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Abstract. In this study, we illustrate that the lead time, inventory, and rate of return
deviation time series for production processes exhibit similar power-law distribution char-
acteristics by analyzing the actual data. Lead time and inventory are considered to be
autonomous distributed systems involving multiple oscillators, and the Kuramoto model
is used to represent the synchronization phenomena. As an evidence for the existence
of power-law characteristics, we depict that their behaviors demonstrate fluctuations and
on-off intermittency that can be represented using Langevin dynamics. Finally, we verify
that all the three parameters depict power-law distributions using actual data.
Keywords: lead time, inventory, rate of return deviation, power-law distri-
bution, Langevin type equation

1. Introduction. For an improvement of the production processes, the operation re-
search approach (OR approach) traditionally dominated the research topics. To improve
production lead time, shortening production throughput is a major challenge[1, 2]. More-
over, various theories have been applied to improve production processes and increase
productivity. An analysis that uses the queuing model and applies a log-normal distribu-
tion to model a system in the steel industry is described[3].

On the other hand, fluctuations in the supply chain and market demand and the changes
in the production volume of suppliers are propagated to other suppliers, their effects are
amplified. Therefore, because the amounts of stock are large, an increase or decrease
of the suppliers ’stock is modeled using differential equation. This differential equation
is said as Billwhip model, represents a stock congestion[4, 5]. These studies are very
interesting contents.

The theory of constraints (“TOC”) describes the importance of avoiding bottlenecks
in production processes[6]. When using manufacturing equipment, delays in one produc-
tion step are propagated to the next. Hence, the use of manufacturing equipment may
lead to delays.“ TOC”gives important suggestions for increasing efficiency of produc-
tion projects. There is no research that mathematically model propagation ofproduction
density.

(1) Reducing the lead time, improving the throughput, and synchronizing the production
process by the TOC.

(2) Sharing the demand information and performing mathematical evaluations.
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(3) Analyzing the reduction and fluctuating demands of the subsystem (using nonlinear
vibration theory).

(4) Basing the inventory management approach on stochastic demand.

When using manufacturing equipment, delays in one production step are propagated to
the next. Hence, the use of manufacturing equipment itself may lead to delays. The
improvement of production processes was presented that the“ Synchronization with pre-
process”method was the most desirable in practice using the actual data in production
flow process based on the cash flow model by using the stochastic differential equation
(SDE) of log-normal type[8]. In essence, we have proposed the best way, which is a
synchronous method using the Vasicek model for mathematical finance[9].
With respect to a mathematical modeling, we reported that a production process is

a mathematical approach, which corresponds to physical diffusion. Using this approach,
the diffusion equation, which dominates the production process was shown. Moreover,
we clarified that the production process was dominated a diffusion equation[10]. The
production density of each process corresponded to the physical propagation of heat was
introduced in our previous study [10].
To evaluate a production process, the lead time of production system in the production

stage by using a stochastic differential equation of the log-normal type, which is derived
from its dynamic behavior, is modeled[11]. The use of a mathematical model that focuses
on the selection process and adaptation mechanism of the production lead time is used
[11]. Using this model and risk neutral integral, the evaluation equation for the compati-
bility condition of the production lead time is defined and then calculated. Furthermore,
it is clarified that the throughput of the production process was reduced [11, 12]. To
determine a throughput rate, an expected value and volatility of throughput of the whole
process period is estimated by utilizing Kalman filter theory having been used for a state
estimation problem in the control theory [12].
With respect to our previous research for improvement of lead time, we modeled a

mathematically and evaluated the method of the production processes. We reported that
the synchronization method is superior for improving throughput in production processes,
which is used by a production flow process [8]. The production flow process is utilized
for production of high-mix low-volume equipments, which are produced through several
stages in the production process. This method is good for producing specific control
equipment such as semiconductor manufacturing equipment in our experience. Then,
we have reported that the production flow process has nonlinear characteristics in our
previous study [13]. Moreover, a working-time delay is propagated through the stages in
the production process. Its delays are due to volatility in the model. The actual data
indicated that in the production flow process, the delays were propagated to the successive
stages [10, 13].
With respect to a rate of return deviation (RoRD) , we reported that RoRD has power-

