR-Meter. Untuk menganalisis konduktivitas konduktor padat $(Cul)_x(AgI)_{1-x}$ dengan memakai model $\sigma = \sigma_o f^s$ (Jonscher 1977, Lee dkk 1991, Collins dan Kartini 2003), yaitu :

 $\sigma = \sigma_0 f^s \qquad (2)$

Persamaan (2) diubah menjadi bentuk logaritma yaitu :

 $\log \sigma = \log \sigma_{o} + s \log f. \dots (3)$

Dimana: σ adalah konduktivitas, σ_o adalah konduktivitas yang tidak tergantung frekuensi, f adalah frekuensi, s adalah faktor eksponen (0 < s <1).

HASIL DAN PEMBAHASAN

Difraksi Sinar-X

Pola difraksi sinar-X konduktor padat Cul, Agl dan $(Cul)_x(Agl)_{1-x}$ ditunjukkan pada Gambar 1a dan 1b. Pola difraksi ini pernah dilaporkan oleh Purwanto dkk (2007 dan 2008), dimana regangan pada konduktor padat $(Cul)_x(Agl)_{1-x}$ meningkat seiring dengan naiknya fraksi berat.

Gambar 1a. Puncak-puncak difraksi sinar-X Cul dan Agl

Gambar 1b, puncak-puncak difraksi sinar-X untuk bahan konduktor padat $(Cul)_x(Agl)_{1-x}$ memiliki puncak-puncak difraksi Cul, analisis menunjukkan bahwa konduktor padat

 $(Cul)_x(Agl)_{1-x}$ mempunyai struktur kristal yang sama dengan Cul.

Hasil analisis puncak-puncak difraksi konduktor padat $(Cul)_x(Agl)_{1-x}$, menunjukkan bahwa puncak-puncak yang tampak adalah puncak Cul, sedangkan puncak Agl tidak tampak. Hal ini dikarenakan pada saat perlakuan panas pada konduktor padat $(Cul)_x(Agl)_{1-x}$ bahan Agl lebih dulu mengalami transisi fasa, sehingga puncak-puncak yang akan muncul terhalangi. Untuk menentukan regangan kisi dan ukuran kristal dibuat kurva antara $\beta.cos\theta/\lambda$ terhadap $sin\theta/\lambda$. Perhitungan regangan $(Cul)_x(Agl)_{1-x}$ dengan variasi x = 0.5 sampai 0.9 ditunjukkan pada Tabel 1.

Hasil perhitungan regangan konduktor padat $(Cul)_x(Agl)_{1-x}$ berkisar 1,44% sampai 3,69%. Penambahan Cul, menunjukkan nilai regangan turun, seiring dengan naiknya konsentrasi Cul. Berarti bahan pada (Cul)_x(Agl)_{1-x} terjadi penyusutan atau rengangan mengecil, hal ini menunjukkan adanya transisi dari Agl. Menurut Klug (1962), penambahan konsentrasi menyebabkan meningkat seirina bertambah regangan lebarnya setengah puncak atau sebaliknya.

Konduktivitas.

Pengukuran konduktivitas bahan konduktor padat $(Cul)_x(Agl)_{1-x}$ dilakukan dengan alat LCR-meter dengan frekuensi antara 0,1 Hz sampai dengan 100 kHz seperti ditunjukkan pada Gambar 2(a-c). Pada Gambar 2a, kurva konduktivitas naik terhadap fungsi suhu pemanasan, pada suhu diatas 200 °C konduktivitas naik secara drastis, hal ini menunjukkan pada suhu tersebut terjadi cacat kisi yang menyebabkan gerakan ion-ion secara bebas. Pada Gambar 2b terlihat kurva konduktivitas konduktor padat (Cul)_{0,7}(Agl)_{0,3} naik terhadap fungsi suhu pemanasan. Konduktivitas naik secara drastis pada suhu diatas 150 °C, hal ini menunjukkan terjadi cacat kisi. Begitu juga pada Gambar 2c, konduktivitas naik drastis pada suhu diatas 175 °C. Dari Gambar2(a-c). kurva pada konduktivitas konduktor padat menunjukkan pola yang sama walaupun dilakukan pada frekuensi yang berbeda.

Tabel 1. Hasil perhitungan parameter η untuk $(Cul)_x(Agl)_{1-x}$

Bahan	η (%)
(Cul) _{0,5} (Agl) _{0,5}	3,69
(Cul) _{0,7} (Agl) _{0,3}	2,73
(Cul) _{0,9} (Agl) _{0,1}	1,44

Gambar 2a. Konduktivitas (CuI)_{0,5}(AgI)_{0,5} sebagai fungsi suhu

Gambar 2b. Konduktivitas (Cul)_{0,7}(Agl)_{0,3} sebagai fungsi suhu.

Gambar 2c. Konduktivitas (Cul)_{0,9}(Agl)_{0,1} sebagai fungsi suhu.

