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Abstract. We propose the production process with time delay as the Ornstein-Uhlenbeck
(OU) process in finance theory, which is a mathematical model of a mass-production pro-
cess with a production delay. We also estimate the expected value and variance of the
throughput of the whole period by utilizing Kalman filter theory, which is used for state
estimation in control theory under the incomplete information is available for the whole
period of the manufacturing process. Further, we propose an empirical equation,which
represents a product value at the exit of the production process. For the theoretical veri-
fication, we present a numerical simulation.
Keywords:Ornstein-Uhlenbeck process, process delay, stochastic process, Ito’s
lemma, Kalman filter

1. Introduction. Several our previous studies have proposed financial approaches to evaluate a produc-
tion business including supplier [1, 2, 3]. To evaluate a production process, the lead time of production
system in the production stage by using a stochastic differential equation of the log-normal type, which
is derived from its dynamic behavior, is modeled [1]. The use of a mathematical model that focuses on
the selection process and adaptation mechanism of the production lead time is used [1]. Using this model
and risk-neutral integral, the evaluation equation for the compatibility condition of the production lead
time is defined and then calculated. Furthermore, it is clarified that the throughput of the production
process was reduced [1, 2]. With respect to determine a throughput rate, an expected value and volatility
of throughput of the whole process period is estimated by utilizing Kalman filter theory having been
used for a state estimation problem in the control theory [2]. With respect to a physical approach, a
state in which the production density of each process corresponded to the physical propagation of heat
was introduced in our previous study [4]. Using this approach, the diffusion equation, which dominates
the production process was shown. Moreover, we clarified that the production process was dominated a
diffusion equation [4]. To improve a production lead time, there are several studies to shorten produc-
tion throughput (lead times) [5, 6]. From the time of product ordering, the lead time depends on the
work required to make ready for production. The several our research results which were mathematical
modelings and the evaluation method of the production processes have reported.

The synchronization method is superior for improving throughput in production processes, which is
used by a production flow process [7]. The production flow process is utilized for production of high-
mix low-volume equipments, which are produced through several stages in the production process. This
method is good for producing specific control equipment such as semiconductor manufacturing equipment
in our experience. Then, we have reported that the production flow process has nonlinear characteristics
in our previous study [8]. Moreover, a working-time delay is propagated through the stages in the
production process. Its delays are due to volatility in the model. Indeed, the actual data indicated that
in the production flow process, the delays were propagated to the successive stages [4].

Our production business utilizes the services of outside companies when ordering materials and at-
tending to logistics. In this business environment, we analyze the changes in the lead time. For various
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reasons, the equipment ordered may be delayed. To evaluate the corporate management strategy when
the total production of a business depends on suppliers, we compare our model output with actual rate
of return data, which follow a log-normal probability distribution. The results demonstrate the potential
applicability of our proposed strategy to the manufacturing industry. We also represent actual throughput
data of a company with high productivity and a company not yet adopting a production flow process.

In this study, the following assumptions are made.

1. There is no major change in probability during the production process.
2. The Ornstein-Uhlenbeck (OU) process is derived for the production process with a time delay[9,

10, 11].
3. The production is evaluated continuously; however, upper and lower limits are set for stochastic

throughput.

Given control equipment is ordered by a customer and is then manufactured in a manner that is
classified into a number of production elements, whereupon the finished product is delivered to the
customer. The feature of this study is that a production element in the manufacturing processes is treated
as a stochastic production operation. In a company, it is important to determine a proper lead time with
which the production can be continued in a state of incomplete information. The OU process is reported
in finance theory; OU is a mathematical model of a mass-production process with a production delay.
Various environmental changes contribute to the changes in the product delivery date. In cases wherein
incomplete information is available for the whole period of the manufacturing process, the expected value
and variance of the throughput of the whole period are estimated with a propagation delay by utilizing
Kalman filter theory; this theory is used for state estimation in control theory. We propose a risk premium
value, which represents a production value and an empirical equation at production process exit, that
is, before shipment. Moreover, for the theoretical evaluation, we present a numerical simulation. As a
result, we report that we obtained good results. To the best of our knowledge, this is the first analysis
of the OU process model based on a production process with a delay and a risk premium value before
shipment.

