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Abstract
Many cool-season grass species have evolved with asexual, nonsymptomatic fungal 
endophytes of the genus Epichloë (formerly Neotyphodium) of the family Clavicipi-
taceae. These associations range from parasitic to mutualistic and have dramatic 
effects on grass host chemistry, increasing resistance to abiotic (drought, soil mineral 
imbalance) and biotic (vertebrate and invertebrate herbivory, nematodes, plant 
pathogens, plant competition) stresses. Native endophyte strains produce a range 
of bioprotective alkaloid and other nonalkaloid secondary compounds, several of 
them known to have detrimental effects on grazing animals. In the past two decades, 
epichloid endophyte strains have been selected with marginal or no capacity of 
producing ergot and/or lolitrem alkaloids. These novel endophyte strains have been 
introduced to several grass cultivars with the idea to increase grass host resistance 
to abiotic stresses without hindering grazing livestock, and abiotic stresses to ensure 
high competitive ability of symbiotic grass cultivars. In this presentation, we discuss 
mechanisms underlying the competitiveness of epichloid endophyte/grass associations 
and consequences of endophyte infection for grassland ecosystem functions.
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Introduction

Plant communities, including grasslands ecosystems, form an array of relationships with 
microorganisms. Many of these interactions are mutualistic and result in significant 
advantages of symbiotic plants in terms of abiotic and biotic stress tolerance over their 
nonsymbiotic counterparts. The most successful examples are the N2-fixing symbioses 
[1] and arbuscular mycorrhizas [2]. In both cases, host plants are able to use more 
efficiently mineral nutrients from nutrient-deficient soils. As a result, such symbiotic 
plants have higher competitive ability and can dominate the ecosystems [3,4].

Several members of the genus Epichloë (formerly Neotyphodium) [5] of the family 
Clavicipitaceae have been identified as common fungal endophytes of some important 
cool-season forage grasses, such as tall fescue [Lolium arundinaceum (Schreb.) Dar-
bysh.] (syn. Festuca arundinacea Schreb.) [6], perennial ryegrass (L. perenne L.) [7], 
and meadow fescue [L. pratense (Huds.) Darbysh.] (syn. F. pratensis Huds.) [8]. These 
symptomless endophytes, also referred to as epichloid endophytes [9], are asexual 
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interspecific hybrids that colonize intercellular spaces of grass shoot meristems and 
basal parts of leaf sheaths, and are transmitted vertically via grass seeds [10,11]. The 
endophyte of tall fescue, E. coenophiala, is phylogenetically described as a triparental 
hybrid with inferred ancestral progenitors from E. festucae, E. typhina subsp. poae, 
and the Lolium-associated endophyte (LAE) [10,12]. In summer-dormant, Mediter-
ranean morphotypes of tall fescue [13], two additional unnamed endophyte species, 
designated FaTG-2 and FaTG-3, have been identified [14,15]. These endophytes have 
also been characterized as interspecific hybrids between E. festucae and an unidentified 
Lolium-associated endophyte [12,16] and they differ from E. coenophiala in morphology, 
chemotype, isozyme profiles, alkaloid composition, and microsatellite markers [14–16]. 
Epichloë uncinata, the endophyte of meadow fescue, is a hybrid between E. bromicola 
and E. typhina subsp. poae [17]. The endophyte of perennial ryegrass, E. festucae var. 
lolii, is a haploid, nonhybrid strain [10]. Epichloid endophytes are also common in 
other cool-season grasses, i.e., hair-grass (Deschampsia spp.), colonial bent (Agrostis 
capillaris L.), orchardgrass (Dactylis glomerata L.), couch grass (Elymus repens L.), 
timothy (Phleum pratense L.) [18], and Elymus spp. from Western China [19].

The mutualistic interactions between epichloid endophytes and grasses are highly 
integrated involving morphological, physiological, biochemical, immunological, and 
life cycle traits of the partners to increase the fitness of the symbiota [17,20]. It is not 
well understood how the fungal and plant organisms interact to recognize each other 
and suppress defense responses that otherwise would prevent the establishment of 
harmful fungal infections in the host grass [21,22]. Malinowski and Belesky [23,24] 
speculated that grass plants could recognize the presence of epichloid endophytes as 
shown by increased production of chitinase, resveratrol, and phenolic compounds in 
response to infection. Recent research has evidenced that a recognition of the fungal 
endophyte (described as “cross-talk”) does occur through channels of communication 
between a grass host and its endophyte within the symplast [25]. Numerous studies 
have confirmed that production of phenolic compounds and other antioxidants is 
higher in endophyte-infected than noninfected grasses and it facilitates, among other 
responses, the ability of host grasses to cope with antioxidative stress [23,26–28].

