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Abstract: In this in vitro study, the influence of tin ions at concentrations of 1-1000 ppm on 

the development and enzymatic activity of four entomopathogenic fungi (Beauveria bassiana, 

Beauveria brongniartii, Isaria fumosorosea and Metarhizium robertsii), that are commonly 

used in biological plant protection, are examined. Each of the fungal species tested reacted 

differently to contact with the Sn2+ ions at the tested concentrations. Exposure to Sn2+ ions 

affected the rate of development, morphology and enzymatic activity of fungi. Of the four 

fungal species studied, M. robertsii was the most resistant and showed complete growth 

inhibition at the highest Sn2+  concentration tested (1000 ppm).. For the other 

entomopathogenic fungi, the fungicidal effect of Sn2+ ions was noted at the concentration of 

750 ppm. Exposure to Sn2+ ions (up to 500 ppm) resulted in enhanced biochemical activity; 

and all entomopathogens that were tested showed increased production of N-acetyl-β-

glucosaminidase (NAG) as well as several proteases. Moreover, B. brongniartii and M. 

roberstii showed increased lipases synthesis. These changes may increase the pathogenicity of 
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the fungi, thereby making them more effective in limiting the population of pest insects. The 

exposure of the entomopathogenic fungi to a medium containing Sn2+ ions, at concentrations 

that were appropriate for each species, induced hyperproduction of hydrolases, which might 

be involved in aiding the survival of entomopathogenic fungi in the presence of heavy metals. 

This study shows that the fungistatic effect of Sn2+ on entomopathogenic fungi did not restrict 

their pathogenicity, as evidenced by the stimulation of the production of enzymes that are 

involved in the infection of insects. 

Keywords: tin; heavy metals; entomopathogenic fungi; enzymatic activity 

Running head: The influence of tin on entomopathogenic fungi 

Introduction: 

Metals are an integral part of all ecosystems and occur in both elemental and ore forms 

throughout nature. Industrialization and urbanization, in this and preceding centuries, have 

generated a tremendous amount of soil, water, and air pollution, which interferes with 

homeostasis in the ecosphere [1]. The utilization of pesticides, chemical fertilizers, and 

preservatives, particularly in agriculture, contributes to fluctuations in the chemical 

composition of the ecosphere and to the disturbance of interactions between organisms in the 

soil [2]. Life has evolved in environments that are rich in various metals and all cells have 

incorporated metal ions into their essential cellular functions [3]. Consequently, life forms 

that are continuously exposed to potentially toxic conditions have evolved mechanisms of 

metal homeostasis and metal resistance to adapt to the metals that are present in their 

environments. This requires mechanisms that ensure sensitivity towards different metal 

species at the concentration at which they are present in the environment [3]. The introduction 

of heavy metal compounds into the environment generally induces morphological and 

physiological changes in microbial communities [4]. It is well established that heavy metals 
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interfere with the physiological, enzymatic, and reproductive processes of organisms, thereby 

affecting the ecosystem.  

Entomopathogenic fungi (EPF) are a group of highly specialized microorganisms that 

can infect arthropods, including insects that are pests of crop plants [5]. The ability of EPF to 

infect  insect pests makes this group of fungi particularly important in biological plant 

protection [6]. EPF occur primarily in the soil and constitute an essential part of the organic 

biomass [7,8]. Soil can provide a substrate for the maintenance of a natural reservoir of many 

EPF. For this reason, soil can be inoculated with EPF by an infected insect entering the soil, 

by the deposition of spores on the surface of the soil or by natural dispersion mechanisms [9]. 

The presence and pathogenicity of many EPF depend on their interactions with host 

organisms, prevailing climatic conditions, as well as other biotic and abiotic factors, which 

include contact with heavy metals. Laboratory studies have shown that heavy metals influence 

growth, metabolism, and pathogenicity of EPF [2,6,10-12].  

Tin (Sn) is a naturally occurring heavy metal that is present at an average 

concentration of 2 mg/kg in the Earth’s crust. The concentration of Sn in the environment is, 

however, highly variable and is dependent both on the use of Sn and the release of Sn from 

Sn-containing entities. The release of Sn can occur by natural means such as the weathering 

of rocks or volcanic eruptions or due to anthropogenic activities, such as industrial processes, 

agriculture, and mining [13]. Normal concentrations of Sn in unpolluted soils range from <1 

mg/kg to 200 mg/kg; the Sn present in the soil occurs in two oxidative states (II and IV). In 

the soil, Sn usually has limited mobility and is usually tightly bound in the top soil [14]. 