law characteristics[14]. Generally, disnormality of RoRD in business is well known about
a stock price fluctuation model, although with conditions. For example, there exists
widely-known Levy process[16]. However, almost all of the reported actual data was
entirely limited to stock price data. As another example, also in applying Real Option,
many of the return fluctuation models are of a log-normal stochastic differential equation,
and there is also one that handles a jump process[17].
However, we think that, as far as the present writers and the like know, there has been

no report that handles power-law distribution focusing attention on RoRD of a privately-
owned company of equipment manufacturing business. Further, regarding a make-to-order
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production department (production-number based manufacturing system), in relation be-
tween RoRD and a sales amount in the case of recent production departments, a model
of RoRD becomes Langevin type.

Inventory control method is an important research topic in the operations research
(OR) field, and most of the methods are stochastic and statistical in nature. We have
previously presented an approach based on stochastic differential equations; however,
no dynamic method has been developed yet that utilizes methods from mathematical
finance[18]. For example, the stochastic relations between the levels of different inventory
items are assumed to be derived from the fluctuations in demand.

We model inventory management as a stochastic diffusion process, which describes
stock management using a partial differential equation of log-normal type[18]. Effectively
managing inventory at the end of the fiscal year is crucial for small- and medium-sized
manufacturers, and this could be achieved by utilizing the path-dependent option evalu-
ation theory from mathematical finance[18].

We analyze the lead time by representing its behavior using an autonomous distributed
system that comprises multiple oscillators using the Kuramoto model to represent the
synchronization phenomena.

In this study, all of the lead time, inventory control and RoRD all represent stochastic
fluctuations and have a great influence on production business revenues. We report that
these three key elements in the production processes exhibit power distribution charac-
teristics, fluctuations and on-off intermittency[14, 22, 26]. Finally, we verify that the lead
time, inventory management and RoRD show power-law distribution based on real data.
Of course, we also report together that these key elements have fluctuation and on-off
intermittency characteristics. To the best of our knowledge, this is the first study to
investigate the widths of phase transitions in the manufacturing industry.

2. Production systems in the manufacturing equipment industry. The produc-
tion methods used in manufacturing equipment are briefly covered in this paper. More
information is provided in our report [14]. This system is considered to be a“Make-to-
order system with version control,”which enables manufacturing after orders are received
from clients, resulting in“volatility”according to its delivery date and lead time. In ad-
dition, there is volatility in the lead time, depending on the content of the make-to-order
products (production equipment).

In Fig.1(A), the“Customer side”refers to an ordering company and“ Supplier (D)”
, which is ordered from the manufacturing sector (C), means the target company in
this paper. The product manufacturer, which is the source of the ordered production
equipment presents an order that takes into account the market price. In Fig.1(B), the
market development department at the customer ’s factory receives the order through
the sale contract based on the predetermined strategy.

A manufacturing process that is termed as a production flow process is shown in Fig.2.
The production flow process, which manufacture low volumes of a wide variety of products,
is produced through several stages in the production process. In Fig.2, the processes
consists of six stages. In each step S1−S6 of the manufacturing process, materials are
being produced.

The direction of the arrows represents the direction of the production flow. Production
materials are supplied through the inlet and the end-product is shipped from the outlet[8].

For this flow production system, we make the following two assumptions:

Assumption 2.1. The production structure is nonlinear.
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of company of research target
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Figure 2. Production flow process

Assumption 2.2. The production structure is a closed structure; that is, the production
is driven by a cyclic system (production flow system).

Assumption 2.1 indicates that the determination of the production structure is consid-
ered a major factor, which includes the generation value of production or the throughput
generation structure in a stochastic manufacturing process (hereafter called the manu-
facturing field). Because such a structure is at least dependent on the demand, it is
considered to have a nonlinear structure.
Because the value of such a product depends on the throughput, its production structure

is nonlinear. Therefore, Assumption 2.1 reflects the realistic production structure and is
somewhat valid. Assumption 2.2 is completed in each step and flows from the next step
until stage S6 is completed. Assumption 2.2 is reasonable because new production starts
from S1. Please refer Appendix A.