Konduktivitas konduktor padat (Cul)_x(Agl)_{1-x} pada Gambar 2, menunjukkan bahwa konduktivitas naik seiring dengan pemanasan. Hal naiknya suhu ini menunjukkan bahwa pada proses pemanasan terjadi suatu cacat yang menimbulkan ion-ion bergerak dengan cepat. Hal ini sesuai teori dijabarkan oleh Chandra vang (1990). Perhitungan konduktivitas konduktor padat (Cul)_x(Agl)_{1-x} dibagi dalam dua daerah suhu yang ditunjukkan pada Tabel 2(a-b).

Nilai konduktivitas konduktor padat $(CuI)_x(AgI)_{1-x}$ pada saat frekuensi f=0,1 Hz (σ_0) naik pada selang suhu 25 °C-150 °C, sedangkan pada selang suhu 150 °C-350 °C turun. Konduktivitas konduktor padat $(CuI)_x(AgI)_{1-x}$ memiliki konduktivitas naik seiring dengan naiknya konsentrasi Cul. Hal ini menunjukkan bahwa penambahan Cul meningkatkan konduktivitas.

Energi Aktivasi

Energi aktivasi konduktor padat $(CuI)_x(AgI)_{1-x}$ dihitung dengan memakai persamaan Arrhenius $\sigma = \sigma_o.exp(-E_a/k_B.T)$. Dengan dibuat grafik antara log. σ terhadap 1000/T, ditentukan energi aktivasi konduktor padat $(CuI)_x(AgI)_{1-x}$. Kurva log σ terhadap 1000/T ditunjukkan pada Gambar 3(a –f).

Dari kurva log σ terhadap 1000/T pada Gambar 3(a-f) dapat ditentukan nilai energi aktivasi (Ea) bahan konduktor padat, hasil perhitungan ditunjukkan pada Tabel 3.

Tabel 2a. Konduktivitas (Cul)x(AgI)1-x. pada selang suhu 25 °C-150 °C

Sampel	σ _{o1} (S/cm)	σ₀₂ (S/cm)	σ _{o3} (S/cm)
(A) _{0,5} (B) _{0,5}	1,53×10 ⁻⁴	1,35×10 ⁻⁴	1,83×10⁻⁴
(A) _{0,7} (B) _{0,3}	1,30×10 ⁻³	1,34×10 ⁻³	1,40×10 ⁻³
(A) _{0,9} (B) _{0,1}	2,30×10 ⁻³	2,88×10 ⁻³	2,85×10 ⁻³

Tabel 2b. Konduktivitas (Cul)x(AgI)1-x. pada selang suhu 150 °C-350 °C

Sampel	σ_{o1}	σ ₀₂	σ ₀₃
	(S/cm)	(S/cm)	(S/cm)
(A) _{0,5} (B) _{0,5}	0,89×10 ⁻⁶	0,93×10 ⁻⁶	1,54×10 ⁻⁶
(A) _{0,7} (B) _{0,3}	1,45×10⁻⁵	0,94×10 ⁻⁵	1,19×10 ⁻⁵
(A) _{0,9} (B) _{0,1}	4,09×10 ⁻⁵	3,23×10⁻⁵	3,45×10⁻⁵

Keterangan :

A = Cul dan B = Agl

- σ_{o1} = Konduktivitas pada frekuensi tetap = 60 Hz
- σ_{o2} = Konduktivitas pada frekuensi tetap = 1000 Hz
- $\sigma_{\scriptscriptstyle o3}$ = Konduktivitas pada frekuensi tetap = 100 kHz

Gambar 3a. Kurva log σ terhadap 1000/T pada konduktor padat (Cul)_{0,5}(Agl)_{0,5} dengan selang suhu 25 °C -150 °C

Gambar 3b. Kurva log σ terhadap 1000/T pada konduktor padat (Cul)_{0.5}(Agl)_{0.5} dengan selang suhu 150 °C-350 °C

Gambar 3c. Kurva log σ terhadap 1000/T pada konduktor padat (Cul)_{0,7}(Agl)_{0,3} dengan selang suhu 25 °C -150 °C

Gambar 3d. Kurva log σ terhadap 1000/T pada konduktor padat (Cul)_{0,7}(Agl)_{0,3} dengan selang suhu 150 °C-350 °C

Gambar 3e. Kurva log σ terhadap 1000/T pada konduktor padat (Cul)_{0,9}(Agl)_{0,1} dengan selang suhu 25 °C -150 °C

Gambar 3f. Kurva log σ terhadap 1000/T pada konduktor padat (Cul)_{0,9}(Agl)_{0,1} dengan selang suhu 150 °C-350 °C

Dari Tabel 3, energi aktivasi bahan konduktor padat $(Cul)_x(Agl)_{1-x}$ pada selang suhu 25 °C-150 °C konstan, walaupun dilakukan variasi fraksi berat. Begitu juga

energi aktivasi pada selang suhu 150 °C sampai 350 °C. Energi aktivasi konduktor padat pada suhu 25 °C sampai 150 °C lebih rendah dari pada suhu 150 °C sampai 350 °C, hal ini menunjukkan gerakan ion yang memiliki energi aktivasi rendah agak lambat dari pada yang memiliki energi aktivasi agak tinggi.