However, due to the increase in anthropogenic activities such as agriculture, which release Sn 

products into the environment, concentrations of Sn may be elevated in certain areas [14]. Sn 

can combine with chemicals like chlorine, sulfur, or oxygen to form inorganic Sn compounds 

(i.e. chlorides, sulfides and oxides) [15]. Inorganic Sn compounds are used as pigments in the 
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ceramic and textile industry. Tin (II) chloride, SnCl2, is used as a protective tinplate coating 

for steel sheet for use in manufacturing, processing, and packaging of foods as well as in 

biocidal preparations. Sn is used in canned foods to protect the steel base from corrosion both 

externally, due to aerobic conditions, and internally, when the Sn is under anaerobic 

conditions and in contact with food. The Sn in canned food is likely to be in the inorganic salt 

form as opposed to the covalently-bound organometallic forms. The corrosion of cans may be 

one of ways in which Sn is released into the environment as pollution. Although the 

biological functions of Sn have not been described to date, it is difficult to agree with the 

opinion that Sn is a non-essential metal that is of no importance to organisms [15,16]. Sn 

compounds affect the physiology of bacteria and fungi [17-21], plants [13,14], and animals 

[15,17,22,23]. Interactions of Sn with microorganisms are ambiguous, as although Sn and its 

compounds can be metabolized by some microorganisms, they are toxic to others. Microbial 

interactions with Sn are important, because microbes are at the base of many food webs and 

are likely to be significant in the environmental transformation of Sn compounds. This 

suggests that microbes may have significant potential in the remediation of Sn-polluted waste 

streams and of Sn-polluted ecosystems [24]. 

Little is known at this time about the effect of Sn on the growth and biochemical 

activity of EPF. This study aims to determine the sensitivity of four EPF (Beauveria bassiana, 

Beauveria brongniartii, Isaria fumosorosea, and Metarhizium robertsii) to increasing 

concentrations of Sn2+. In addition, this study aims to understand the response of the EPF to 

Sn, which determines their potential of EPF in biological pest control. 

 

Materials and methods: 

Fungal strains 
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Beauveria bassiana (Bals.-Criv.) Vuill. (UPH34), Beauveria brongniartii (Sacc.) 

Petch (UPH42), Isaria fumosorosea (Wize) Kepler, B. Shrestha & Spatafora (UPH62) and 

Metarhizium robertsii J.F. Bisch., S.A. Rehner & Humber (WA27856) fungal strains were 

obtained from the Fungal Collection at the Department of Plant Protection and Breeding, 

Siedlce University of Natural Sciences and Humanities (Siedlce, Poland). The strains were 

isolated near Siedlce (Masovian district, Poland) from the soil of arable fields by using the 

Galleria bait method [25]. Before the experiments, all isolates were grown on a Sabouraud 

medium (Biocorp, Poland) and stored at 4°C. 

 

Media and the preparation of EPF inocula  

The influence of metal on EPF was tested on solid PDA medium (Biocorp, Poland) 

supplemented with Sn (II) chloride (Sigma-Aldrich). SnCl2.2H2O salt was added to PDA 

medium after autoclaving (when the temperature of the medium reached approx. 50ºC) to 

achieve concentrations of 1, 10, 50, 100, 250, 500, 750 and 1000 ppm of Sn2+ ions. The 

medium was then placed on a magnetic stirrer and when it cooled, it was poured into 90 mm 

Petri dishes. The PDA medium, which lacked added Sn2+ ions served as the control medium. 

Inocula were prepared from 10-day old fungal colonies grown on pure PDA medium. Aerial 

hyphae of EPF strains were collected and a suspension of fungal spores in sterile 

physiological saline was prepared. The concentration of fungal spores was calculated using a 

Thoma counting chamber and was approx. 1,0 x 109/mL. A twenty μL drops of EPF 

suspensions were transferred using an automatic pipette to the center of the test plates. Five 

biological repeats were prepared for each Sn concentration as well as for the control, and the 

plates were incubated at 25°C for 18 days. 

 

Growth response studies and the determination of the minimum inhibitory concentration of Sn 
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The development of fungi was evaluated using the tolerance index (TI) as previously 

described [26]. To compare the TI of the EPF strains, the radius of the colony extension on 

PDA medium supplemented with Sn2+ ions at different concentrations was measured against 

the control medium (PDA devoid of added Sn2+ ions). The radial growth was evaluated by 

performing four measurements in millimeters, each measurement passed through the center of 

inoculated EPF material. The minimum inhibitory concentration (MIC) was defined as the 

minimum inhibitory concentration of heavy metal in the medium that inhibited the visible 

growth of tested EPF strains. If no fungal growth was observed after the incubation period, 

that  Sn2+ ion concentration was considered the highest metal concentration tolerated by the 

EPF tested. 

