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Abstract

In this paper we will show how to define a sequential machine by using PSC system
with Γ as a finite set of pair-sentence formulas. A pair-sentence form (A0, B1) means that
if we assume each stage number i specifies the delay time of the link operation between
pair-sentences, then the pair-sentence form (Ai, Bi+1) shows (Ai, Ai+1) (where Ai+1 := Bi)
that is the propagation of truth value of a sentence A at one delay time. So, we can define
the one delay truth signal circuit by using a pair-sentence form. Moreover, to combine
the plural pair-sentences in Γ, we can define MS = ⟨TVΓ, IΓ,O, v0, δΓ, λΓ⟩ as a sequential
machine generated from Γ, where TVΓ a set of truth value products, IΓ a set of input
truth value products, O a set of output truth value products, δΓ : TVΓ

i × IΓ
i → TVΓ

i+1

a truth value transition function and λΓ : TVΓ
i × IΓ

i → Oi a truth value output function.

Keywords: SCI, Liar paradox, revision theory, sequential machine, 3-valued �Lukasiewicz
logic.

1 Introduction

The Liar sentence has been studied in connection with several theories of truth [12, 8, 5]. As
a typical such theory, Tarski had proposed T-biconditionals for L0 in L1 such that X is true
in L1 ⇐⇒ p in L0, where X is replaced by the standard name of a sentence in L0 and p is
replaced by the sentence that is being true in L0. The language L0 for which the definition is
constructed is called the object language, and the language L1 in which the definition is given
is called the metalanguage. For example, let’s consider a simple Liar sentence:

(This sentence) : “This sentence is not true”.
Then, at first we have the following identity. (1) This sentence = “This sentence is not true”,
and by applying the Tarski’s biconditionals to this sentence, we get (2) “This sentence is not
true” is true ⇐⇒ This sentence is not true. So, by substitution of (1) to (2), we get (3) This
sentence is true ⇐⇒ This sentence is not true, which immediately yields a contradiction. The
Liar paradox appears to show that the fundamental intuition is incoherent. In general, a central
problem in the theory of truth is to resolve the paradox without damaging the fundamental
intuition in any essential way.
To deal with the Liar paradox normally, we have introduced a system PSC [6, 7] that just

rejects the principle of identity “A is A”, one of the third Aristotelian principles for thinking, as
a conservative extension of R. Suszko’s non-Fregean logic SCI [2, 11]. PSC was obtained from
the classical sentential calculus by adding a new pair-sentence connective (( )i, ( )j), where
i, j are some stage numbers. Frege, Ramsey and others have made the observation that the
sentence ’“A” is true’ has the same meaning as A itself, and the addition of the truth predicate
does not contribute any new content to the sentence A. So, our PSC does not include the truth
predicate against the ordinary truth theory. If we consider a simple Liar sentence in PSC, and
define A=”This sentence is true”, then we get a pair-sentence form (A0,¬A1) with intent to
mean that a situation of A on stage 0 is referential to the situation of ¬A on stage 1. More
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precisely speaking, we assume that any formulas A appear in the pair-sentence (A0,¬A1) has a
situation with superscript i and if some situation Ai holds then its next linked situation Ai+1

is referred by Ai+1 := ¬Ai. Hence the referential relation is similar to identity connective ≡,
but more general notion just as a mutual link relation between sentences A and ¬A, and even
that can be established between contradict ones if we introduce the stage notion i on which
each sentence is valid.
In this paper we will show how to define a sequential machine by using PSC system with Γ

as a finite set of pair-sentence formulas. For example, a pair-sentence form (A0, B1) means that
if we assume each stage number i specifies the delay time of the link operation between pair-
sentences A and B, then the pair-sentence form (Ai, Bi+1) shows (Ai, Ai+1) (where Ai+1 := Bi)
that is the propagation of truth value of a sentence A from Ai to Ai+1 at one delay time. So,
we can define the one delay truth signal circuit by using a pair-sentence form. Moreover, in the
case of Liar sentence we have a pair-sentence form (A0,¬A1) which can show the self-referential
negative feedback of the truth value of A. Let Γ = {(A0

1, B
1
1), (A

0
2, B

1
2), . . . , (A

0
m, B1

m)} be a
finite set of pair-sentence formulas, X0 = {A1, A2, . . . , Am} and X1 = {B1, B2, . . . , Bm} are
sets of all formulas appeared in the first stage 0 and the second stage 1, respectively. If we
introduce that TVΓ = {Πm

j=1v(A
j);Aj ∈ (Sub(X0) ∩ Sub(X1))} a set of all truth value assign-

ment products where Sub(Xi) a set of all subformulas of each element of Xi (i ∈ {0, 1}),
IΓ = {Πk

j=1v(C
j);Cj ∈ Prim(X)} a set of all input truth value assignment products where

X = Sub(X1)/Sub(X0) a subtraction of each Sub(Xi) and Prim(X) a set of all primitive for-
mulas of X, O = {Πl

j=1v(D
j);Dj ∈ Y } a set of all output truth value assignment products

where Y a set of all output formulas, v0 ∈ TVΓ an initial truth value assignment product,
δΓ : TVΓ

i × IΓ
i → TVΓ

i+1 a truth value assignment transition function, λΓ : TVΓ
i × IΓ

i →
Oi a truth value assignment output function and F a set of all final(accepted) truth value as-
signment, then we can define both MS = ⟨TVΓ, IΓ,O, v0, δΓ, λΓ⟩ as a sequential machine and
also MA = ⟨TVΓ, IΓ, v

0, δΓ,F ⟩ as a finite automaton, generated from Γ.