2. Production framework in equipment manufacturer. We refer to the production system in
manufacturing equipment industry studied in this paper. This is not a special system but“Make-to-order
system with version control”. Make-to-order system is a system which allows necessary manufacturing
after taking orders from clients, resulting in“volatility”according to its delivery date and lead time. In
addition,“volatility”occur in lead time depending on the contents of make-to-order products (production
equipment). However, effective utilization of the production forecast information on the orders may
suppress certain amount of“ variation”, but the complete suppression of variation will be difficult. In
other words,“ volatility” in monthly cash flow occurs and of course influences a rate of return in these
companies. Production management systems, suitable for the separate make-to-order system which is
managed by numbers assigned to each product upon order, is called as“ product number management
system” and is widely used. All productions are controlled with numbered products and instructions
are given for each numbered products.

Thus, ordering design, logistics and suppliers are conducted for each manufacturer ’s serial numbers
in most cases except for semifinished products (unit incorporated into the final product) and strategic
stocks. Therefore, careful management of the lead time or production date may not suppress ”volatility”
in manufacturing (production). The company in this study is the ”supplier”in Figure 1 and“ factory”
here. Companies are under the assumption that there are N (numbers of) suppliers; however, this study
deals with one company because no data is published for the rest of the companies (N − 1).

2.1. Production flow process. A manufacturing process that is termed as a production flow process
is shown in Figure 2. The production flow process, which manufacture low volumes of a wide variety
of products, are produced through several stages in the production process. In Figure 2, the processes
consists of six stages. In each step S1−S6 of the manufacturing process, materials are being produced.
The direction of the arrows represents the direction of the production flow. Production materials are
supplied through the inlet and the end-product is shipped from the outlet[7].

2.2. Propagation of production density. Figure 3 shows that connection between processes can be
treated as diffusive propagation of products[4]. In Figure 3, u and n represent the throughput and
production density, respectively[4]. In fluid dynamics, S represents the cross−sectional area; the number
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density continuity equation is described as follows[12]:

∆(nS∆x) = n(t, x)u(t, x)∆tS − n(t, x+∆x)u(t, x+∆x)∆t (1)(∆n

∆t

)
x
= −n(t, x+∆x)u(t, x+∆x)− n(t, x)u(t, x)

∆x
(2)

∂n

∂t
= −∂(nu)

∂x
(3)

u is the advection term in ∂(nu)
∂t of Equation 3. Now, let u = v (constant value), we consider the

following equation.

∂n

∂t
+ v

∂n

∂x
= 0 (4)

Equation (4) denotes a linear wave motion traveling to +x direction at a constant speed c.
Then, In Figure 4, when the advection speed changes, Figure 4 (a) shows that the A part
moves quickly to the right, and the distance between AB is shortened gradually because
the B part moves slowly. Figure 4 (b) shows that the A part catches up with the B
part and overtakes it after a certain time has elapsed, following which the wave collapses.
Figure 4 (c) shows that the dissipation area suppresses processes like the wave until a
limited gradient forms when the spatial gradient becomes sharp. The fill area also shows
an area where dissipation occurs[15]. Figure 2 depicts a production process that is termed
as a production flow process. This production process is employed in the production of
control equipment. In this example, the production flow process consists of six stages.
Equation (3) is a continuous equation describing the throughput. The bottleneck occurs
at some stage of the process in Figure 2.
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3. Mathematical modeling by Burgers equation. We consider the fluctuation char-
acteristics of the turbulent and production lead time of production field by using the
Burgers equation. The factors causing fluctuations include the following again[12]:

• Uncertainty of logistics
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• Uncertainty of production planning
• Stochastic characteristics of the order and start time series

Linkage of these factors cause the fluctuation; that is, we reported that an on-off inter-
mittency was observed, and then a bottleneck occurs in the production processes.

Figure 5 shows a boundary surface of fluctuation characteristics. In this study, we
used the boundary surface characteristics of the fluctuations to develop a solution for
Burgers equation. Figure 6 shows the transition between laminar flow and turbulent
flow occurs in production processes when an improvement or change of the endogenous
parameters is made. A proper understanding of the critical value of the Reynolds number
in the vicinity of the turbulence spot is required. This value is needs to be defined
for each production process; hence, formulating a mathematical model as its foundation
is of utmost importance. The turbulence spot represents a fluctuation in free energy.
Therefore, a synchronous status can be approached if the turbulence has a reduced spot
width and the management person confines the possible production flow to a narrow
region between laminar and turbulent flow.