Tall fescue, meadow fescue, perennial ryegrass, and other fescues are also known to 
be hosts to nonepichloid symptomless fungal endophytes, including Phialophora-like 
and Gliocladium-like (Deuteromycetes) fungi [29,30], often referred to as p-endophytes. 
A third group of nonepichloid endophytes consists of parasitic Acremonium species 
similar to Neotyphodium chilense, an endophyte of orchardgrass (Dactylis glomerata) 
[31]. These parasitic endophytes are referred to as a-endophytes. The Phialophora-like 
and Gliocladium-like endophytes are closely related [30]. The seed-borne Phialophora-
like endophytes have been reported in tall and meadow fescue [29,32]. Gliocladium-like 
endophytes have been reported in perennial ryegrass and they can sporulate on the 
host plant [33]. Artificial infection of tall fescue and perennial ryegrass plants with 
Gliocladium-like endophytes resulted in a significant increase in peroxidase activity in 
leaf sheaths [34]. This indicates that Gliocladium-like endophytes can trigger a systemic 
defense mechanism, a response typical for infection with parasitic fungi. Both epichloid 
endophytes (e-endophytes) and p-endophytes often occur cosymbiotically [29,35]. The 
ecological role of p-endophytes is unknown. In agar culture, Phialophora-like endophyte 
of tall fescue expresses activity against a wide spectrum of fungal pathogens of grasses 
[36]. In meadow fescue, infection with a p-endophyte either decreased shoot dry mat-
ter (DM) in field-grown plants [32] or increased it in plants grown under controlled 
growth conditions [37]. The effects of e-endophytes and p-endophytes on root DM and 
physiological parameters in drought-stressed meadow fescue were opposite, suggesting 
that p-endophytes might benefit plants under optimal soil water conditions [37]. The 
parasitic a-endophytes are found in Italian ryegrass (L. multiflorum) and F. paniculata, 
and their ecological and physiological role is not understood [38].

In this review, we discuss recent findings on adaptations of cool-season grasses and 
their mutualistic Epichloë fungal endophytes to a range of environmental stresses and 
underlaying physiological and biochemical mechanisms.
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Alkaloid metabolites produced by epichloid 
endophyte–grass host associations

Although symbioses between asexual epichloid endophytes and cool-season grasses 
can range from antagonistic to mutualistic [17], there is a strong evidence for selective 
advantage of endophyte-infected grasses in native and improved grasslands [39,40]. 
Increased competitive ability of endophyte-infected grasses is the combination of 
altered growth and reproduction characteristics, and tolerance to a range of abiotic 
and biotic stresses [23], resulting in modifications of grassland ecosystem functions 
[22,41,42]. The direct basis for modifications of competitive ability of grass host may 
be numerous alkaloid and nonalkaloid secondary metabolites produced either by the 
endophyte themselves or by the grass hosts in response to infection [24,43,44]. The 
most known alkaloid metabolites are ergot, loline, peramine, and peramidine alkaloids 
because of their detrimental effects on herbivory by vertebrates and invertebrates [43]. 
The enzymatic pathways for synthesis of these alkaloids are regulated entirely by the 
fungal genome [45–47]. Within endophyte/grass host combinations, alkaloid profiles 
are determined by the fungal species and strains. The amounts of produced alkaloids 
depend on the hypha concentration in the plant, the plant species and genotype, tis-
sue or organ, and environmental conditions (water and mineral nutrient availability, 
temperature) [22,48–53]. Nonalkaloid metabolites identified in endophyte-infected 
grasses include sesquiterpenoids, fatty acids, and phenolic compounds occurring in 
timothy (Phleum pratense L.) infected with E. typhina [54–56]. Flavonoids have been 
detected in bluegrass (Poa ampla Merr.) infected with E. mollis (Morgan-Jones & W. 
Gams) Leuchtm. & Schardl [formerly N. typhinum (Morgan-Jones & W. Gams) Glenn, 
C. W. Bacon & Hanlin] [57]. The ecological significance of these compounds in terms 
of biotic stress tolerance of endophyte-infected grasses is unknown.

Ergot alkaloids

Ergot alkaloids (clavines, lysergic acid and its amides, and ergopeptines) were the 
first endophyte-mediated metabolites associated with toxicity to animals grazing on 
endophyte-infected grasses [58,59]. Lysergic acid derivates may cause psychedelic effects 
[60], whereas ergonovine and ergotamine are known to cause vasoconstrictive effects 
[61]. Agroclavine has antimicrobial activity [62]. Ergovaline is effective against insects 
and mammals [63–65]. Ergot alkaloids produced by clavicipitaceous fungal endophytes 
can cause toxicosis to animals grazing on infected grasses, e.g., summer slump and fescue 
foot [63,66]. The summer slump syndrome occurs during hot weather periods and may 
be manifested through symptoms such as hyperthermia, agalactia, reduced reproductive 
capability and retention of the winter coat. The fescue foot syndrome manifests usually 
during cold weather conditions causing dry gangrene of limbs and extremities.

Loline alkaloids

Loline alkaloids (N-acetylloline, N-formylloline) are synthesized by tall fescue and 
meadow fescue infected with E. festucae [67, 68] or E. uncinata [69] endophytes, respec-
tively, and by perennial ryegrass infected with E. festucae var. lolii at elevated temperatures 
[70]. When compared with ergot or lolitrem alkaloids, loline alkaloids have negligible 
effects on livestock performance [71], despite their much higher concentrations in 
endophyte-infected grasses than those of other alkaloids [36,72]. Loline alkaloids are 
potent insecticides [73] with a mode of action similar to that of nicotine [74].

Pyrrolizidine alkaloids

Peramine is a pyrrolopyrazine alkaloid. In contrast to the other alkaloids produced by 
the endophyte–grass associations, it is a single metabolite [75]. Peramine has no known 
effects on mammal herbivores [76] and functions as an anti-invertebrate defensive 
metabolite by deterring feeding of a range of insects [77,78].
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Diterpene alkaloids

Lolitrems are the most known indole diterpene alkaloids with antivertebrate properties 
[79]. Lolitrems are produced only by the perennial ryegrass–E. festucae var. lolii as-
sociations [80], although some strains of E. festucae var. lolii are incapable of producing 
lolitrems in the grass host. The most common response of vertebrates to lolitrem B 
are tremors and staggers [81]. Epoxy-janthitrems are a group of five compounds also 
belonging to the indole diterpene alkaloids [82]. The epoxy-janthitrems have only been 
detected in perennial ryegrass infected with the novel endophyte strain AR37 of E. 
festucae var. lolii [83]. Epoxy-janthitrems are toxic to adult African black beetle (Het-
eronychus arator) [84], larvae of Argentine stem weevil larvae (Listronotus bonariensis) 
[85], root aphid (Aploneura lentisci) [86] and porina larvae (Wiseana spp.) [87].