2 PSC Logic

2.1 Formal System of PSC

Let LP =< FORP ,¬,∧,∨,→, (( )i, ( )j),⊤,⊥ > be a language of the sentential calculus with
pair-sentence connective. The formulas FORP of a language LP are generated in the usual
way from an infinite set V ARP of sentential variables, constants ⊤(true) and ⊥(false) by the
standard truth functional connectives ¬( negation), ∧ (conjunction), ∨ (disjunction) and →
(material implication) as well as the pair-sentence constructor (( )i, ( )j), where i, j ∈ N are
some stage numbers. In our language LP , we assume that every sentential variables are defined
on an initial stage number 0 ∈ N. So, we have:
(1) V ARP = V AR0 = {p0, q0, r0, . . .}
(2) V ARP ⊆ FORP

(3) ∀A,B ∈ FORP =⇒ ¬A,A ∧B,A ∨B,A → B, (A,B) ∈ FORP

Also we may use the same parentheses as auxiliary symbols even assume that the priority of
each connective is weak as ¬, ∧, ∨, →, ( , ) in order. Throughout this paper the letters p, q, r,
p0, p1, p2, . . . will be used to denote any variables, the letters A, B, C, A0, A1, A2, . . . formulas
of a language LP , the letters X, Y , Z, . . . sets of formulas, and Greek letters Γ,Σ,∆, . . . sets
of pair-sentence formulas. Moreover, two constants ⊤ and ⊥ are defined as p0 ∨ (¬p)0 and
p0 ∧ (¬p)0 for some p0 ∈ V AR0, respectively. At first we will introduce several terminology
for pair-sentences as the following.

Definition 2.1 (Pair-sentence) (1) For any sentence A ∈ FORP , if there exist some
sentence B ∈ FORP such that “A is B” is also a new sentence, then we assume that there
exists a sentence (A0, B1) ∈ FORP , which means that there exists A1 on the next linked
stage of A0 such that A1 is referential to B0, and call (A0, B1) a pair-sentence formula of
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A0 and B1. Otherwise, we assume that there exists a senetnce (A0, A0) ∈ FORP , and
call (A0, A0) a unit of pair-sentence form for A0.

(2) The referential stage numbering of composed formulas is the following: for any stage
numbers i, j, k ∈ N,
(i) (¬Ai)j ⇐⇒ ¬(Ai+j)
(ii) (Ai % Bj)k ⇐⇒ Ai+k % Bj+k where % ∈ {∧,∨,→}
(iii) (Ai, Bj)k ⇐⇒ (Ai+k, Bj+k)

(3) If some sentence A has only a unit of pair-sentence form, then we assume that: Ai → (Ai)±n

for every i, n ∈ N.

The superscript of each formula shows the referential stage number on which the formula
is valid. The referential stage number will start from 0 and increase with depending on the
referential frequency like 0, 1, 2, 3, . . .. If we will interpret “A is B” as an identical sentence
(A0, B0), that is A0 ≡ B0 in Suszko’s notation, then we will get SCI system.

Example 2.2 (1) For any sentence A ∈ FORP , “A is A” if and only if there exist A0, A1,
(A0, A1) ∈ FORP by Definition 2.1 (1). So, we have {”A is A”} ⇐⇒ Γ1 = {(A0, A1)}.

(2) Similarly, for any A,B,C ∈ FORP ,
(i) {”A is not A”} ⇐⇒ Γ2 = {(A0,¬A1)}
(ii) {”A is not B”, ”B is not C”, ”C is A”}

⇐⇒ Γ3 = {(A0,¬B1), (B0,¬C1), (C0, A1)}
(iii) {”C is (A ∨ (B ∧ ¬C))”} ⇐⇒ Γ4 = {(C0, (A ∨ (B ∧ ¬C))1)}
(iv) {”B is C”, ”C is (¬A ∧ ¬B ∧ C) ∨ (A ∧ ¬B)”}

⇐⇒ Γ5 = {(B0, C1), (C0, ((¬A ∧ ¬B ∧ C) ∨ (A ∧ ¬B))1)}

Definition 2.3 Let Γ be a set of pair-sentence formulas {(A0, B1
1), (B

0
1 , B

1
2), (B

0
2 , B

1
3), . . . ,

(B0
n−1, B

1
n)} (∃n ∈ N). Then we get Γ = {(A0, B1

1), (B
1
1 , B

2
2), (B

2
2 , B

3
3), . . . , (B

n−1
n−1 , B

n
n)} by

Definition 2.1(3). So,

(1) We say that a sequence of formulas A0B1
1B

2
2 · · ·Bn

n is a referential pattern of formula A
generated from Γ.

(2) If A is belong to a set of formulas {B1
1 , B

2
2 , . . . , B

n
n}, we say that A has a circular referential

relation with respect to Γ. Otherwise, A has a non-circular referential relation with respect
to Γ.

(3) The referential cycle number of A with respect to Γ, τ(A,Γ) in symbol, is defined as
follows:
(i) τ(A,Γ) = 0 if A ̸∈ {B1

1 , B
2
2 , . . . , B

n
n},

(ii) τ(A,Γ) = n if A ∈ {B1
1 , B

2
2 , . . . , B

n
n} and A = Bn

n .
So, if A has a circular referential relation with respect to Γ, τ(A,Γ) ≥ 1. Otherwise,
τ(A,Γ) = 0.

(4) If τ(A,Γ) ≤ 1, we say that A is categorical with respect to Γ. Otherwise, A is paradoxical
with respect to Γ.