3. Kuramoto model. Consider a single oscillator, which is represented as a point eiθ

on the unit circle in the complex plane, with a frequency of ω. The behavior of such an
oscillator can be represented as follows[19].

dθ

dt
= ω (1)

Here, we are focusing only on the phase θ and are neglecting factors such as the oscillator’
s amplitude or shape. In terms of a production process, the oscillator corresponds to
the lead time at each stage of the process. A system in which several such oscillators
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are coupled nonlinearly is called a coupled oscillator system. This is the basis of the
Kuramoto model, which can be presented as follows.

dθi
dt

= ωi +
K

N

N∑
k=1

sin(θk − θi) (2)

where, i = 1, 2, · · · , N . ωi and K(> 0) denote a natural frequency at vibrator of i − th
order and a coupling strength between vibrators respectively.

Definition 3.1. A order parameter z

z = reiϕ =
1

N

K∑
i=1

eiθk (3)

where, r represents the degree of phase synchronization and the larger r indicates that
the degree of synchronization is higher. Therefore, 0 ≤ r ≤ 1, r = 0 and r = 1 denote a
asynchronous and synchronous respectively.

To perform accurate analysis, it is convenient to consider a continuous system. There-
fore, let the fraction of oscillators with frequency ω be g(ω), and let the probability density
of the phase θ at time t be h(θ, ω, t). An equation for the density h can further be obtained
using Equation (2) as follows.

∂h

∂t
+

∂(ρh)

∂θ
= ξ(θ, t) (4)

where, ξ(θ, t) denotes a white noize and is derived as follows:

< ξ(θ, t) · ξ(θ′
, t

′
) >= ξδ(θ − θ

′
)× δ(t− t

′
) (5)

If the production process is synchronized, the lead time is minimized. Here, the density
of synchronization is g(ω). We obtain the equation in case of N → ∞ in Equation (3) as
follows:

z = reiϕ =

∫ π

−π

∫ ∞

−∞
eiθh(θ, ω, t)g(ω)dωdθ (6)

The solution for an incoherent state where all the oscillators are moving randomly depicts
absolutely no correlations among them. However, if the phase distributions of the oscilla-
tor population are uniform, all the oscillators are in statically stable states although the
phases of the individual oscillators continue to change according to their own frequencies
ω. Sufficiently large values of K create a completely synchronized solution where all of
the oscillators depict a common frequency and different phases. In partially synchronized
states, only some of the oscillators with similar natural frequency are observed to be syn-
chronized, while the others have moved apart. We call the rate at which the oscillators
are synchronized as the“ flux,”which is depicted by ρ and can be defined as follows.

ρ(θ, ω, t) ≃ ω +Kr sin(θ − θ
′
) ≈ ω +Kr∆θ ≡ β (7)

where, ∆θ = θ − θ
′
. β is a constant.

∂h

∂t
+ β

∂h

∂θ
= ξ(θ, t) (8)

Equation (9) is known to follow the Fokker Planck equation as follows[18, 20]:

∂h

∂t
+ β

∂h

∂θ
= ξ

∂2h

∂h2
(9)
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3.1. Mathematical modeling of a lead time and an inventory by using Ku-
ramoto’s model. The vibrator in the Kuramoto’s model corresponds to each process in
processes. hi corresponds to a lead time or an inventory. An inventory is indispensable
for reducing lead time. It is important to consider a logistics. Here, the logistics are
considered as part of securing inventory parts.
In Figure 3, process (i − 1) and process (i + 1) are uncorrelated and θi denotes the

phase at process i. Let the deviation of phase between processes hi−1 = θi−1 − θi and
hi = θi−θi+1. In Figure 4, there exists correlation between the processes proximate to one
another in the production. In other words, the autocorrelation of hi(t) only is enabled. As
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Figure 3. Throughput prop-
agation under noise
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Figure 4. Fluctuation be-
tween processes

mentioned in our previous study, the RoRD in the production business can be described
as a Langevin type equation[22]. Figure 5 shows an equivalent model of flow−shop type
production processes. Let hi ≡ di − di−1 and dθi/dt = di.
We call θi the phase parameter of the processes. A,B,C are coupling coefficients.