Nonalkaloid secondary metabolites

Nonalkaloid secondary metabolites, i.e., sesquiterpenoids, fatty acids, phenolic com-
pounds, and flavonoids have been isolated from several grass hosts infected with epichloid 
endophytes [57,88,89]. These metabolites have been shown to have antimicrobial [88], 
antioxidant [23,28], and pest-deterrent properties [90].

Ecological advances of endophyte-infected grasses

Systemic, endophytic fungi have been found in 20–30% of all grass species [91]. Symp-
tomless, mutualistic epichloid fungal endophytes have been shown to dramatically alter 
morphological, physiological, and chemical attributes of their host grasses resulting in 
improved tolerance of symbiotic plants to a range of abiotic [23,92] and biotic stresses 
[93]. Ultimately, such adaptations enable endophytic grasses to be more competitive 
against noninfected counterparts (intraspecific competition) and other plant species 
(interspecific competition), and more persistent in a range of environments [41,94].

Mechanisms of endophyte-induced tolerance to biotic stresses

Vertebrates. The most beneficial attribute contributing to the dominance of endophyte-
infected grasses in native and managed ecosystems is likely the ability of symbiotic 
plants to produce a range of alkaloids and nonalkaloid secondary metabolites protecting 
them from herbivores, nematodes, pathogenic fungi, and neighboring plants [95]. Clay 
and Schardl [72] postulated that alkaloids produced by endophyte-infected grasses 
are the primary determinant of antiherbivore effects and not the history of grass spe-
cies domestication. As indicated earlier, ergot and lolitrem alkaloids are very efficient 
weapons against defoliation by vertebrate animals. Numerous reports confirm that 
endophyte-infected grasses are rapidly increasing their geographic range and frequency 
across diverse environments. The antiherbivory effects of endophyte-infected grasses 
has been evidenced in domesticated [58,96] and indigenous livestock [97–99]. Wild 
herbivores, i.e., voles (Microtus sp.), rabbits (Oryctolagus sp.), Canada geese (Branta 
canadensis), grasshoppers (Orthoptera: Acrididae), and ants (Hymenoptera: Formici-
dae) are also negatively affected by endophyte-infected grasses and prefer to graze on 
noninfected plants [100–103] or feed on noninfected seed [104,105]. Ergot alkaloids 
are suggested to reduce population densities of some root-knot [106] and migratory 
nematodes [107,108], although another mechanism of nematode deterring is also 
proposed in endophyte-infected grasses [109]. In contrast, novel endophytes that are 
lacking the ability to produce ergot alkaloids in associations with tall fescue grass host 
have no effect on nematode populations [110].

Invertebrates. It has been evidenced that approximately 45 insect species belonging to 
10 families are susceptible to alkaloids produced by endophyte-infected grasses [25]. 
The most toxic alkaloids to insects are loline and peramine [96,111]. Interestingly, 
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symbiotic grasses can dramatically increase the production of lolines in response to leaf 
damage by insects or mammal herbivores [67,112]. Some insects, i.e., Argentine stem 
weevil (Listronotus bonariensis), a major pasture pest in New Zealand, are extremely 
sensitive to peramine [111]. Others, like aphids (Hemiptera: Aphididae), may differ in 
their response to particular grass–endophyte combinations that can determine a specific 
alkaloid profile [68,113]. Results of numerous studies suggest that the antagonist effects 
of epichloid endophyte-infected grasses on invertebrates may be more pronounced 
in agronomic than native grasses [114]. This may be a result of greater variation in 
infection rates, alkaloid production and profiles, and host and endophyte genotypes in 
agronomic compared with native grass species. Lehtonen et al. [115] observed that with 
increasing mineral nutrient availability in soils, bird cherry aphid (Rhopalosiphum padi) 
herbivore performance decreased on perennial ryegrass plants in response to infection 
with E. festucae var. lolii. The authors postulated that loss of endophyte infection after 
long coevolutionary relationship might critically reduce grass plant competitiveness 
in regard to herbivory resistance. Endophyte infection of grasses cannot only affect 
the performance of herbivorous insects, but also their predators. For example, Finkes 
et al. [116] found a significant decline in spider family richness in field dominated by 
endophyte-infected tall fescue plants when compared to fields containing endophyte-free 
plants and this phenomenon was not related to the abundance of the prey insects.

Plant pathogens. One of the ecological advances of endophyte-infected grasses is 
protection against some plant pathogens [117]. Such plant pathogens inhibition prop-
erties have been documented in pure endophyte cultures [36,118] and in symbiotic 
plants. In response to endophyte infection, tall fescue was more resistant to seedling 
blight caused by Rhizoctonia spp. [119] and crown rust caused by Puccinia coronata 
[120]. Similar protection against fungal pathogens was reported in ryegrass [121], 
Panicum agrostoides infected by the endophyte Balansia henningsiana [122], timothy 
infected by an Epichloë sp. endophyte [123], and other native grasses [124]. In some 
endophyte/grass associations, however, the effects on pathogen resistance were neutral 
or negative [6,125].