Then, the corresponding Burgers’equation that ignores the pressure term is as follows[13]:

∂n

∂t
+ n

∂n

∂t
= v

∂2n

∂x2
(5)

By executing Cole-Hopf transformation[14],

n = −v ∂
∂x

lnψ (6)

where, ψ is a production density.
We obtain as

∂ψ

∂t
= v

∂2ψ

∂x2
(7)

Here, we considered the model of production processes in detail by the above described
model.

Definition 3.1. C(t, x) is a production density.

A production flow is

∂C

∂t
+
∂J

∂x
(8)

Then,

J = Cv −D
∂C

∂x
(9)

where, D is a diffusion coefficient.
Then D is

D = τv2 (10)

where v is an advection term and τ is an average parts combination work time.
Further, v is

v = v0

(
1− C

Cs

)
(11)

where, v0 is an initial velocity. the production speed is assumed to depend on the pro-
duction density. Cs is a maximum production density.
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From above results,( ∂
∂t

+ v0
∂

∂x

)
C − 2

( v0
Cs

)
C
∂C

∂x
−D

∂2C

∂x2
= 0 (12)

Then, we introduce the variable ξ for transformation of Equation (12).

ξ = −x+ v0t (13)

From Equation (13), Equation (12) is

∂C

∂t
+ aC

∂C

∂ξ
= D

∂2C

∂ξ2
(14)

where a =
(
2v0/Cs

)
.

Equation (14) represents Burgers equation.
Here, assuming that D = 0, Equation (14) is derived as follows.

dCL
t

dt
=

[
ηct − ηc0

][
CA − CL

t

]
(15)

where, CL
t , CA, η

c
t and ηc0 are the production density at x = L, the target value of

production density at x = L, the production capacity and steady state value respectively.
Equation (15) depicts an mean regression equation representing that the state function

(throughput) converges to the synchronization constant parameter on average. Consider-
ing stochasticity further, it becomes the following.

dCL
t = η

[
CA − CL

t

]
dt+ σdBt (16)

where, η = ηct − ηc0 is a drift value. σ and Bt denote a volatility and Wiener process
respectively.
Therefore, we propose to estimate the process state by utilizing the Kalman filter as a

method to predict uncertainty of CL
t .

4. Stochastic analysis of a Ornstein-Uhlenbeck model for production process
with time delay. First, the model of the normal process is derived as follows.

Definition 4.1. Normal process Sn
t

dSn
t = µnS

n
t dt+ σndZn (17)

where, µn, σn and Zn are average, volatility and Wiener process respectively.
The solution of Equation (17) is derived as follows.

Sn
t = Sn

0 exp
{(µn − σn

2

)
t+ σndZn

}
(18)

where, Sn
0 is an initial value.

According to Equation (16), we define a mathematical model with time delay in the
production process.

Definition 4.2. Ornstein-Uhlenbeck process St for production process with time delay

dSt = η(S̄ − St)dt+ σσdZt (19)

where, S̄ and Zt are the target value of production density at x = L and a Wiener
process respectively.
Figure 7 depicts an dual problems of this system. Figure 8 indicates an input-output

rate control method by a processing line (synchronization of processes). By estimating
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Figure 8. Input-output rate
control by a processing line
(synchronization of processes)
and estimation of expected
value and variance of through-
put of all processes

an expected value and a variance value of throughput of all processes, a manufacturing
process is finished with every process finished on time. Here, as a measurement item in a
processing line, an“ average”and“ variance”of throughput is made be measurement
data. According to process progress of a process, the process makes input request to an
input side buffer that is the preceding process. In order to keep lead time (throughput)
of the process in question strictly, it controls the“ line”. With a production rate of the
thus controlled processing line, output is performed to an output side buffer.
　 Regarding control of the output side buffer, by receiving output of the“ processing
line”that is the preceding process by the buffer, the output side buffer controls, for the
subsequent processes, an output rate of its own in order to keep the total throughput
strictly. Under such control, it is necessary for a processing line to measure throughput
of its own. Therefore, although a throughput function must be obtained by measurement
in the input side and output side, it is not always entirely observable (complete) over all
processes. Therefore, taking an average value and variance of a throughput function as a
measurable variable, and using the Kalman filter theory, the average value and variance
of the throughput function is estimated.
　Next, on the premise of such system model, a method for strictly keeping a manufac-
turing process in a state where a system is in a non-complete state will be described[16].
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5. Option value of manufacturing equipments.