Definition 2.4 (PSC system) The axiomatic system PSC for the language LP consists of
two sets of schema TFA (truth functional axioms) and PSA (pair-sentence axioms) below:
(A1)− (A10) classical truth functional axioms
(E1) (A,A)
(E2) (A,B) → (B,A)
(E3) (A,B) ∧ (B,C) → (A,C)
(C1) (A,B) → (¬A,¬B)

precisely speaking, we assume that any formulas A appear in the pair-sentence (A0,¬A1) has a
situation with superscript i and if some situation Ai holds then its next linked situation Ai+1

is referred by Ai+1 := ¬Ai. Hence the referential relation is similar to identity connective ≡,
but more general notion just as a mutual link relation between sentences A and ¬A, and even
that can be established between contradict ones if we introduce the stage notion i on which
each sentence is valid.
In this paper we will show how to define a sequential machine by using PSC system with Γ

as a finite set of pair-sentence formulas. For example, a pair-sentence form (A0, B1) means that
if we assume each stage number i specifies the delay time of the link operation between pair-
sentences A and B, then the pair-sentence form (Ai, Bi+1) shows (Ai, Ai+1) (where Ai+1 := Bi)
that is the propagation of truth value of a sentence A from Ai to Ai+1 at one delay time. So,
we can define the one delay truth signal circuit by using a pair-sentence form. Moreover, in the
case of Liar sentence we have a pair-sentence form (A0,¬A1) which can show the self-referential
negative feedback of the truth value of A. Let Γ = {(A0

1, B
1
1), (A

0
2, B

1
2), . . . , (A

0
m, B1

m)} be a
finite set of pair-sentence formulas, X0 = {A1, A2, . . . , Am} and X1 = {B1, B2, . . . , Bm} are
sets of all formulas appeared in the first stage 0 and the second stage 1, respectively. If we
introduce that TVΓ = {Πm

j=1v(A
j);Aj ∈ (Sub(X0) ∩ Sub(X1))} a set of all truth value assign-

ment products where Sub(Xi) a set of all subformulas of each element of Xi (i ∈ {0, 1}),
IΓ = {Πk

j=1v(C
j);Cj ∈ Prim(X)} a set of all input truth value assignment products where

X = Sub(X1)/Sub(X0) a subtraction of each Sub(Xi) and Prim(X) a set of all primitive for-
mulas of X, O = {Πl

j=1v(D
j);Dj ∈ Y } a set of all output truth value assignment products

where Y a set of all output formulas, v0 ∈ TVΓ an initial truth value assignment product,
δΓ : TVΓ

i × IΓ
i → TVΓ

i+1 a truth value assignment transition function, λΓ : TVΓ
i × IΓ

i →
Oi a truth value assignment output function and F a set of all final(accepted) truth value as-
signment, then we can define both MS = ⟨TVΓ, IΓ,O, v0, δΓ, λΓ⟩ as a sequential machine and
also MA = ⟨TVΓ, IΓ, v

0, δΓ,F ⟩ as a finite automaton, generated from Γ.

2 PSC Logic

2.1 Formal System of PSC

Let LP =< FORP ,¬,∧,∨,→, (( )i, ( )j),⊤,⊥ > be a language of the sentential calculus with
pair-sentence connective. The formulas FORP of a language LP are generated in the usual
way from an infinite set V ARP of sentential variables, constants ⊤(true) and ⊥(false) by the
standard truth functional connectives ¬( negation), ∧ (conjunction), ∨ (disjunction) and →
(material implication) as well as the pair-sentence constructor (( )i, ( )j), where i, j ∈ N are
some stage numbers. In our language LP , we assume that every sentential variables are defined
on an initial stage number 0 ∈ N. So, we have:
(1) V ARP = V AR0 = {p0, q0, r0, . . .}
(2) V ARP ⊆ FORP

(3) ∀A,B ∈ FORP =⇒ ¬A,A ∧B,A ∨B,A → B, (A,B) ∈ FORP

Also we may use the same parentheses as auxiliary symbols even assume that the priority of
each connective is weak as ¬, ∧, ∨, →, ( , ) in order. Throughout this paper the letters p, q, r,
p0, p1, p2, . . . will be used to denote any variables, the letters A, B, C, A0, A1, A2, . . . formulas
of a language LP , the letters X, Y , Z, . . . sets of formulas, and Greek letters Γ,Σ,∆, . . . sets
of pair-sentence formulas. Moreover, two constants ⊤ and ⊥ are defined as p0 ∨ (¬p)0 and
p0 ∧ (¬p)0 for some p0 ∈ V AR0, respectively. At first we will introduce several terminology
for pair-sentences as the following.

Definition 2.1 (Pair-sentence) (1) For any sentence A ∈ FORP , if there exist some
sentence B ∈ FORP such that “A is B” is also a new sentence, then we assume that there
exists a sentence (A0, B1) ∈ FORP , which means that there exists A1 on the next linked
stage of A0 such that A1 is referential to B0, and call (A0, B1) a pair-sentence formula of
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(C2) (A,B) ∧ (C,D) → ((A ∧ C), (B ∧D))
(C3) (A,B) ∧ (C,D) → ((A ∨ C), (B ∨D))
(C4) (A,B) ∧ (C,D) → ((A → C), (B → D))
(C5) (A,B) ∧ (C,D) → ((A,C), (B,D))
(P1) (A,B) → (A → B)
(P2) A → A±n (∀n ∈ N) if A has only a unit of pair-sentence form

(Mp) A A → B
B

The axioms in TFA with modus ponens as a single rule give an axiomatic system CL for
the classical sentential logic. If we define a system PSC0 by restricting the stage number as
0 ∈ N only in a language LP , i.e., “A is B” ⇐⇒ there exist A0, B0, (A0, B0) ∈ FORP

0, and
hence, eliminating axioms (P2) from PSC, then the system PSC0 is collapsed into systems
SCI because in this case we can regard every pair-sentence formula (A,B)0 as an identity
formula (A ≡ B)0 in SCI on stage 0.