Aphids are known to be vectors of numerous viruses, including barley yellow dwarf 
virus, one of the most harmful cereal viruses [126]. Reduction in aphid populations on 
endophyte-infected tall fescue and meadow fescue can significantly reduce incidence of 
this virus [127,128]. Interestingly, epichloid endophyte of grasses can harbor a number 
of mycoviruses that cause no apparent symptoms on infected plants [129,130]. Their 
role in the endophyte-grass host associations is not known.

Interactions with arbuscular mycorrhizal fungi. Grasses often form mutualistic 
associations with arbuscular mycorrhizal (AM) fungi. Mycorrhizal endophytes affect 
many physiological processes in grass hosts that help the plants efficiently take up P and 
other minerals, increase drought tolerance, resistance to some pathogens, and increase 
their competitive ability [131]. Exudation of organic compounds in the rhizosphere by 
epichloid endophyte-infected grasses (see section “Mineral imbalance stress”) can alter the 
mutualistic symbioses among the grass hosts and AM fungi [132]. In agronomic grasses, 
i.e., tall fescue, and annual and perennial ryegrass, endophyte infection has been shown 
to inhibit colonization by AM fungi [133–136]. Similarly, beneficial effects of epichloid 
endophytes on the frequency of root colonization by AM fungi have been reported in 
several wild grasses from Argentina, i.e., Bromus setifolius [137] and Poa bonariensis 
[138]. The four-way interactions among grass hosts, epichloid endophytes, AM fungi, 
and herbivores may alter herbivory and herbivore population dynamics [139]. However, 
experimental studies researching these interactions are very scarce. Barker [140] found 
that infection of perennial ryegrass with the AM fungus Glomus fasciculatum reduced 
the antixenotic effect of E. festucae var. lolii endophyte on Argentine stem weevil, while 
mycorrhiza had no effect on insect feeding in endophyte-free plants. Vicari et al. [141] 
evidenced in perennial ryegrass both additive and nonadditive, depending on host P 
nutrition status, effects of E. festucae var. lolii endophyte and the mycorrhizal fungus 
Glomus mosseae on growth and survivorship of larvae of the noctuid moth Phlogophora 
meticulosa. The authors suggested that, in terms of insect resistance, the beneficial 
effect of the epichloid endophyte on perennial ryegrass was reduced by mycorrhizae. 
The ecological and evolutionary role of the epichloid endophyte/AM mycorrhizal 
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fungi/host grass species combinations and its implications for the herbivore defense 
hypothesis merits further research.

Allelopathy. Root exudates can highly affect plant community interactions either 
indirectly by altering biogeochemical processes within the rhizosphere or directly by 
inhibiting seed germination or growth of neighboring plants [142,143]. Evidencing the 
role of shoot-located epichloid endophytes on exudation of phenolic compounds into 
the rhizosphere by roots of infected grasses was a milestone step in our understanding 
of endophyte involvement in modification of rhizosphere chemistry resulting effects 
on plant succession in the ecosystems [24]. Subsequent studies by Guo et al. [144] 
detected a range of phenolics and other metabolites released by grass roots in response 
to endophyte presence in the shoots, including sugars, lipids, carboxylic acids. Several 
of these exudates, i.e., syringic acid (a phenolic compound) and myristic acid (lipid) 
are known to inhibit germination and growth of monocot and dicot weeds [145,146]. 
In a study by Renne et al. [147], phenolic-like root exudates from endophyte-infected 
tall fescue could effectively inhibit germination of a range of native prairie grasses in 
vitro. However, their effectiveness in inhibiting seed germination in soil was low, sug-
gesting that soil microflora could effectively alter the allelopathic potential of phenolic 
compounds [148].

Mechanisms of endophyte-induced tolerance to abiotic stresses

Drought stress. Drought stress tolerance of grasses infected with epichloid endophytes 
has been extensively researched for many decades [23]. Adaptations imparted by the 
endophytes can be categorized as mechanisms of drought avoidance, tolerance, and 
recovery from drought [149].

Mechanisms of drought avoidance enable endophyte-infected grasses to maintain 
an efficient water supply to aboveground organs and conserve water in plant tissues 
during drought periods. These adaptations include: (i) improved water uptake from 
the soil by a more extensive root system [37,150–153], (ii) reduced transpiration due 
to efficient regulation of stomata [37,153–155], and (iii) water storage in plant tissues 
by accumulation of solutes, likely soluble carbohydrates [155,156].

Drought tolerance adaptations enable plants to withstand periods of short- or 
long-term water deficit. In endophyte-infected grasses, these adaptations include: (i) 
accumulation and translocation of assimilates, mainly glucose, fructose, polyols [157], 
proline [156,158], mannitol, and amino acids [159], (ii) osmotic adjustment to maintain 
turgor and physiological and biochemical processes [160,161], (iii) maintaining elasticity 
of cell walls [162,163], and (iv) efficient water use [164,165]. Loline alkaloids, in addi-
tion to their function as insecticides, have been shown to lower osmotic potential, thus 
reducing the effects of drought stress [67]. The enhanced production of antioxidants by 
endophyte-infected grasses may also be considered as a drought tolerance mechanism 
to protect meristems and cell membrane functions form detrimental effects of reactive 
oxygen species (ROS) [27,28,166–168]. Recently, it has been proposed that auxins (or 
auxin-like compounds) produced by epichloid endophyte hypha in grass host tissues 
may modulate plant responses to the presence of ROS and prevent cell death [168].