5.1. State estimation of OU process model using Kalman filter. At this time, the
option value is defined as the state variable St by multiplying a sufficiently large positive
constant K[0, 1] ( K ∈ R) . Here, assuming that filtration by a measurement process is

{F ξ
t }t=R ,

Ft ⊃ F ξ
t , Ft ̸= F ξ

t (20)

By this, the system becomes a non-complete model[16].
In Figure 8, let a stochastic model of a production process be as a stochastic model of

an observation equation is set as follows.

Definition 5.1. Observables expected value and variance

µt = E
[
St|F ξ

t

]
(21)

vt = V ariance
[
St|F ξ

t

]
. (22)

Definition 5.2. Observation system

dξt = Stdt+ σαdWt, t ∈ Rt, F
ξ
t ⊂ Ft, Ft ̸= F ξ

t , ξt ∈ F ξ
t (23)

where, σα indicates variance of ξt, and Wt a standard Brownian motion.
From Kalman filter, we obtain again as follows[2, 17].

dµt = mµtdt+
vt
σα

[
σα(dξt − µtdt)

]
(24)

dvt =
[
−2mvt + σ2

σ −
v2t
σ2
α

]
dt (25)

Equation (25) is a Riccati type equation.
From Kalman filter, an expected value and variance value about throughput of all

processes are estimated.

G(t, µt) =

{
0 Operation stop
µte

θt In the course of determination
(26)

Here, Ito’s lemma is applied to Equation (26), and then we obtain as follows[18].

dG(t, µt) = θeθtµtdt+ eθtdµt

= θeθtµtdt+ eθt
[
θ
{(

1 +
vt
aσ2

σ

)
S̄ − µt

}
dt+

vt
σ2
σ

dξt

]
= θeθtµtdt+ eθt · θ

(
1 +

vt
aσ2

σ

)
S̄dt+

vt
σ2
σ

dξt

]
(27)

where, let θ = η/(1 + ησ2
σ) and vt is constrained by the following equation.

dvt =
[
−2avt +

1

σ2
β

− v2t
σ2
σ

]
dt (28)

Equation (28) are equations referred to as a Riccati type equation, and can derive an
analytical solution.
We obtain as follows by integrating both sides of Equation (27).Please refer Appendix A.

µte
θt = g0µ0 +

∫ t

0

eθt · θ
(
1 +

vt
aσ2

σ

)
S̄dt+ g0

vt
σ2
σ

∫ t

0

eθτdξ(τ) (29)
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Then,

µt = g0µ0e
−θt +

∫ t

0

θ
(
1 +

vt
aσ2

σ

)
S̄dτ + g0

vt
σ2
σ

∫ t

0

eθ(τ−t)dξ(τ) (30)

Here, the O-U process is depicted as follows.

dSt = η(S̄ − St)dt+ σσdZt

dξt = gStdt+ σσdZt

}
(31)

Then, we apply Ito’s lemma to Equation (31) as follows.

µt = g0µ0 exp
(
− η

(1 + ησ2
σ)

)
t+ g0

∫ t

0

η

(1 + ησ2
σ)

(
1 +

vt
σ2
σ

)
S̄dt

+ g0

∫ t

0

exp
( η

(1 + ησ2
σ)
(τ − t)

)
dξ(τ) (32)

Therefore, we obtain as follows.

µt = g0µ0e
−θt + g0

vt
σ2
σ

∫ t

0

eθ(t−s)dξ(s) + g0

∫ t

0

θ
(
1 +

vt
σ2
σ

)
dt

= g0e
−θt

{
µ0 +

vt
σ2
σ

∫ t

0

eθsdξ(s)
}
+

∫ t

0

θ
(
1 +

vt
σ2
σ

)
S̄dt

= g0e
−θt

{
µ0 +

vt
σ2
σ

(
−1

θ
e−θt · ξt

)}
+g0θ

(
1 +

vt
σ2
σ

)
S̄t (33)

According to above analysis, we discuss the following theoretical development.

dSt = η(S̄ − St)dt+ σdZt (34)

According to Appendix A and then the solution of Equation (34) is derived as follows.

St = S0e
−ηt + S̄(1− e−ηt) +

∫ t

0

σe−η(τ−t)dZ(τ) (35)

Therefore, let S0 ≡ Constant and then the average regression process of St is as follows.

E[St] = S0e
−ηt + S̄(1− e−ηt) (36)

E[St] = S̄, t → ∞ (37)

If there is no initial condition, Equation (35) is derived as follows.