 

The determination of fungal enzymatic activity 

The API-ZYM test (bioMérieux, Lyon, France)  was used to semi-quantitatively 

determine the activity of 19 hydrolytic fungal enzymes including alkaline phosphatase (2), 

esterase (C4) (3), esterase lipase (C8) (4), lipase (C14) (5), leucine arylamidase (6), valine 

arylamidase (7), cystine arylamidase (8), trypsin (9), chymotrypsin (10), acid phosphatase 

(11), naphthol-AS-BI-phosphohydrolase (12), α-galactosidase (13), β-galactosidase (14), β-

glucuronidase (15), α-glucosidase (16), β-glucosidase (17), N-acetyl-β-glucosoaminidase 

(NAG, 18), α-mannosidase (19) and α-fucosidase (20) according to the manufacturer’s 

instructions. Fungal cultures that were grown on PDA without and with Sn2+ ions at 

concentrations of 1, 100 and 500 ppm for 14 days were transferred into a sterile physiological 

saline solution. The API-ZYM strips were inoculated with the resuspended EPF culture and 

then incubated at 37°C for 4 h. Hydrolytic activity was determined in nanomoles (nM) of 

hydrolyzed substrate in a 5-grade color scale, ranging from 0 to 5, as described by 
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manufacturer. A 0 indicates a negative reaction with no enzyme production, 1 indicates 5 nM 

hydrolyzed substrate, 2 indicates 10 nM hydrolyzed substrate, 3 indicates 20 nM hydrolyzed 

substrate, 4 indicates 30 nM hydrolyzed substrate and 5 indicates 40 nM or more of 

hydrolyzed substrate. 

 

Results: 

Compared to the control, all EPF species tested showed a delay in linear growth on PDA 

medium supplemented with Sn2+ ions at concentrations of 1-500 ppm (Figs.1, 2, 3 and 4). The 

complete inhibition of B. bassiana, B. brongniartii and I. fumosorosea development occurred 

at an MIC of 750 ppm whereas inhibition of M. robertsii development occurred at an MIC 

1000 ppm.  

Exposure to Sn also resulted in morphological changes in the EPF mycelia. At a concentration 

of 250 and 500 ppm, there was a reduction in the aerial hyphae of M. roberstii. At Sn2+ 

concentrations higher than 500 ppm, the aerial hyphae were no longer visible for B. bassiana 

and B. brongniartii. There were no morphological changes in the mycelia of I. fumosorosea 

regardless of the Sn2+ concentration present in the growth medium, the hyphae were 

indistinguishable from those that developed under control conditions. The exposure of B. 

bassiana colonies to PDA medium containing Sn2+ concentrations between 1-50 ppm resulted 

in the formation of a white halo around the fungal colonies. In contrast, a pink pigment and a 

dark halo was produced around B. brongniartii colonies on PDA plates supplemented with 1 

and 10 ppm of Sn2+. No color reactions were observed around I. fumosorosea and M. robertsii 

colonies.  

The changes in the concentration of Sn2+ ions resulted in changes in the enzymatic activity of 

the EPF tested (Tab. 1). When compared to the enzymatic activity on control media, the 

growth of B. bassiana in the presence of Sn2+ at a concentration of 1 ppm did not result in the 
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inhibition of synthesis of any enzyme. In contrast, increased production of leucine 

arylamidase (6), valine arylamidase (7), acid phosphatase (11), α-galactosidase (13) and  

NAG (18) was detected. At a concentration of 500 ppm Sn2+, increased activity of acid 

phosphatase (11), naphthol-AS-BI phosphohydrolase (12) and β-glucosidase (17) was 

detected when compared to the control B. bassiana sample. However, compared to the 

activity detected at 1 ppm Sn2+, decreased leucine arylamidase (6) and NAG activities (18) 

were detected.  

The growth of B. brongniartii in medium containing 1 ppm of Sn2+ ions resulted in increased 

alkaline phosphatase (2), lipase esterase (C8) (4), acid phosphatase (11), α-galactosidase (13), 

β-galactosidase (14), α-glucosidase (16), β-glucosidase (17), NAG (18) and α-mannosidase 

(19) activity but reduced esterase (C4) (3) and cystine arylamidase (8) activity compared to 

those of the control sample. Growth in medium containing 100 and 500 ppm Sn2+ ions 

resulted in increased synthesis of leucine arylamidase (6), valine arylamidase (7), acid 

phosphatase (11), naphthol-AS-BI-phosphohydrolase (12), β-galactosidase (14), β-

glucosidase (17) and NAG (18).  