di, di−1 denote equivalents to the potential energies of processes. N denotes a node in the
circuit. E(t) = E0 + em sin(wt− φ) has an alternating current.
With respect to di − di−1 = ∆di, ∆di = 0 basically impossible by mean of the coupling

coefficients A,B,C with no harmony. Therefore, the deviation signal, hi, undergoes fluc-
tuations. In Figure 5, asynchronous phenomena are realistically evoked in the processes
due to fluctuations affected by the variable parameter C. A detailed analysis is omitted
here.
hi is represented by Langevin type equation as follows:

dhi

dt
= fi(hi, t) +

√
Hri(t) (10)

where fi(hi; t) denotes a probability throughput. h ∈ [h1, h2, · · · , hN
′ ],

√
Hri(t) denotes

the noise term.
Figure 7 shows a lead time at work start time. hi(t), ti and 1, 2, · · · , n denote a

normalized lead time, work start time and work start number respectively. Figures 8-11
are annual transition data of lead time and inventory at work start time. The month
in which almost appropriates inventory is secured has a short lead time. This indicates
that there is a close relationship between lead time and inventory. We will describe
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Figure 6. Production flow
process by polar coordinate

Figure 7. Lead time at Work start time

that the normalized lead time data and the inventory data have a power-law distribution
characteristics.

3.2. Stochastic model with lower lead time and inventory limits. In this section,
we analyze the lead time and inventory based on actual normalized data. A lead time, an
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Figure 8. Annual normal-
ized data transition of lead
time and inventory (2007)
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Figure 9. Annual normal-
ized data transition of lead
time and inventory (2008)
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Figure 10. Annual normal-
ized data transition of lead
time and inventory (2009)
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Figure 11. Annual normal-
ized data transition of lead
time and inventory (2010)

inventory, a rate of return deviation are affected stochastically by the impact of logistics,
supplier delays and so on. The reason for assuming the Wiener process is because the
probability distribution is based on the normal type or the lognormal type.

Assumption 3.1. Two elements’ model of i− th process

dhi(t) = µihi(t)dt+ σidWi(t) (11)
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where, hi(t), µi, σi and Wi(t) denote two elements, average, volatility and Wiener
process respectively.

In Equation (12) that is provided below, changes in the order size do not change the
manufacturing lead time, i.e., the power factor B does not change. Here, the lead times
are normalized by dividing them using the maximum lead time in the series. If we omit
the subscripts i in Equation (12), we obtain the following.

dh(t) = µh(t)dt+ σdW (t) (12)

The solution of h(t) is derived as follows:

h(t) = h0 + µ

∫ t

0

h(s)ds+ σ

∫ t

0

h(s)dW (s)

= h0 exp
{(

µ− 1

2
σ2
)
t+ σW (t)

}
(13)

At this time, let h(t) be the minimum value.

Assumption 3.2.

h(t) ≤ hmin (14)

where, hmin is a minimum value.
The probability P (hmin ≤ h(t)) as t → ∞ is as follows:

P (hmin ≤ h(t)) = 1− exp
[
−
(
1− 2µ

σ2

)(
h(t)− hmin

)]
= 1− exp

[
−ζ(h(t)− hmin)

]
, ζ = 1− 2µ

σ2
(15)

From Equation (15), h converges to exponential distribution. As a results, we obtain as
follows:

P (hmin ≤ h(t)) =
( h(t)

hmin

)−ζ

(16)

The cumulative probability distribution P (> |∆h|) for the absolute value of the deviation
|∆h| is as follows:

P (> |∆h|) = |∆h|−ζ (17)

From actual data, ζ can be calculated as follows:

ζ = 1− 2µ

σ2
= 1− 0.732

0.055
≈ −12.30 (18)

4. Power-law distributions for the lead time, inventory, and RoRD. We can use
actual data to obtain the power-law distributions for the lead time, inventory, and RoRD.
The time series where the items start together (in a batch) clearly depict a similar type
of log-normal distribution as sets of normalized lead time data.