In endophyte-infected grasses drought stress recovery mechanisms include a rapid 
water uptake by roots and restoration of physiological functions in plant tissues. Beneficial 
effects on endophyte infection on growth and water relations in tall fescue and meadow 
fescue were observed during the weeks following drought stress [37,169]. Superior 
ability of endophyte-infected grasses to regrow quickly after relief from drought has 
been considered more important for grass persistence than enhanced growth during 
the period of drought [169].

Dehydrins, a group of proteins synthesized in grasses in response to various abiotic 
stresses including drought [170], may be also be implicated in endophyte-mediated 
drought stress tolerance. Dehydrins may play a role in stabilizing hydrophobic interac-
tions and gene transcription [171,172]. In tall fescue, dehydrins were synthesized in 
endophyte-infected plants earlier during drought stress than in noninfected plants and 
it was associated with higher tiller survival rate of endophyte-infected plants [173]. 
Interestingly, endophyte-mediated increase in dehydrin expression was much more 
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pronounced in mesic than xeric tall fescue types [174], suggesting an additive effect 
of the endophytes to the already existing mechanisms of drought tolerance in grasses 
[175].

Our understanding of mechanisms by which endophytes enhance host grass survival 
during drought is still incomplete. Results suggest that endophyte-mediated responses 
to water deficit are a combination of drought avoidance, tolerance and recovery 
mechanisms, and may vary among individual symbionts in the population. Alterations 
of root architecture [176–178], and morphology and functions [144,179,180] may be 
the primary basis for drought tolerance in endophyte-infected grasses. Protection of 
growth meristems and cell membrane functions by antioxidants from oxidative stress 
caused by excess of free radicals may be a secondary mechanism [27,89,168].

Mineral imbalance stress. Earlier studies evidenced the role of epichloid endophytes 
and nitrogen fertilization on production of ergot and loline alkaloids [181,182] and 
metabolites (proline, amino acids) involved in drought stress tolerance [183,184]. 
Nitrogen effects on grass host growth in response to endophyte infection were incon-
clusive, depending on grass and endophyte species, and nitrogen availability in the 
growing medium [23]. However, the majority of those studies indicated that benefits 
of endophyte infection on herbage growth and plant fitness were expressed under 
optimal nitrogen fertilization. The endophyte-related mechanism involved in altered 
nitrogen metabolism of grasses is an increased activity of glutamine synthetase, an 
enzyme responsible for NH4

+ reassimilation, regardless of nitrogen availability [182]. 
Nitrogen metabolism by endophyte in tall fescue appears to involve both assimilatory 
and basic nitrogen metabolism and may be correlated with mechanisms of in vitro N 
utilization by endophyte mycelium [182].

A milestone step in our understanding of E. coenophiala endophyte involvement 
in mineral nutrition of grass hosts was the discovery of chemical modifications in 
the rhizosphere of tall fescue and the regulatory effects root exudates on uptake of 
certain minerals, i.e., phosphorus (P), aluminum (Al), iron (Fe), and copper (Cu) 
[179,180,185–187]. Similar responses were later evidenced in perennial ryegrass infected 
with E. festucae var. lolii [188]. These root exudates were first characterized as phenolic 
compounds with antioxidative properties. In subsequent studies, Qawasmeh et al. [28,89] 
and Guo et al. [144] characterized specific phenolic compounds and other secondary 
metabolites exuded from roots of tall fescue and perennial ryegrass in response to en-
dophyte infection in shoot tissues. They also found a strong effect of endophyte strains 
on the quantity and quality of phenolic compounds produced and exuded via roots by 
grass hosts. At low P availability in soil, exudation of phenolic compounds by roots of 
endophyte-infected grasses was shown to increase P uptake from nonsoluble P sources, 
such as phosphate rock [179]. The underlying mechanism of increasing P availability 
in the soil may be the ability of phenolic compounds to bind (chelate) soluble Al, Fe, 
and manganese (Mn), which can otherwise render P unavailable [189,190]. In fact, 
Malinowski and Belesky [186] evidenced an efficient mechanism of Al sequestration 
on root surfaces of endophyte-infected tall fescue that may increase competitive ability 
of symbiotic plants grown in acidic soils [191]. Copper chelating properties of phenolic 
compounds [180] may explain reduced Cu concentrations in endophyte-infected tall 
fescue forage when compared with noninfected plants [192]. Antioxidative properties 
of phenolic compounds released into the rhizosphere of endophyte-infected tall fescue 
were shown to reduce Fe outside of the grass root system [185], a mechanism not 
known in monocots [193]. This mechanism may contribute to enhanced Fe uptake by 
endophyte-infected tall fescue [187]. It has been postulated that root exudates may help 
endophyte-infected grasses by stimulating the activity of soil microbial communities, 
indirectly enhancing mineral nutrient supply to the host plant [194].

The ability of epichloid endophyte-infected grasses to release root exudates with 
chelating properties may be used as a method for soil remediation from common 
metal pollutants, including zinc (Zn) [195,196], Al [186,197], cadmium (Cd) [198,199], 
and nickel (Ni) [200]. The underlying mechanisms of heavy metal stress tolerance in 
endophyte-infected grasses may rely on an antioxidant defense system based on phenolic 
compounds that enhance activities of superoxide dismutase, catalase, peroxidase, and 
ascorbate peroxidase enzymes to prevent accumulation of H2O2 as a result of heavy 
metal toxicity [199–201]. As a result, endophyte-infected grasses are able to accumulate 
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greater amounts of heavy metals in shoot tissues than their noninfected counterparts 
with less damage due to metal toxicity [198]. Studies by Yin et al. [202] have evidenced 
tolerance of endophyte-infected grasses to saline stress caused by excessive amount of 
sodium (Na) in nutrient solution, although a mechanism responsible for this phenom-
enon has not been investigated.