St = S̄ +
σ√
2η

(Z(e2ηt))e−ηt (38)

If the initial condition is given, Equation (35) is derived as follows.

St = S0e
−ηt + S̄(1− e−ηt) +

σ√
2η
Z(e2ηt − 1)e−ηt (39)

5.2. Risk premium value of production business by an estimated data. We
represent the risk premium value of production business. The value calculates the average
production value using the estimated value. The observation system is derived again as
follows.

dξt = Stdt+ σαdWt (40)
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From Kalman filter, we obtain again as follows[2, 17].

dµt = mµtdt+
vt
σα

[ 1

σα
(dξt − µtdt)

]
(41)

dvt =
[
−2mvt + σ2 − v2t

σ2
α

]
dt (42)

Equation (42) is a Riccati type equation, and an analytical solution can be obtained,
however vt converges to a constant as t → ∞. Therefore, we calculate the production
value Gt

Definition 5.3. Estimated production value Ĝ(µt, vt)

Gt ≡ Ĝ(µt, vt) (43)

From Ito’s lemma,

Ĝ(µt, vt) = Ĝµ

[
mµt +

vt
σα

{ 1

σα
(dξt − µt)

}]
+ Ĝv − 2mvt + σ2

σ −
v2t
σ2
α

]
dt+

1

2
Ĝµµ

[( vt
σα

)2

dt
]

(44)

Then, the production value evaluation is derived as follows.

E[Ĝt] = E[(1− rdt)(Ĝt + dĜt) + dξt|F ξ
t ]

= E[Ĝt] + E[dĜt]− rE[(Ĝt + dĜt)dt] + E[µt] (45)

From Equation (45),

E[dĜt] = rE[(Ĝt + dĜt)dt]− E[µt] = rĜt − µ

= E[mĜµStdt+
v

σα
dWt]

= E[Ĝv(−2mvt + σ2 − v2t
σ2
α

)dt] + E[
1

2
Ĝµµ(

vt
σα

)2] (46)

We obtain as follows by transforming Equation (46).

E[dĜt] = E[mĜµStdt] + E[Ĝv(−2mvt + σ2 − v2t
σ2
α

)dt] +
1

2
E[Ĝµµ(

vt
σα

)2dt] (47)

Therefore, we can obtain as follows.

mStĜµdt+ (−2mvt + σ2 − v2t
σ2
α

)Ĝv +
1

2
Ĝµµ(

vt
σα

)2 = rĜt − µt (48)

Here, assuming that vt is a constant data, that is Gv = 0, then we can obtain as follows.

1

2
(
v∗
σα

)2
∂2Ĝµ

∂µ2
+mSt

∂Ĝµ

∂µ
+ µt − rĜµ = 0 (49)

where, v∗ is a constant.
Then, we can obtain the risk premium value as the empirical equation as follows.

P (St) =
κp
ξp

{
(R + C) + ξf · St

}
(50)

where, κp, ξp, R, C and ξf are parameter respectively. St denotes the OU process.
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6. Numerical simulation. With respect to Figure 9(case 1) through Figure 12(case 4),
the line with rhombus is shown based on Equation (18) and the line with square is shown
based on Equation (39). Figure 9(case 1) through Figure 12(case 4) are the comparison
figures between normal process and OU process. Parameter values shown in the table 1
are set to appropriate values. The normal process and the OU process do not depend on
the parameters. These graphs are presented for reference.

With respect to Figure 13(case 1) through Figure 16(case 4), the line with rhombus is
shown based on Equation (18) and the line with square is shown based on Equation (33).
Figure 13(case 1) through Figure 16(case 4) are the comparison figures between normal
process and estimation process by Kalman filter. Parameter values shown in the table 2
are also set to appropriate values. These graphs are the normal process and its estimation
process with several parameters. As far as these graphs are concerned, we estimate the
normal process well.

With respect to Figure 17(case 1) through Figure 20(case 4), the line with rhombus
is shown based on Equation (39) and the line with square is shown based on Equation
(33). Figure 17(case 1) through Figure 20(case 4) are the comparison figures between OU
process and estimation process by Kalman filter. Parameter values shown in the table
3 are also set to appropriate values. These graphs are OU process and its estimation
process with several parameters. As you can see from these graphs, we often estimate
the trend of the OU process. It seems that estimation accuracy is not good, but the
precision fluctuates due to the winner process. It represents the limit of static numerical
simulation.