Growth of I. fumosorosea in medium containing a concentration of 1 ppm Sn2+ resulted in a 

reduction in naphthol-AS-BI-phosphohydrolase (12), β-galactosidase (14) and β-glucosidase 

levels compared to those in the control. The other enzymes were produced at the same levels 

in the control and Sn2+ containing medium. The development of I. fumosorosea in medium 

containing Sn2+ at 100 and 500 ppm resulted in increased levels of cystine arylamidase (8), 

naphthol-AS-BI phosphohydrolase (12), NAG (18), and α-fucosidase (20) compared to those 

in the control.  

When compared to the control sample, the growth of M. roberstii on media containing 

different concentrations of Sn2+ ions resulted in increased activity of the majority of the tested 

enzymes. When exposed to media containing 1 and 100 ppm Sn2+ ions, no enzyme was 
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inhibited; however, the levels of acid phosphatase (11) and naphthol-AS-BI phosphohydrolase 

(12) and NAG (18) were elevated compared to those in the control. The synthesis of these 

enzymes was limited when the medium contained Sn2+ ions at a concentration of 500 ppm; 

however, the levels remained higher than those found in the control. 

 

Discussion 

There are few studies that have focused on the toxicity of inorganic Sn compounds 

towards microorganisms. This may be due to the widespread belief that inorganic Sn species 

hydrolyze to form insoluble and nontoxic Sn oxides or Sn hydroxides. Most of the studies that 

have studied the toxicity of Sn have concentrated on organotin compounds [27]. The 

mechanisms by which inorganic Sn exerts its toxic effects, and the influence of these 

compounds on fungal physiology, is unclear. It is possible that it may be complex to 

understand. Tobin and Cooney [17] observed that the inorganic Sn ions (Sn2+ and Sn4+) bind 

to Candida maltosa yeast cells at levels of 0.3 and 0.23 mM Sn/g cells, respectively however 

Sn did not inhibit growth of the C. maltosa at concentrations up to 0.8 mM. The inorganic Sn 

did not cause the leakage of potassium from the yeast cells however organotins did affect the 

physiological state of yeast. With reference to Basidiomycota, Kähkönen et al. [28] showed 

that although there are individual species of fungi with a high tolerance towards inorganic Sn 

compounds (SnCl4 
.5H2O), there are many more species that lack this tolerance.  

It has been reported that SnCl2 is capable of promoting the formation of reactive 

oxygen species (ROS), which are responsible for the oxidative stress that causes DNA 

damage [29]. According to Dantas et al. [30], the Sn2+ toxicity mechanism may be related to 

Fenton-like reactions. ROS, such as the hydroxyl radical (.OH), which is produced in the 

cells, is capable of damaging important cellular targets, including membranes and DNA. 

Metal ions, including a number of transition metals such as iron, copper, zinc, and chromium, 
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are able to mediate Fenton or Fenton-like reactions that generate ROS in the presence of 

hydrogen peroxide (H2O2) [30]. At higher concentrations, some of the metal ions, and 

particularly the heavy metals, interfere negatively with cellular metabolism as they may 

inactivate proteins and damage DNA [31]. The genotoxic potential of Sn may also be 

significantly modulated by other non-DNA repair or membrane transport-related 

physiological parameters. This includes the quality and quantity of enzymatic and non-

enzymatic scavengers of metal-induced ROS, which may be a crucial factor that influences 

the physiological response of EPF. Inorganic Sn increases the frequency of chromosomal 

aberrations, sister chromatid exchange and reduces cell proliferation [15,32]. Inorganic Sn 

also induces rapid and prolonged suppression of DNA synthesis resulting in changes in gene 

expression as reported by McLean et al. [33]; these authors also noticed that SnCl2 produced 

single-strand breaks in DNA. The toxicity of inorganic Sn (SnCl2) has also been demonstrated 

towards microorganisms that live in saline estuaries. Hallas et al. [27] suggest that this may be 

due to the interaction of the metal with polysaccharides and the consequent formation of 

cytotoxic complexes.  

This study  also demonstrated the toxicity of Sn2+ ions to microorganisms. This 

finding is confirmed by the individual reactions of EPF to Sn that were observed in this study. 