4.1. Power-law distributions for the lead time and inventory. Figure 12 shows
that a throughput is proportional to a rate of return in production processes. Then, we
introduce the lead-time function so that we can analyze a production process[21]. The
lead time of production equipment is proportional to the RoR. Therefore, we determined
that the probability density function (PDF) of lead time was also the same PDF of RoR.
The lead time function f(y) is assumed to be a log-normal probability density function.
Therefore, we can calculate the lead time by computing the continuous expected value,
as depicted in Fig.13.



10 KENJI SHIRAI AND YOSHINORI AMANO

Assumption 4.1. Lead time function for a log-normal probability density function.

f(y) ≡ 1√
2πσ(y/y0)

exp
{
−(ln(y/y0)− µ)2

2σ2

}
(19)

where, µ is an average value, σ is a volatility and y0 is an initial lead time.
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Figure 12. Throughput fluc-
tuation in a process distribu-
tion amount
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Figure 13. Lead time func-
tion f(y) and Loss Function
B(y)

4.2. Power-law distribution of RoRD. Here, it is shown that data of RoRD of a
certain control equipment manufacturing company collected by us conforms to power-law
distribution. About that company, we calculated the return of 10 years from April, 1999
to March, 2008 on a month-by-month basis to calculate RoRD. The result is shown in
Fig.15. Here, given that the return of nth month is Sn, a rate of return was defined by
the following formula. From data for observed monthly RoRD, we calculate a probability
density function (Fig.15)[14]. Results indicate that it conforms to a lognormal distribution
(Fig.15, Theoretical). Our previous study provides further information.

f(x) =
1√

2π(x− kp)σp

exp
{
−1

2

((lnx− kp)−m

σp

)2}
(20)

where kp is a displacement of x, σp is a volatility and m is an average.

Dn+1 =
Sn+1 − Sn

Sn

(21)

where, Sn, n = 1, 2, · · · indicates monthly return, and Dn indicates a monthly rate of
return.
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Using this rate of return, the following RoRD is defined.
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Definition 4.1. Definition of RoRD in Equation(22)

∆D(n) ≡ Dn+1 −Dn (22)

RoRD ∆D can be considered as a random variable fluctuating on a monthly basis.
As a result of examining distribution of an appearance frequency of this RoRD ∆D, the
probability density function was as shown in Fig.17 and the distribution was as shown in
Fig.18.

Here, the distribution was obtained as follows. A range within which ∆D varies is
divided into a plurality of zones, and let n(∆D,∆D + δD) be the number of pieces of
data included in a zone of width δD[∆D,∆D+ δD]. Assuming that the number of pieces
of data is M , the probability density function P (∆D) can be defined by the following
formula.

P (∆D) =
n(∆D,∆D + δD)

M · δD
(23)

In this paper, distribution P (> ∆D) is defined by the following formula.

P (> ∆D) =
N(∆D)

M
=

∫ ∞

∆D

d∆DP (∆D) (24)

where, N(∆D) is the rank order of ∆D. In stock price fluctuation models and the like,
it is known that a skirt of distribution of this cumulative distribution P (> |∆D) follows
the following power-law distribution[23, 24].

P (> |∆D|) ∝ |∆D|−β (25)

Therefore, as a result of performing fitting to the formula of power-law distribution using
the observed data of |∆D| > 0.1 corresponding to a skirt of distribution by MS-Excel,

P (> |∆D|) = 0.0008|∆D|−2.63 (26)

was obtained (Fig.18, Theoretical, R2 = 0.926). As above, a fluctuation model of RoRD is
of self-similarity, and it will show fractal nature[24, 25]. Also, this power-law distribution
characteristic has fluctuation nature in phase transition[24, 25].

5. On-off intermittency verification by actual data. The current business style is a
complete make-to-order production system and the production process is a batch process.
Figs.21 and 22 show the deviation of the lead time of a batch production standardization.
C1, C2, D1, D2 in Fig.19 become C1’, C2’, D1’, D2’ by moving the work start time
respectively. P1 in Figure 20 represents the movement of the working power to W3. P2
in Figure 20 represents the movement of the working power to W5.