Struktur mikro

Gambar 4, menunjukkan struktur mikro konduktor padat $(Cul)_x(Agl)_{1-x}$ untuk x = 0,7-0,9 dengan pembesaran 2,5x10³. Dari gambar tersebut, terlihat bentuk butiran teratur dengan naiknya konsentrasi Cul. Struktur mikro pada Gambar 4a dan b tidak dapat menjelaskan apakah ada retak atau cacat.

Tabel 3a. Energi aktivasi $(Cul)_x(Agl)_{1-x}$ untuk x = 0,5-0,9 pada selang suhu 25 °C - 150 °C

Sampel	E₁(eV)	E ₂ (eV)	E₃ (eV)
(A) _{0,5} (B) _{0,5}	4,35×10⁻²	5,09×10⁻²	5,04×10 ⁻²
(A) _{0,7} (B) _{0,3}	3,96×10⁻²	4,28×10 ⁻²	4,39×10 ⁻²
(A) _{0,9} (B) _{0,1}	4,35×10⁻²	5,09×10 ⁻²	5,04×10 ⁻²

Tabel 3b. Energi aktivasi (Cul)_x(Agl)_{1-x} untuk x = 0,5-0,9 pada selang suhu 150 °C-350 °C

Sampel	E ₁ (eV)	E ₂ (eV)	E₃ (eV)
(A) _{0,5} (B) _{0,5}	3,30×10⁻¹	3,78×10⁻¹	3,43×10⁻¹
(A) _{0,7} (B) _{0,3}	2,55×10 ⁻¹	2,81×10⁻¹	2,75×10 ⁻¹
(A) _{0,9} (B) _{0,1}	2,05×10 ⁻¹	2,17×10 ⁻¹	2,19×10 ⁻¹

Keterangan:

E₁= Energi aktivasi pada frekuensi 60 Hz

 E_2 = Energi aktivasi pada frekuensi 1000 Hz E_3 = Energi aktivasi pada frekuensi 100 kHz

A = Cul dan B = Agl

Gambar 4b. Struktur mikro konduktor padat $(Cul)_{0,7}(Agl)_{0,3}$

Efek Cul Terhadap Konduktivitas Patricius Purwanto

Gambar 4c. Struktur mikro konduktor padat (Cul)_{0,9}(Agl)_{0,1}

KESIMPULAN

Konduktor padat (Cul)_x(Agl)_{1-x} dapat dibuat dengan pencampuran Cul dengan β-Aql. Pola difraksi sinar-X menunjukkan struktur kristalnya Cul. Regangan kisi kristal seiring dengan naiknya naik Cul. Konduktivitas konduktor padat (Cul)x(AgI)1-x naik seiring dengan naiknya suhu pemanasan. aktivasi naik seiring dengan Energi bertambahnya konsentrasi Cul. Bentuk butiran teratur dengan naiknya konsentrasi Cul. Pengaruh penambahan konsentrasi Cul pada bahan konduktor padat (Cul)_x(Agl)_{1-x} meningkatkan konduktivitas dan energi aktivasi serta regangan kisi kristal.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih, atas pemakaian alat-alat *XRD*, *LCR* dan *SEM* beserta operatornya yang berada di PTBIN.

DAFTAR ACUAN

- Chandra, S. dan Laskar. A. 1990. Superionic Solid and Solid Electrolyte. Academic Press. New York: 17-28.
- Purwanto, P., Purnama S., Sukirman E. dan Wisnu Ari Adi. 2006. *J. Sains. Materi Indonesia* edisi khusus: 188-191.
- Purwanto, P., Purnama S. 2006. *J. Metris* (7): 104-109.
- Purwanto, P., dan Purnama S. 2007. *J.Teknik Mesin* (9): 16-23.

Klug, H.P and Alexander L.E. 1962. X-Ray Diffraction Procedures. John Wiley & Son Inc. London. Chapter 9: 642-652.

Jonscher. A.K. 1977. Nature (261): 673-676.

- Lee, W.K, J.F. Liu and Nowick A.S. 1991. Physc.Rev.Lett. (67): 1559-1561.
- Collins, M.F and Kartini E. 2003. Solid State Ionic (1): 157-174.
- Purwanto, P., Purnama S., Purwanto S. dan Madesa T. 2007. *J.Sains dan Teknologi Emas* (17): 315-322.
- Purwanto, P., Purnama S., Sukirman E. dan Alfian. 2008. J. Sains. Materi Indonesia (10): 23-27.