EPF exhibited differential tolerance to the presence of Sn, there were visible differences in 

development as well as differences in EPF biochemical activity; these demonstrate that Sn 

exerted a degree of toxicity towards microorganisms. The morphological changes and the 

colorful reactions that occur when EPF are in contact with Sn2+ ions may be the result of 

physiological disturbances; this has been shown in other microorganisms [26,34,35]. The 

production of organic acid-based pigments (such as salts of oxalic acid and citric acid), in 

fungal cells or their secretion into the environment could be harnessed to precipitate metal 

ions; this could be used in mechanical detoxification.  
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There are two mechanisms that have been proposed to explain the tolerance of fungi to 

heavy metals. These include the extracellular sequestration of the metal ions by chelation or 

cell wall binding and the intracellular and physical sequestration of metals by binding them to 

proteins or other ligands to prevent the metal ion from damaging the metal sensitive cellular 

targets [34,35]. Among the tested EPF, the highest tolerance to contact with Sn2+ was 

demonstrated by M. robertsii, with an MIC value of 1000 ppm. For the other EPF species, the 

MIC values were 750 ppm. The fungistatic effect of the Sn2+ ions is thought to be due to the 

inhibition of the logarithmic phase of fungal growth, specifically the trophophase, which is 

usually dependent on environmental conditions [1,26,34,36]. The consequence of the Sn-

dependent physiological changes is the delay in the stationary phase, the idiophase, which is 

important for fungi because it is associated with the production of key secondary metabolites, 

such as mycotoxins [37]. Limiting the toxigenic potential of EPF may reduce their 

pathogenicity to insects.  

Insect mycoses are, however, also dependent on other factors that interact with or are 

independent of mycotoxins. In addition to their mycotoxin-forming ability, the effectiveness 

of entomopathogens in the reduction of insect populations is also determined by the activity 

of their enzymes, especially those that are involved in the degradation of the epicuticle, which 

is the outer body of the insect. These enzymes include those that are active in the digestion of 

chitin, which constitutes 60% of the dry matter of insects’ epicuticle. Chitin is composed of 

polymers of N-acetyl-D-glucosamine whose structure is destroyed by the enzyme NAG. The 

present study indicates an interesting and as yet unreported effect of Sn; stimulation with Sn 

resulted in the elevated production of this enzyme by B. bassiana (at 1 ppm), B. brongniartii 

(at 1, 100 and 500 ppm), and M. robertsii (at 1 and 100 ppm). Overproduction of NAG was 

also demonstrated in I. fumosorosea at concentrations of 100 and 500 ppm. While this may 

significantly accelerate the infection and development of insect mycoses, this response may 
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also represent the manifestation of the defense mechanism of these microorganisms. 

According to Pusztahelyi et al. [38], NAG is a high molecular-weight hydrolytic lysosomal 

enzyme, which breaks chemical bonds of glycosides and amino sugars that form structural 

components in many tissues. NAG is necessary for the degradation and disposal of various 

parts of the cell, including the cell membranes. The degradation of insect cuticles may also be 

accelerated by elevated lipases activity. Lipases, in addition to increasing the degree of 

adhesion of fungal spores to insect cuticles, result in the hydrolysis of lipid compounds and 

phosphate esters, which leads to disturbances in the permeability of biological membranes 

[39,40]. Hence, the increased lipase and esterase activities demonstrated in B. brongniartii 

and M. robertsii that are in contact with Sn2+ ions at 1 ppm in this study may have an 

important and practical application. This aspect of EPF activity also permits the involvement 

of the proteases in the disease process in insects. There are numerous reports that show that 

proteolytic activity determines the pathogenicity of EPF [41,42]. EPF proteases appear to be 

less sensitive to contact with Sn2+ ions, as evidenced by their increased production by B. 

bassiana, B. brongniartii and M. robertsii at Sn2+ ion concentrations between 1-500 ppm and 

by I. fumosorosea at Sn2+ ion concentrations of 100 and 500 ppm. It is tempting to speculate 

that the activation of proteases may permit the increased hydrolysis of insect cuticle proteins 

even at toxic levels of Sn2+ ions. The amino acids released by this process may be used by the 

EPF as nutrients essential for their development [41,42]. In this context, the overproduction of 

hydrolases by EPF may have an ambiguous effect. On the one hand, this reaction may be 

considered a factor that leads to the increased pathogenicity of the insect pathogens. On the 

other hand, this may lead to an increase in mycelial survival in toxic conditions, in this case 

when the mycelia are in contact with Sn2+ ions. The diverse and ambiguous reactions of the 

EPF to the presence of inorganic Sn in the present study indicates the importance of 

broadening this study to other microorganisms. Microorganism contact with inorganic Sn2+ 
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ions in the environment is toxic but it can also lead to reactions in the microorganisms that 

could strengthen their beneficial role in the ecosystem. 