Figure 21 shows the risk premium value, which is proportional to OU process based on
Equation (50). The parameter setting are κp = 0.8, ξp = 1, R + C = 0.6 and ξf = 0.6 in
Figure 21. Equation 50 expresses the product value at the exit of the production process,
that is, just before shipment. What you can see from Figure delayfig0094 is that the value
increases on average over time.

Table 1. Numerical data for simulation

Figure 9(case 1) Figure 10(case 2) Figure 11(case 3) Figure 12(case 4)
Normal process (µn) 0.9 0.5 0.7 0.7
Normal process (σn) 0.1 0.1 0.2 0.2
O-U process (η) 0.5 0.5 0.5 0.8
O-U process (S̄) 0.01 0.01 0.7 0.7

Table 2. Numerical data for simulation

Figure 13(case 1) Figure 14(case 2) Figure 15(case 3) Figure 16(case 4)
Normal process (µn) 0.9 0.5 0.7 0.8
Normal process (σn) 0.1 0.1 0.2 0.1

Estimation process (Solution St) 0.8 0.5 0.7 0.7
Estimation process (σα) 0.18 0.18 0.28 0.28

7. Conclusion. In this study, we modeled the production process with delay utilizing the
Ornstein-Uhlenbeck (OU) process in mathematical finance. We also proposed a system
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Figure 9. Comparison be-
tween Normal process and O-
U process (Case-1)
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Figure 10. Comparison be-
tween Normal process and O-
U process (Case-2)
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Figure 11. Comparison be-
tween Normal process and O-
U process (Case-3)
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Figure 12. Comparison be-
tween Normal process and O-
U process (Case-4)
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Figure 13. Comparison be-
tween Normal process and es-
timation process (Case-1)
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Figure 14. Comparison be-
tween Normal process and es-
timation process (Case-2)
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Figure 15. Comparison be-
tween Normal process and es-
timation process (Case-3)

!"

!#!$"

!#!%"

!#&'"

!#&("

!#'"

!" !#'" !#$" !#(" !#%" &#!"

)
*
+,
-.
*
/
01
2*
3
4
5
5
"

6.74"

Figure 16. Comparison be-
tween Normal process and es-
timation process (Case-4)
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Figure 17. O-U process and
estimation process (Case-1)
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Figure 18. O-U process and
estimation process (Case-2)
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Figure 19. O-U process and
estimation process (Case-3)
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Figure 20. O-U process and
estimation process (Case-4)
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Table 3. Numerical data for simulation

Figure 17(case 1) Figure 18(case 2) Figure 19(case 3) Figure 20(case 4)
O-U process (Regression rate η) 0.5 0.6 0.7 0.7
O-U process (Initial value S0) 0.7 0.7 0.5 0.5

Estimation process (Solution St) 0.6 0.7 0.5 0.3
Estimation process (σα) 0.2 0.1 0.2 0.1
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Figure 21. Premium value for a production process

that estimates the OU process by utilizing the Kalman filter. Moreover, we proposed an
empirical equation to express a risk premium value. It is a valuable equation to quantify
risk premium. Our proposal is worthwhile. Because, a production delay leads to cost
increases, and a small-to-midsize firm will have a significant impact on revenues. With
respect to the propagation between stages, we would like to propose a mathematical
model that considers constraints on propagation on the upstream and downstream sides
as a delay.
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Appendix A. Ornstein-Uhlenbeck process.

rt = −θ(rt − µ)dt+ σdWt (51)

where, θ, µ and σ are parameters respectively. Wt is a Wiener process.
Equation (51) can be solved by a constant change method.

df(rt, t) = θrte
θtdt+ eθtdrt

= eθtθµdt+ σeθtdWt (52)

We can obtain as follows by integration from 0 to t.

rte
θt = r0 +

∫ t

0

eθsθµds+

∫ t

0

σeθsdW (s) (53)

From Equation (53), we obtain as follows.

rt = r0e
−θt + µ(1− e−θt) +

∫ t

0

σeθ(s−t)dW (s) (54)

The Ornstein - Uhlenbeck process can also be expressed as a Wiener process which has
changed the scale and shifted time.
Assuming that r0 is zero, rt is derived as follows.

E[rt] = µ+
σ√
2θ
W (e2θt)e−θt (55)
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Assuming that r0 is not zero, rt is derived as follows.

rt = r0e
−θt + µ(1− e−θt) +

σ√
2θ
W (e2θt − 1)e−θt (56)