Light stress. Responses of endophyte-infected grasses to light stress are not well 
understood. Early studies reported lower net photosynthesis (measured in the entire 
canopy) in response to endophyte infection of tall fescue with increasing light intensity 
[203]. More efficient competition for light may result in higher biomass productivity of 
endophyte-infected grasses than their noninfected counterparts when grown in shade, 
but not in full light [204,205]. Elevated UV-B radiation reduced seed production and 
increased tiller production in a ryegrass genotype [206]. However, subsequent studies 
found no interactions between endophyte status and UV-B radiation on morphological 
parameters in tall fescue, meadow fescue, red fescue (Festuca rubra), and perennial 
ryegrass [207]. Some insects, i.e., desert locust (Schistocerca gregaria), may alter feed-
ing preferences for endophyte-free or endophyte-infected leaves of meadow fescue 
in response to increasing levels of UV-A (320–400 nm) and UV-B (280–320 nm) 
radiation. Phenolic compounds produced abundantly by endophyte-infected grasses 
[144,185,208] are known to protect plant tissues from excess UV radiation [209]. This 
adaptation may explain the prevalence of endophyte-infected grasses with decreasing 
latitude [210].

Competitive ability of endophyte-infected grasses

The role of antiherbivory metabolites

Environmental conditions and associated biotic and abiotic stress factors define the 
range of adaptation and production limits of many agronomic and wild grasses. The 
epichloid endophyte-grass associations have a higher degree of plasticity that contrib-
utes to expanded temporal and spatial boundaries of adaptation when compared with 
noninfected plants [211]. In a competitive environment, grass plant persistence should 
be improved by epichloid fungal endophytes if herbivores were to inflict more damage 
on competing noninfected genotypes and plant species that do not harbor endophytes. 
However, other authors hypothesize that endophyte-induced drought tolerance may be 
more crucial for competitive ability of grasses than protection from herbivory [212]. 
Mechanisms of increased tolerance to biotic and abiotic stresses operating in endophyte-
infected grasses ultimately lead to improved growth and higher competitive ability 
when compared with noninfected counterparts and other plant species, in addition 
to the efficiency of epichloid endophyte transmission between grass host generations 
[213]. Alkaloids produced by the epichloid endophyte/grass associations are found 
only within shoot tissues and have not been identified in exudates released from plant 
roots into the rhizosphere. It is not known if the alkaloids per se might be responsible 
for below-ground biogeochemical effects associated with endophyte infection, such as 
allelopathy [214], increased in soil C and N contents in endophyte-infected pastures 
[215] or alteration of the activity of litter decomposing microorganisms [216,217]. 
Loline alkaloids, however, have been shown to reduce germination rate of monocot 
and dicot seeds [218]. Similar allelopathic effects of lolines in soil-grown endophyte-
infected tall fescue/competitor associations have been reported by Bush et al. [67] and 
Malinowski et al. [219]. This suggests that loline alkaloids may have several functions 
in the grass hosts, including protection from insects, regulation of osmotic potential, 
and allelopathy. In response to endophyte infection, aqueous extracts from moisture 
stressed perennial ryegrass pseudostem had allelopathic effects on seedling growth of 
white clover (Trifolium repens L.) [220]. However, the authors excluded the involvement 
of alkaloids present in the ryegrass genotypes (peramine, ergovaline, and lolitrem B) 
and suggested an effect of another, not assayed metabolite.
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The role of root exudates

The ability to release organic compounds into the rhizosphere, along with improved 
root and shoot growth and functions, by endophyte-infected grasses may play a very 
important role not only for mineral acquisition but also intra- and interspecific com-
petitive interactions, and even the structure of soil microbial communities [221–223]. 
Exudation and composition of root exudates may be highly specific to a particular 
endophyte/grass genotype association; thus, some endophyte-infected plants may be 
more competitive than others [144]. Several studies have shown negative effects of 
endophyte-infected grasses when grown in mixed stands with legumes [219,224,225]. 
Rutgers et al. [226] observed that plots growing either ‘Kentucky-31’ tall fescue infected 
with its native endophyte had reduced biomass of other grasses and forbs than plots 
with ‘Georgia-5’ tall fescue infected with the novel endophyte strain AR542E. Infection 
of ‘Georgia-5’ tall fescue with its native endophyte strain also resulted in reduced forb 
biomass when compared to fields growing ‘Georgia-5’ tall fescue infected with the novel 
endophyte strain AR542 [227]. These results suggest that grasses infected with native 
endophytes may release different chemicals in the rhizosphere than those release by 
the novel endophyte/grass combinations. Again, a high variability in growth responses 
to endophyte infection has been observed among grass species and endophyte strain/
grass genotype combinations [228].