Definition 2.5 (Derivability) Let Γ be a finite set of pair-sentence formulas in a language
LP , X a finite set of formulas, A a formula and PSC a system in LP . Then we say that:

(1) Aj is derivable from X based on Γ in PSC, PSC, X ⊢Γ Aj in symbol, if there is a sequence

of formulas Bi1
1 , Bi2

2 , . . . , B
in−1

n−1 , B
in
n (n ≥ 1) such that Bin

n = Aj and every formula in the

sequence Bi1
1 , Bi2

2 , . . . , B
in−1

n−1 , A
j is either an axiom of PSC, or belongs to X ∪ Γ, or is

obtained by (Mp) rule from formulas occurring before it in the sequence. n is a length of
derivation Aj from X based on Γ in PSC.

(2) A is derivable from X based on Γ in PSC, PSC, X ⊢Γ A in symbol, if there is a sequence
of formulas B0

1 , B
0
2 , . . . , B

0
n−1, B

0
n(n ≥ 1) such that B0

n = A0 and every formula in the
sequence B0

1 , B
0
2 , . . . , B

0
n−1, A

0 is either an axiom of PSC, or belongs to X ∪ Γ, or is
obtained by (Mp) rule from formulas occurring before it in the sequence.

(3) If X = ∅, PSC ⊢Γ A in symbol, A is a theorem of PSC based on Γ.

Proposition 2.6 Let Γ1 = {(A0,¬A1)}, Γ2 = {(A0,¬A1), (A0, A3)} and Γ3 = {(A0, (B ∨ (C∧
¬A))1)}. Then,
(1) PSC, A0 ⊢Γ1 ¬A1

(2) PSC ⊢Γ1 (A0,¬¬A2)
(3) PSC ⊢Γ2 ⊥
(4) PSC ⊢Γ3 B → A

Definition 2.7 (Elementary extensions of PSC) Let us assume the following additional
axioms: (P3) (Ai, Bj) ∧ (B ↔ C)j → (Ai, Cj) (∀i, j ∈ N)

(P4) (A,A±n) (∃n ≥ 1) (n− reflexivity)
Then, some elementary extensions of PSC are defined as follows:
(1) PSCB := PSC⊕ (P3)
(2) PSCn := PSC⊕ (P4)
(3) PSCBn := PSC⊕ (P3)⊕ (P4)

2.2 Semantices of PSC

We interpret LP by using a classical truth assignment function v : V ARP → {0, 1} where
V ARP is a set of sententical variables V AR0 = {p0, q0, r0, . . .} on stage 0 ∈ N. Then we
can easily extend the function v to the domain of all formulas FORP in a language LP . The
assignment for all logical connectives {¬,∧,∨,→} are as usual way, but we will use the truth

transition function δj−i : TV i×Î
j−i

→ TV j to interpret a pair-sentence formula (Ai, Bj) where

TV i = {v(Ai);Ai ∈ FORP } and Î
j−i

= Ii × Ii+1 × · · · × Ij where Ik = {ik1 , ik2 , . . . , ikm} is a
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set of input truth value products on stage k. The n-th order of truth transition function δn is
defined as follow:

Definition 2.8 (Truth transition function) Let Γ be a finite set of pair-sentence formu-
las {(A0

1, B
1
1), (A

0
2, B

1
2), . . . , (A

0
n, B

1
n)}, X0 a set of all formulas appeared in the first stage 0

{A1, A2, . . . , An} and X1 a set of all formulas appeared in the second stage 1 {B1, B2, . . . , Bn}.

(1) Let us define TV i = {v(Ai);Ai ∈ Xi} a set of truth value assignment on stage i ∈ {0, 1},
I = {Πn

j=0v(A
j);Aj ∈ Prim(X)} a set of all input truth value assignment products for

all formulas which have a unit of pair-sentence form in Γ where X = Sub(X1)/Sub(X0)
a subtraction of each Sub(Xi), Sub(Xi) a set of all subformulas of each element of Xi

and Prim(X) a set of all primitive formulas of X. Then δΓ : TV 0 × I → TV 1 is
a truth transition function determined by Γ such that v((A0

k, B
1
k)) = 1 if and only if

δΓ(v(A
0
k), I) = v(B1

k) (1 ≤ k ≤ n).

(2) Moreover, the following is a sequence of truth transition functions determined by δΓ : for
any initial truth value assignment v0 ∈ TV 0,

δΓ
0(v0, Î

0
) = v0

δΓ
n+1(v0, Î

n+1
) = δΓ(δΓ

n(v0, Î
n
), I)

where Î
0
=< ϵ >(empty input), Î

n
=

n︷ ︸︸ ︷
I × · · · × I and n ≥ 0 is an order of truth transition

function.

(3) v0 is n-reflexive with respect to Γ if δΓ
n(v0, Î

n
) = v0 (∃n ∈ N).

(4) δΓ
−1 is a reverse truth transition function of δΓ if δΓ

−1(δΓ(v0, I), I
−1) = v0.

We notice that 1-reflexive assignments are fixed points of δΓ, 2-reflexive ones have 2 as a cycle
number and every initial assignment v0 is 0-reflexive. Then we can easily extend this function
δΓ to the domain of all elements in an Boolean algebra as follows.

Definition 2.9 Let Γ be a finite set of pair-sentence formulas, AP = ⟨AP ,∼,∩,∪,⊃, ( :
), 1, 0⟩ an PSC-algebra and DP a subset of AP .