 In conclusion, in this report EPF that were tested exhibited a sensitivity to Sn2+ ions. 

The presence of these ions modified the development of the EPF and their biochemical 

activity. Sn2+ ions have fungistatic activity and could be used to restrict their growth in the 

environment as well as to influence the fungal communities in contaminated soils. Stimulation 

of the synthesis of extracellular enzymes, including NAG as well as some proteases and 

lipases, due to the action of Sn+2 ions translates directly into strengthening the role of these 

microorganisms in their pathogenesis of insects, and so the effectiveness of causing mycoses 

in plant pests. This study suggests that the use of EPF in biological plant protection in practice 

may differ from that detected in controlled conditions; this is due to the multifaceted and 

complex impact of metal ions that are present in the environment on the microorganisms. 

 

Acknowledgements: We gratefully acknowledge MK for her assistance in conducting this 

study. 

 

Author’s contributions: ŁŁ and KMZ designed and conducted the experiments and analyzed 

the data, CT isolated EPF and AB analyzed data. All authors contributed to the preparation of 

the manuscript.  

 

 POSTPRIN
T PROOF

Acta Mycologica Vol. 54, No. 2 – postprint proof; not the final version of the work – DOI: https://doi.org/10.5586/am.1127 13



Tab. 1. The enzymatic activity of entomopathogenic fungi. Enzyme activity was determined with the API-ZYM test (C – Control; Sn1 – Sn 
concentration 1 ppm; Sn2 – Sn concentration 100 ppm; Sn3 – Sn concentration 500 ppm) 

Enzyme 
B. bassiana B. brongniartii I. fumosorosea M. robertsii 

C Sn1 Sn2 Sn3 C Sn1 Sn2 Sn3 C Sn1 Sn2 Sn3 C Sn1 Sn2 Sn3 
2 Alkaline phosphatase 2 1 1 1 3 4 3 3 1 1 1 1 1 2 2 1 
3 Esterase (C4) 1 1 0 2 3 1 3 3 1 1 1 1 1 2 2 1 
4 Esterase lipase (C8) 2 1 1 1 1 3 1 1 1 1 1 1 1 2 1 1 
5 Lipase (C14) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
6 Leucine arylamidase 2 3 3 1 3 3 4 4 1 1 1 1 1 3 3 1 
7 Valine arylamidase 1 1 1 1 2 2 3 3 1 1 1 1 1 3 3 1 
8 Cystine arylamidase 1 1 1 1 2 1 2 2 1 1 2 2 1 1 1 1 
9 Trypsin 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 
10 Chymotrypsin 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 1 
11 Acid phosphatase 1 1 3 2 3 4 4 4 2 2 2 1 1 5 5 1 
12 Naphthol-AS-BI-phospohydrolase 2 3 1 2 4 4 5 5 3 1 4 4 1 5 5 1 
13 α-galactosidase 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 4 
14 β-galactosidase 2 2 1 1 3 4 5 5 2 1 2 2 1 2 2 3 
15 β-glucuronidase 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 3 
16 α-glucosidase 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 
17 β-glucosidase 1 3 3 1 1 2 3 3 2 1 1 1 3 4 4 3 
18 N-acetyl-β-glucosoaminidase 2 3 2 1 2 4 4 4 1 1 4 4 4 5 5 3 
19 α-mannosidase 1 2 2 1 2 3 4 4 1 1 1 1 1 2 2 1 
20 α-fucosidase 0 0 0 0 1 2 4 4 1 1 2 2 1 2 3 1 
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Fig. 1.  Effect of an increasing Sn2+ concentration on the tolerance index of Beauveria 
bassiana over an 18 day incubation period. 

 

Fig. 2.  Effect of an increasing Sn2+ concentration on the tolerance index of Beauveria 
brongniartii over an 18 day incubation period. 
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Fig. 3.  Effect of an increasing Sn2+ concentration on the tolerance index of Isaria 
fumosorosea over an 18 day incubation period. 

 

Fig. 4.  Effect of an increasing Sn2+ concentration on the tolerance index of Metarhizium 
robertsii over an 18 day incubation period. 
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