Improved grass host growth

In addition to effects on the rhizosphere, epichloid endophytes can alter a range of physi-
ological mechanisms, i.e., photosynthetic rate [203], antioxidant activity [21,28,229], 
and hormone balance [230,231] in host grasses. At seedling establishment stage, effects 
of endophyte infection on seedling competitive ability of cultivated and wild grasses 
have been inconclusive, varying from positive effects on seedling DM and tiller number 
[232–236] to no effects on these traits [237–239]. Based on results reported by Rudgers 
et al. [94], it seems that the endophyte may be more important for a successful competi-
tion of its grass host during the seedling establishment phase than during the following 
growth stages. In established plants, numerous morphological traits can be modified by 
the presence of endophytes, including heavier and more numerous tillers [240], greater 
leaf elongation rate [37,241], and altered root architecture [242]. These adaptations can 
ultimately result in a superior growth and persistence of endophyte-infected grasses 
when compared with noninfected plants under a range of environmental constrains 
[23,243]. In time, endophyte-infected grasses can dominate plant communities, thus 
reducing plant diversity in successional fields [41]. An interesting question raised by 
Chen et al. [244] was how elevated CO2 concentrations that are expected to increase 
from the current 390 ppm to around 1,000 ppm by 2100 [245] would affect known 
endophyte effects on grass hosts. Except for results presented by Marks and Clay 
[228] and Hunt et al. [246], other studies evidenced negative effects of endophytes 
on growth, physiological and biochemical parameters at elevated CO2 concentrations 
when compared with these at ambient CO2 level [52,244,247]. The benefits of endophyte 
infection for competitive ability of their grass hosts, therefore, may be reduced if the 
CO2 concentrations in the atmosphere continue to increase.

Epichloid endophytes in summer-dormant cool-season grasses

There is very limited information on epichloid endophyte effects on competitive ability 
of summer-dormant tall fescue. Summer dormancy is an endogenous adaptive mecha-
nism developed in some cool-season perennial grasses originating from Mediterranean 
environments to survive the period of prolonged and severe summer drought [248]. 
Although endophyte infection rates are usually high among Mediterranean tall fescue 
accessions [249–251], endophyte benefits to summer-dormant tall fescue in terms of 
superior tolerance to drought stress when compared noninfected plants are none or 
negligible [13,251]. It is likely because these tall fescue morphotypes already possess a 
very efficient endogenous mechanism of summer dormancy (which in fact is a drought 
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avoidance mechanism) which protects the plants from summer drought [24,252]. 
Similarly to continental tall fescue, roots of endophyte-infected summer-dormant tall 
fescue release phenolic compounds with antioxidant activity, thus may give advantage 
to summer-dormant fescue exposed to mineral imbalance stress in the soil [180]. In a 
study by Malinowski et al. [253], neither native nor novel endophyte strains had any 
effect on competitive ability of summer-dormant tall fescue grown in binary mixtures 
with alfalfa (Medicago sativa L.), regardless of soil moisture supply during summer. 
In contrast, endophyte-infected temperate tall fescue had higher competitive ability 
than noninfected plants, but only under nonlimiting soil moisture conditions.

Epichloid endophytes in nonagronomic grasses

In Arizona fescue (F. arizonica Vasey) infection with Neotyphodium starrii (J. F. White 
& Morgan-Jones) Glenn, C. W. Bacon & Hanlin, a nonepichloid endophyte [5] does 
not seem to confer any competitive advantages of symbiotic plants or it may even be 
detrimental to grass hosts [237]. A similar parasitic effect on competitive ability was 
reported for Bromus sylvaticus (Huds.) Pollich infected with E. sylvatica endophyte 
[254]. In their meta-analysis of endophyte effects on grass competitiveness, Saikkonen 
et al. [255] suggested that endophyte effects on grass host competitive ability may dif-
fer in genetically homogenous, agronomic grasses from these observed in genetically 
highly variable, wild grass–endophyte populations and communities. Additive effects 
of high genotypic variation in the endophyte strains and grass host genotypes may 
further magnify the variable outcomes of endophyte infection on competitive ability 
of grasses at the plant community level [139].

Human-made endophyte–grass associations

Competitive advantages of epichloid endophyte/grass associations resulted in selection 
of novel endophyte strains that produce marginal amounts or no alkaloids detrimen-
tal to grazing livestock, yet retain grass host tolerance to abiotic and biotic stresses 
[256,257]. These so-called novel endophytes are endophyte strains selected from native 
endophyte-infected grass accessions that have known and understood alkaloid profiles 
both when grown in in vitro cultures and in associations with their grass hosts. The lack 
of detrimental effects on grazing animals, as the primary selection criterion, has been 
proven very successful in numerous studies evaluating a range of novel endophyte strains 
[257–262]. Gundel et al. [263] have adopted the term “symbiotically modified organisms” 
or SMO to accommodate the new technology of human-made novel endophyte-grass 
associations. The technology has resulted in a release of several cultivars of tall fescue 
and perennial ryegrass, i.e., ‘Jesup MaxQ’ and ‘Georgia 5 MaxQ’ tall fescue reinfected 
with the novel endophyte strain AR542 [264], ‘HiMag’ tall fescue reinfected with 
endophyte strain UA4 [260], ‘Texoma MaxQ II’ tall fescue reinfected with endophyte 
strain AR584 [265], perennial ryegrass cultivars ‘Bealey’, ‘Rohan’, ‘Trojan’ reinfected 
with the endophyte strain NEA2, ‘Shogun’ reinfected with endophyte strain NEA, ‘Alto’ 
and ‘Arrow’ reinfected with endophyte strain AR1, ‘Alto’ and ‘Governor’ reinfected with 
endophyte strain AR37 [266], and ‘Viscount’ ryegrass reinfected with endophyte strain 
NEA and ‘Impact 2’ reinfected with the endophyte strain NEA2 [267].