(1) An assignment of AP is a homomorphism v : LP → AP such that the following hold: for
any A,B ∈ FORP ,
(i) v(Ai) ⇐⇒ (v(A))i (∀i ∈ N)
(ii) v(¬A) ⇐⇒∼ v(A)

(iii) v(A%B) ⇐⇒ v(A)%̇v(B) where % ∈ {∧,∨,→} and %̇ ∈ {∩,∪,⊃} is an algebraic
counterpart of % in order
(iv) v((A,B)) ⇐⇒ (v(A) : v(B))
(v) v(⊤) = 1 and v(⊥) = 0

(2) δΓ : AP
0 × I → AP

1 is a Boolean transition function determined by Γ, where AP
i is an

Boolean algebra on order i (i = 0, 1) and I is an Boolean input elements list.

(3) The ordering of composed elements is the following: for every elements am, bn ∈ AP and
number l ∈ N,
(i) (∼ am)l ⇐⇒∼ am+l

(ii) (am %̇ bn)l ⇐⇒ (am+l %̇ bn+l) where %̇ ∈ {∩,∪,⊃, :}

(4) (i) DP is closed if for every elements am, bn ∈ AP , am ∈ DP and am ⊃ bn ∈ DP imply
bn ∈ DP . (ii) DP is proper if DP ̸= AP . (iii) DP is admissible if for every assign-
ment v of AP and formula A ∈ TFA⊔ PSA, v(A) ∈ DP . (iv) DP is prime if for every
element am ∈ AP , am ∈ DP or ∼ am ∈ DP . (v) DP is transit if for every elements

(C2) (A,B) ∧ (C,D) → ((A ∧ C), (B ∧D))
(C3) (A,B) ∧ (C,D) → ((A ∨ C), (B ∨D))
(C4) (A,B) ∧ (C,D) → ((A → C), (B → D))
(C5) (A,B) ∧ (C,D) → ((A,C), (B,D))
(P1) (A,B) → (A → B)
(P2) A → A±n (∀n ∈ N) if A has only a unit of pair-sentence form

(Mp) A A → B
B

The axioms in TFA with modus ponens as a single rule give an axiomatic system CL for
the classical sentential logic. If we define a system PSC0 by restricting the stage number as
0 ∈ N only in a language LP , i.e., “A is B” ⇐⇒ there exist A0, B0, (A0, B0) ∈ FORP

0, and
hence, eliminating axioms (P2) from PSC, then the system PSC0 is collapsed into systems
SCI because in this case we can regard every pair-sentence formula (A,B)0 as an identity
formula (A ≡ B)0 in SCI on stage 0.

Definition 2.5 (Derivability) Let Γ be a finite set of pair-sentence formulas in a language
LP , X a finite set of formulas, A a formula and PSC a system in LP . Then we say that:

(1) Aj is derivable from X based on Γ in PSC, PSC, X ⊢Γ Aj in symbol, if there is a sequence

of formulas Bi1
1 , Bi2

2 , . . . , B
in−1

n−1 , B
in
n (n ≥ 1) such that Bin

n = Aj and every formula in the

sequence Bi1
1 , Bi2

2 , . . . , B
in−1

n−1 , A
j is either an axiom of PSC, or belongs to X ∪ Γ, or is

obtained by (Mp) rule from formulas occurring before it in the sequence. n is a length of
derivation Aj from X based on Γ in PSC.

(2) A is derivable from X based on Γ in PSC, PSC, X ⊢Γ A in symbol, if there is a sequence
of formulas B0

1 , B
0
2 , . . . , B

0
n−1, B

0
n(n ≥ 1) such that B0

n = A0 and every formula in the
sequence B0

1 , B
0
2 , . . . , B

0
n−1, A

0 is either an axiom of PSC, or belongs to X ∪ Γ, or is
obtained by (Mp) rule from formulas occurring before it in the sequence.

(3) If X = ∅, PSC ⊢Γ A in symbol, A is a theorem of PSC based on Γ.

Proposition 2.6 Let Γ1 = {(A0,¬A1)}, Γ2 = {(A0,¬A1), (A0, A3)} and Γ3 = {(A0, (B ∨ (C∧
¬A))1)}. Then,
(1) PSC, A0 ⊢Γ1 ¬A1

(2) PSC ⊢Γ1 (A0,¬¬A2)
(3) PSC ⊢Γ2 ⊥
(4) PSC ⊢Γ3 B → A

Definition 2.7 (Elementary extensions of PSC) Let us assume the following additional
axioms: (P3) (Ai, Bj) ∧ (B ↔ C)j → (Ai, Cj) (∀i, j ∈ N)

(P4) (A,A±n) (∃n ≥ 1) (n− reflexivity)
Then, some elementary extensions of PSC are defined as follows:
(1) PSCB := PSC⊕ (P3)
(2) PSCn := PSC⊕ (P4)
(3) PSCBn := PSC⊕ (P3)⊕ (P4)

2.2 Semantices of PSC

We interpret LP by using a classical truth assignment function v : V ARP → {0, 1} where
V ARP is a set of sententical variables V AR0 = {p0, q0, r0, . . .} on stage 0 ∈ N. Then we
can easily extend the function v to the domain of all formulas FORP in a language LP . The
assignment for all logical connectives {¬,∧,∨,→} are as usual way, but we will use the truth

transition function δj−i : TV i×Î
j−i

→ TV j to interpret a pair-sentence formula (Ai, Bj) where

TV i = {v(Ai);Ai ∈ FORP } and Î
j−i

= Ii × Ii+1 × · · · × Ij where Ik = {ik1 , ik2 , . . . , ikm} is a
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am, bn ∈ AP and some input elements list Î
n−m

⊆
n−m︷ ︸︸ ︷

AP × · · · ×AP , (am : bn) ∈ DP ⇐⇒
δΓ

n−m(am, Î
n−m

) = bn. (vi) DP is normal if for every elements am, bm ∈ AP and an

empty input list Î
0
=< ϵ >, (am : bm) ∈ DP ⇐⇒ δΓ

0(am, Î
0
) = bm ⇐⇒ am = bm.