Therefore, Figure 19 and Figure 20 show the production processes before and after on-
off intermittency, respectively. Our strategy was to change the start time of the production
and reduce the worker’s variance, as shown in Fig.20. After reconstructing the process
shown in Fig.20, we could handle sudden orders by appropriately managing the available
manpower and prevented opportunity loss. As a result, we increased monthly shipments.

From Table.1 and Table.2, no change was observed in the actual lead times. However,
the variance is reduced. In the process diagram, the time allocated for the operator is
the first half of the entire process. We could offer a sudden customer support for the
production. As a result, the production throughput also was improved[26]. For further
details please refer to our previous study[26]. We describe the summary as follows:

Definition 5.1. On-off intermittency indicator

hn
T =

h̃n
T

hLT

(27)
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where hLT is a longest lead time, and h̃n
T is the lead time of the nth project.

The lead time spectrum is represented by

S(z̃n) =
1

2

(
z̃n +

1

2

)
(28)

where µ = 1, z̃n is the ordinal data of zn, and represents a relative indicator. As a results,
we obtain as follows[26]:

P (z̃n, t) ≈ exp
[
−t · S(z̃n)

]
(29)

From Fig.21 and Fig.22, we can see that the spectral fluctuation value at around time
indicator = 20 is converging to the true average value. In other word, the lead time
fluctuates around the average value. The fluctuation average data exists at around 20 of
time series outset in Fig.21 and Fig.22. Fig.23 and Fig.24 are similar indicators for on-off
intermittency. we can see that the spectral fluctuation value at around time indicator = 7
is converging to the true average value.

Table 1. Normalized lead time/variance before reclassification of produc-
tion process

Lead time Variance

9.67
�� ��0.236

Table 2. Normalized lead time/variance after reclassification of produc-
tion process

Lead time Variance

9.67
�� ��0.165

6. Conclusion. This study has depicted that the lead time, inventory, and RoRD can
be handled uniformly using the following definitions. Another significant contribution is
that we have investigated the qualitative understanding that has been obtained using real
data. Finally, we have depicted that these three elements exhibit on-off intermittency and
fluctuations. With respect to the propagation between stages, we would like to propose
a mathematical model that considers constraints on propagation on the upstream and
downstream sides as a delay.
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Appendix A. Analysis of the Testrun results.

• (Testrun1)： Because the throughput of each process (S1−S6) is asynchronous, the
overall process throughput is asynchronous. In Table 4, we list the manufacturing
time (min) of each process. In Table 5, we list the volatility in each process performed
by the workers. Finally, Table 4 lists the target times. The theoretical throughput is
obtained as 3×199+2×15 = 627(min). In addition, the total working time in stage
S3 is 199 (min), which causes a bottleneck. In Fig. 25, we plot the measurement data
listed in Table 4, which represents the total working time of each worker (K1−K9).
In Fig. 26, we plot the data contained in Table 4, which represents the volatility of
the working times.

• (Testrun2)： Set to synchronously process the throughput. The target time listed in
Table 6 is 500 (min), and the theoretical throughput (not including the synchroniza-
tion idle time) is 400 (min). Table 7 presents the volatility of each working process
(S1−S6) for each worker (K1−K9).

• (Testrun3)： Introducing a preprocess stage. The process throughput is performed
synchronously with the reclassification of the process. As shown in Table 8, the the-
oretical throughput (not including the synchronization idle time) is 400 (min). Table
9 presents the volatility of each working process (S1−S6) for each worker (K1−K9).
On the basis of these results, the idle time must be set to 100 (min). Moreover, the
theoretical target throughput (T

′
s) can be obtained using the“Synchronization with
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preprocess”method. This goal is as follows:

Ts ∼ 20× 6(First cycle) + 17× 6(Second cycle)

+ 20× 6(Third cycle) + 20(Previous process) + 8(Idol− time)

∼ 370(min) (30)

The full synchronous throughput in one stage (20 min.) is

T
′

s = 3× 120 + 40 = 400(min) (31)