The effects of novel endophytes on their grass host resistance to invertebrate herbivory, 
nematodes, and plant pathogen stresses are inconclusive. In some novel endophyte-
grass host associations, insect herbivory has been reduced in a similar way as that in 
grasses infected with native endophytes [268]. In contrast, other studies evidenced 
detrimental effects of novel endophytes when compared to grasses infected with native 
endophyte strains on insect herbivory [86,269,270] or nematode infestation [271]. It 
is suggested that novel endophytes may often benefit their grass hosts in a similar way 
to native endophytes in terms of greater tolerance to abiotic stresses that observed in 
noninfected plants [24]. In contrast to continental tall fescue, responses of Mediter-
ranean tall fescue morphotypes to infection with novel endophytes are manifested to 
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much lesser extent, especially in terms of drought stress tolerance, likely because of an 
overlapping endogenous mechanism of drought avoidance [24,272].

Gundel et al. [263] have presented an excellent meta-analysis of the literature com-
paring effects of novel epichloid endophytes with these of native epichloid endophytes 
and endophyte-free grasses on many aspects of biotic and abiotic stress tolerance 
previously described in grasses infected with native endophytes. Overall, animals 
preferred grasses infected with novel endophytes or noninfected over grasses infected 
with native endophytes, which also is reflected in their weight gains and performance. 
Grasses infected with novel endophytes produced similar forage yield to grasses infected 
with native endophytes and higher than noninfected grasses. However, the number 
of studies was too small to detect any significant benefits of the reinfection of grasses 
with novel endophytes on root biomass and tillering. Novel endophytes do not produce 
alkaloids detrimental to animal performance; however, there is a trend of generally 
lower production of other alkaloids by grasses infected with novel endophytes when 
compared to grasses infected with native endophytes. Despite that, neither below- or 
aboveground herbivory by invertebrates was affected by novel endophytes. Competi-
tive ability of grasses infected with novel endophytes, especially tall fescue, was greater 
than that of grasses infected with native endophytes. However, detailed analysis of the 
competitive advantages of novel endophyte–grass associations has not been presented. 
The authors suggest that, based on the published data, the associations between host 
grass cultivars and novel endophytes are stable, both in terms of endophyte biomass in 
plants and infection frequency in plant populations. However, Ju et al. [273] evidenced 
temperature as major environmental factor affecting colonization of tall fescue tillers, 
and in consequence transmission of novel endophytes via seeds.

Conclusions

Epichloë sp. endophytes have evolved with their Pooid grass hosts forming associations 
ranging from antagonistic to mutualistic. The mutualistic epichloid endophytes benefit 
their grass hosts by helping them to tolerate various biotic and abiotic stresses, ultimately 
increasing the dominance of symbiotic grass plants in and beyond their native ecosys-
tems. Most of our knowledge on the beneficial effects of epichloid endophyte infection 
is based on results from agronomic studies with a few important forage grasses, i.e., tall 
fescue, meadow fescue, and perennial ryegrass, and turf grasses (fescues) that usually 
were not endemic in the experimental areas. In much more heterogenic populations of 
wild grasses, the benefits of endophyte infection may often be confounded by underlying 
genetic variability of the host grasses and their endophyte strains. Epichloid endophytes 
have been shown to affect multiple functions of the ecosystems and multiple trophic 
levels, i.e., carbon flow, soil microbial activity, the structure of soil aggregates, soil 
water dynamics, and flora and fauna community structures. Ultimately, the mutualistic 
endophytes may increase the competitive ability of their grass hosts by affecting plant 
growth rate, size, reproductive capacity, and tolerance to environmental stresses. Future 
research on epichloid endophyte–grass symbioses should focus on adaptations to rapid 
changes in climatic patterns observed worldwide in the past two decades, especially in 
regard to increasing concentrations of CO2 and temperature and decreasing precipitation 
in the southern latitudes. These environments, dominated by warm-season vegetation, 
have already been considered marginal for symbiotic cool-season grasses.
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Epichloë (dawniej Neotyphodium) grzybowe endofyty zwiększają adaptacje traw 
zimotrwałych do stresów środowiskowych

Streszczenie

W trakcie ewolucji, wiele gatunków traw zimotrwałych ukształtowało symbiozy z bezpłciowymi, 
bezobjawowymi grzybowymi endofytami z rodzaju Epichloë (dawniej Neotyphodium) z rodziny 
Clavicipitaceae. Zależności pomiędzy tymi organizmami obejmują zarówno relacje pasożytnicze 
jak i mutualistyczne, i mają ogromny wpływ na szlaki metaboliczne traw, np. zwiększają od-
porność na wiele stresów środowiskowych (susza, zaburzenia równowagi mineralnej w glebie) 
i biotycznych (uszkodzenia liści przez zwierzęta kręgowe i bezkręgowe, pasożytnicze nicienie, 
patogeny i konkurencję z innymi roślinami). Niektóre szczepy endofytów wytwarzają szereg 
alkaloidów i innych wtórnych związków chemicznych, które mogą mieć szkodliwy wpływ 
na zwierzęta wypasane na symbiotycznych trawach. W ciągu ostatnich dwóch dekad zostały 
wyizolowane szczepy endofytów, które nie produkują związków chemicznych szkodliwych dla 
zwierząt, tj. alkaloidy z grupy ergot czy lolitrem. Te nowe szczepy endofitów zostały wprowadzone 
do kilku odmian traw pastwiskowych z myślą o zwiększeniu ich odporności na stresy środo-
wiskowe, ale bez negatywnego wpływu na wypasane zwierzęta hodowlane w celu zapewnienia 
wysokiej zdolności konkurowania symbiotycznych odmian traw z chwastami. W niniejszej pracy 
omawiamy mechanizmy odpowiedzialne za większą zdolność konkurencyjną symbiotycznych 
traw oraz konsekwencje tej symbiozy dla ekosystemów roślinnych.
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