(5) DP is filter if DP is proper, closed and admissible.

Definition 2.10 Let Γ be a finite set of pair-sentence formulas, X a finite set of formulas, A
a formula and AP an PSC-algebra.

(1) MP = ⟨AP ,DP ⟩ is a PSC-matrix if DP is a filter in AP .

(2) Moreover, MP is a PSC-model if DP is a prime (1 ∈ DP and 0 /∈ DP ), transit filter.

(3) A is true in a PSC-model MP under the assumption of X based on Γ, MP , X|=ΓA in
symbol, if for every assigmnent v of AP , v(X ∪ Γ) ⊆ DP implies v(A) ∈ DP .

(4) A is valid under the assumption of X based on Γ, X|=ΓA in symbol, if for every PSC-
model, MP , X|=ΓA.

Definition 2.11 Let MP = ⟨AP ,DP ⟩ be a PSC-matrix. Then we define the following:
∀am, bn ∈ AP ,

(1) ≈ is a binary relation on AP such that am ≈ bn ⇔ (am : bn) ∈ DP .

(2) |am| is the congruence class of element am, i.e., |am| = {bn; am ≈ bn}.

(3) AP /≈ is the set of congruence classes of elements of AP , i.e., AP /≈ = {|am|; am ∈ AP }.

(4) AP /≈ = ⟨AP /≈,∼,∩,∪,⊃, ( : ), |1|, |0|⟩ is an PSC-algebra with the following defini-
tions: for every |am|, |bn| ∈ AP /≈,
(i) ∼ |am| ⇐⇒ | ∼ am|
(ii) |am| %̇ |bn| ⇐⇒ |am %̇ bn| where %̇ ∈ {∩,∪,⊃, :}

Proposition 2.12 Let Γ be a finite set of pair-sentence formulas, X a finite set of formulas,
A a formula and MP = ⟨AP ,DP ⟩ a PSC-matrix. Then we have the following:

(1) DP /≈ is a filter in AP /≈. So, MP /≈ = ⟨AP /≈,DP /≈⟩ is a PSC-matrix.

(2) Moreover, DP /≈ is a transit filter in AP /≈.

(3) DP /≈ is prime if and only if DP is prime in AP .

(4) The mapping am �→ |am| is a matrix homomorphism from MP onto MP /≈. So, MP , X|=ΓA
if and only if MP /≈, X|=ΓA.

Theorem 2.13 (Completeness) Let Γ be a finite set of pair-sentence formulas, X a finite
set of formulas, A a formula and MP = ⟨AP ,DP ⟩ a PSC-model.

(1) X is consistent if and only if there exists a model MP and an assignment v of AP such
that X ⊆ v−1(DP ).

(2) PSC, X ⊢Γ A if and only if for every PSC-model MP , MP , X|=ΓA.

(3) PSC ⊢Γ A if and only if for every PSC-model MP , MP |=ΓA.

(4) PSC ⊢∅ A if and only if for every PSC-model MP , MP |=∅A.
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3 Sequential machine by PSC

We will consider a sequential machine by using PSC system.

Definition 3.1 Let Γ = {(A0
1, B

1
1), (A

0
2, B

1
2), . . . , (A

0
m, B1

m)} be a finite set of pair-sentence for-
mulas, X0 = {A1, A2, . . . , Am} and X1 = {B1, B2, . . . , Bm} are sets of all formulas appeared in
the first stage 0 and the second stage 1, respectively. X = Sub(X1)/Sub(X0) a subtraction
of each Sub(Xi) where Sub(Xi) a set of all subformulas of each element of Xi (i ∈ {0, 1}),
Prim(X) = {C1, C2, . . . , Ck} a set of all primitive formulas of X, Y = {D1, D2, . . . , Dl} a set
of all output formulas. Then we define sequential machine and finite automaton as follows
[1, 4]:

(1) MS = ⟨TVΓ, IΓ,O, v0, δΓ, λΓ⟩ is a sequential machine generated from Γ, where TVΓ =
{Πm

j=1v(A
j);Aj ∈ (Sub(X0) ∩ Sub(X1))} is a set of all truth value assignment products

(m = |Sub(X0) ∩ Sub(X1)|), IΓ = {Πk
j=1v(C

j);Cj ∈ Prim(X)} a set of all input truth

value assignment products (k = |Prim(X)|), O = {Πl
j=1v(D

j);Dj ∈ Y } a set of all out-

put truth value assignment products (l = |Y |), v0 ∈ TVΓ an initial truth value assign-
ment product, δΓ : TVΓ

i × IΓ
i → TVΓ

i+1 a truth value assignment transition function
and λΓ : TVΓ

i × IΓ
i → Oi a truth value assignment output function.

IiΓ Oi

TViΓ TVi+1ΓMS

Γ

C1
C2

Ck

D2
D1

Dl

A2
A1

Am

B1
B2

Bm

..

..

..

.. ....

.. ..

Figure 1: Sequential machine MS generated from Γ

(2) Moreover, if we restrict to O = {1(yes), 0(no)} in MS such that F = {v ∈ TVΓ, i ∈ IΓ;
λΓ(v, i) = 1}, then MA = ⟨TVΓ, IΓ, v

0, δΓ,F ⟩ is a finite automaton generated from Γ,
where F is a set of all final(accepted) truth value assignment.

We will investigate several sets of pair-sentence formulas.

Example 3.2 (Dialogue for Socrates, Plato and Aristoteles)

Socrates : “Plato’s remarks are not true”.

Plato : “Aristoteles’s remarks are not true”.

Aristoteles : “Socrates’ remarks are true”.