Using the“ Synchronization with preprocess”method, the throughput is reduced
by approximately 10%. Therefore, we showed that our proposed“ Synchronization
with preprocess”method is realistic and can be applied in flow production systems.
Below, we represent for a description of the“ Synchronization with preprocess”.
　 In Table.8, the working times of the workers K4, K7 show shorter than others.
However, the working time shows around target time. 　Next, we manufactured one
piece of equipment in three cycles. To maintain a throughput of six units/day, the
production throughput must be as follows:

(60× 8− 28)

3
× 1

6
≃ 25(min) (32)

where the throughput of the preprocess is set to 20 (min). In eqn. (32), the value 28
represents the throughput of the preprocess plus the idle time for synchronization.
Similarly, the number of processes is 8 and the total number of processes is 9 (8 plus
the preprocess). The value of 60 is obtained as 20 (min) × 3 (cycles).

Table 3. Correspondence between the table labels and the Test−run number

Table Number Production process Working time Volatility
Test−run1 Table.4 Asynchronous process 627(min) 0.29
Test−run2 Table.6 Synchronous process 500(min) 0.06

Test−run3
�� ��Table.8

�� ��“ Synchronization with preprocess”method
�� ��470(min)

�� ��0.03

In Table.3, Test−run3 indicates a best value for the throughput in the three types of
theoretical working time. Test−run2 is ideal production method. However, because it is
difficult for talented worker, Test−run3 is a realistic method.
The results are as follows. Here, the trend coefficient, which is the actual number of

pieces of equipment/the target number of equipment, represents a factor that indicates
the degree of the number of pieces of manufacturing equipment.
Test−run1: 4.4 (pieces of equipment)/6 (pieces of equipment) = 0.73,
Test−run2: 5.5 (pieces of equipment)/6 (pieces of equipment) = 0.92,
Test−run3: 5.7 (pieces of equipment)/6(pieces of equipment) = 0.95.
Volatility data represent the average value of each Test−run.
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Table 4. Total manufactur-
ing time at each stages for each
worker

WS S1 S2 S3 S4 S5 S6
K1 15 20 20 25 20 20 20
K2 20 22 21 22 21 19 20
K3 10 20 26 25 22 22 26
K4 20 17 15 19 18 16 18
K5 15 15 20 18 16 15 15
K6 15 15 15 15 15 15 15
K7 15 20 20 30 20 21 20
K8 20 29 33 30 29 32 33
K9 15 14 14 15 14 14 14

Total 145 172 184 199 175 174 181

Table 5. Volatility of Table4
　　　　　　　　

K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33
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Figure 25. Total
work time for each
stage(S1−S6) in Ta-
ble.4
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Table 6. Total manufactur-
ing time at each stages for each
worker

WS S1 S2 S3 S4 S5 S6
K1 20 20 24 20 20 20 20
K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20
K4 20 25 25 20 20 20 20
K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20
K8 20 27 27 22 23 20 20
K9 20 20 20 20 20 20 20

Total 180 192 196 182 183 182 180

Table 7. Volatility of Table6
　　　　　　　　

K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0

Table 8. Total manufactur-
ing time at each stages for each
worker, K5 (*):Preprocess

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 18 18 18
K2 20 18 18 18 18 18 18
K3 20 21 21 21 21 21 21
K4 16 13 11 11 13 13 13
K5 16 * * * * * *
K6 16 18 18 18 18 18 18
K7 16 14 14 13 14 14 13
K8 20 22 22 22 22 22 22
K9 20 20 20 20 20 20 20

Total 148 144 143 141 144 144 143

Table 9. Volatility of Table8
　K5(*):Preprocess　　　　

K1 0.67 0.33 0.67 0.67 0.67 0.67
K2 0.67 0.67 0.67 0.67 0.67 0.67
K3 0.33 0.33 0.33 0.33 0.33 0.33
K4 1 1.67 1.67 1 1 1
K5 * * * * * *
K6 0.67 0.67 0.67 0.67 0.67 0.67
K7 0.67 0.67 1 0.67 0.67 1
K8 0.67 0.67 0.67 0.67 0.67 0.67
K9 0 0 0 0 0 0