Let’s A = ”Socrates’s remarks are true”, B = ”Plato’s remarks are true” and C = “Aristote-
les’s remarks are true”. Then we define Γ3 = {(A0,¬B1), (B0,¬C1), (C0, A1)} as a set of pair-
sentence formulas. Since we have X0 = {A,B,C}, X1 = {A,¬B,¬C} and X = Sub(X1)/Sub(
X0) = {¬B,¬C}, so IΓ3 = Prim(X) = ∅. If we define δΓ3 : TVΓ

i
3 × IΓ

i
3 ∪ {ϵ} → TVΓ

i+1
3 where

am, bn ∈ AP and some input elements list Î
n−m

⊆
n−m︷ ︸︸ ︷

AP × · · · ×AP , (am : bn) ∈ DP ⇐⇒
δΓ

n−m(am, Î
n−m

) = bn. (vi) DP is normal if for every elements am, bm ∈ AP and an

empty input list Î
0
=< ϵ >, (am : bm) ∈ DP ⇐⇒ δΓ

0(am, Î
0
) = bm ⇐⇒ am = bm.

(5) DP is filter if DP is proper, closed and admissible.

Definition 2.10 Let Γ be a finite set of pair-sentence formulas, X a finite set of formulas, A
a formula and AP an PSC-algebra.

(1) MP = ⟨AP ,DP ⟩ is a PSC-matrix if DP is a filter in AP .

(2) Moreover, MP is a PSC-model if DP is a prime (1 ∈ DP and 0 /∈ DP ), transit filter.

(3) A is true in a PSC-model MP under the assumption of X based on Γ, MP , X|=ΓA in
symbol, if for every assigmnent v of AP , v(X ∪ Γ) ⊆ DP implies v(A) ∈ DP .

(4) A is valid under the assumption of X based on Γ, X|=ΓA in symbol, if for every PSC-
model, MP , X|=ΓA.

Definition 2.11 Let MP = ⟨AP ,DP ⟩ be a PSC-matrix. Then we define the following:
∀am, bn ∈ AP ,

(1) ≈ is a binary relation on AP such that am ≈ bn ⇔ (am : bn) ∈ DP .

(2) |am| is the congruence class of element am, i.e., |am| = {bn; am ≈ bn}.

(3) AP /≈ is the set of congruence classes of elements of AP , i.e., AP /≈ = {|am|; am ∈ AP }.

(4) AP /≈ = ⟨AP /≈,∼,∩,∪,⊃, ( : ), |1|, |0|⟩ is an PSC-algebra with the following defini-
tions: for every |am|, |bn| ∈ AP /≈,
(i) ∼ |am| ⇐⇒ | ∼ am|
(ii) |am| %̇ |bn| ⇐⇒ |am %̇ bn| where %̇ ∈ {∩,∪,⊃, :}

Proposition 2.12 Let Γ be a finite set of pair-sentence formulas, X a finite set of formulas,
A a formula and MP = ⟨AP ,DP ⟩ a PSC-matrix. Then we have the following:

(1) DP /≈ is a filter in AP /≈. So, MP /≈ = ⟨AP /≈,DP /≈⟩ is a PSC-matrix.

(2) Moreover, DP /≈ is a transit filter in AP /≈.

(3) DP /≈ is prime if and only if DP is prime in AP .

(4) The mapping am �→ |am| is a matrix homomorphism from MP onto MP /≈. So, MP , X|=ΓA
if and only if MP /≈, X|=ΓA.

Theorem 2.13 (Completeness) Let Γ be a finite set of pair-sentence formulas, X a finite
set of formulas, A a formula and MP = ⟨AP ,DP ⟩ a PSC-model.

(1) X is consistent if and only if there exists a model MP and an assignment v of AP such
that X ⊆ v−1(DP ).

(2) PSC, X ⊢Γ A if and only if for every PSC-model MP , MP , X|=ΓA.

(3) PSC ⊢Γ A if and only if for every PSC-model MP , MP |=ΓA.

(4) PSC ⊢∅ A if and only if for every PSC-model MP , MP |=∅A.
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Table 1: Truth transition table of Γ3

TVΓ
i
3 Ai Bi Ci Ai+1 def

= ¬Bi Bi+1 def
= ¬Ci Ci+1 def

= Ai TVΓ
i+1
3

v1 1 1 1 0 0 1 v7
v2 1 1 0 0 1 1 v5
v3 1 0 1 1 0 1 v3
v4 1 0 0 1 1 1 v1
v5 0 1 1 0 0 0 v8
v6 0 1 0 0 1 0 v6
v7 0 0 1 1 0 0 v4
v8 0 0 0 1 1 0 v2

v1 v2 v3 v4 v5 v6 v7 v8

δΓ3

Figure 2: Boolean transition figure of δΓ3

ϵ is an empty input, and let’s TVΓ3 = {v(A)× v(B)× v(C); v : Sub(X0) ∩ Sub(X1) → {0, 1}} =
{v1, v2, . . . , v8}, v0 ∈ TVΓ3 and F = {v3, v6} ⊆ TVΓ3, then we getMA = ⟨TVΓ3, IΓ3, v

0, δΓ3,F ⟩
as a finite automaton generated from Γ3 (see Table 1).

Example 3.3 (Circular definition in Gupta’s book [3])

C
def
= (A ∨ (B ∧ ¬C))

In this case, we define Γ4 = {(C0, (A ∨ (B ∧ ¬C))1)} as a set of pair-sentence formulas. Since we
have X0 = {C}, X1 = {A ∨ (B ∧ ¬C)} and X = Sub(X1)/Sub(X0) = {A,B,¬C,B ∧ ¬C,A∨
(B ∧ ¬C)}, so Prim(X) = {A,B}. If we define δΓ4 : TVΓ

i
4 × IΓ

i
4 → TVΓ

i+1
4 , and let’s TVΓ4 =

{v(C); v : Sub(X0) ∩ Sub(X1) → {0, 1}} = {v1, v2}, IΓ4 = {v(A)× v(B); v : Prim(X) → {0, 1}}
= {i1, . . . , i4}, v0 ∈ TVΓ4 and F = {v1, v2} ⊆ TVΓ4, then we getMA = ⟨TVΓ4, IΓ4, v

0, δΓ4,F ⟩
as a finite automaton generated from Γ4 (see Table 2).

v1 δΓ4 v2

i1,i2/ i1,i2,i4/

i3,i4/

i3/

Figure 3: Boolean transition figure of δΓ4

Example 3.4 (Two type of traffic signals with a push button [9])

(a) There exist two type of traffic signals. One signal A is for cars, and the other B with a
push button is for pedestrians.
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Table 2: Truth transition table of Γ4

IΓ
i
4 Ai Bi TVΓ

i
4 Ci Ci+1 def

= Ai ∨ (Bi ∧ ¬Ci) TVΓ
i+1
4

i1 1 1 v1 1 1 v1
1 1 v2 0 1 v1

i2 1 0 v1 1 1 v1
1 0 v2 0 1 v1

i3 0 1 v1 1 0 v2
0 1 v2 0 1 v1

i4 0 0 v1 1 0 v2
0 0 v2 0 0 v1

(b) If push a button Off, then A turns on Blue light and B on Red light.

(c) If push a button On at a time t, then A turns on Yellow at t+ 1 and also both A on Red
and B on Blue at t+ 2.

(d) Moreover, at t+ 3 keep the previous state (both A on Red and B on Blue). And at t+ 4,
both signals A and B return to the inital state (both A on Blue and B on Red).

(e) While A turns on Yellow or Red, it is invalid to push the button.

We will show the time table of each signal A and B (see Table 3). From this table, we need
the following sets I,D and O to define the sequential machine.

Table 3: Time table of each signal A and B

State              d1 d2 d3 d4

t           t+1         t+2         t+3        t+4
Time               1             2            3             4           5          6     
Buttom         Off           On          --            --          --
Signal A       Blue       Blue     Yellow     Red      Red      Blue
Signal B       Red        Red        Red         Blue     Blue     Red 

Let I = {Off,On} = {0, 1} be a set of input push button states,D = {d1, d2, d3, d4} = {00, 01,
11, 10} a set of signal states and O = {Blue,Yellow,Red} = {00, 01, 11(10)} a set of output sig-
nals. Here each binary numeral is a coding of each element in sets. Next we define the state
transition function δ and the signal output function λ of Signal A based on Table 3 as follows:

Table 4: Binary coding of transition, output and Boolean function tables (Signal A)

d1 (00)   d2 (01)    d3 (11)   d4 (10)

Off (0)    Bl (00)   Ye (01)   Re (11)   Re (10)

On (1)    Bl (00)   Ye (01)   Re (11)   Re (10)
I

Dλ
d1 (00)   d2 (01)    d3 (11)   d4 (10)

Off (0)  d1 (00)   d3 (11)    d4 (10)   d1 (00)

On (1)  d2 (01)   d3 (11)    d4 (10)   d1 (00)
I

Dδ

From Table 4, we can define every output formulas B1, B2, D1, D2 by using input formulas
C,A1, A2 as follows:
B1 = (¬A1 ∧A2 ∧ ¬C) ∨ (A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧A2 ∧ C) ∨ (A1 ∧A2 ∧ C)

9

Table 1: Truth transition table of Γ3

TVΓ
i
3 Ai Bi Ci Ai+1 def

= ¬Bi Bi+1 def
= ¬Ci Ci+1 def

= Ai TVΓ
i+1
3

v1 1 1 1 0 0 1 v7
v2 1 1 0 0 1 1 v5
v3 1 0 1 1 0 1 v3
v4 1 0 0 1 1 1 v1
v5 0 1 1 0 0 0 v8
v6 0 1 0 0 1 0 v6
v7 0 0 1 1 0 0 v4
v8 0 0 0 1 1 0 v2

v1 v2 v3 v4 v5 v6 v7 v8

δΓ3

Figure 2: Boolean transition figure of δΓ3

ϵ is an empty input, and let’s TVΓ3 = {v(A)× v(B)× v(C); v : Sub(X0) ∩ Sub(X1) → {0, 1}} =
{v1, v2, . . . , v8}, v0 ∈ TVΓ3 and F = {v3, v6} ⊆ TVΓ3, then we getMA = ⟨TVΓ3, IΓ3, v

0, δΓ3,F ⟩
as a finite automaton generated from Γ3 (see Table 1).

Example 3.3 (Circular definition in Gupta’s book [3])

C
def
= (A ∨ (B ∧ ¬C))

In this case, we define Γ4 = {(C0, (A ∨ (B ∧ ¬C))1)} as a set of pair-sentence formulas. Since we
have X0 = {C}, X1 = {A ∨ (B ∧ ¬C)} and X = Sub(X1)/Sub(X0) = {A,B,¬C,B ∧ ¬C,A∨
(B ∧ ¬C)}, so Prim(X) = {A,B}. If we define δΓ4 : TVΓ

i
4 × IΓ

i
4 → TVΓ

i+1
4 , and let’s TVΓ4 =

{v(C); v : Sub(X0) ∩ Sub(X1) → {0, 1}} = {v1, v2}, IΓ4 = {v(A)× v(B); v : Prim(X) → {0, 1}}
= {i1, . . . , i4}, v0 ∈ TVΓ4 and F = {v1, v2} ⊆ TVΓ4, then we getMA = ⟨TVΓ4, IΓ4, v

0, δΓ4,F ⟩
as a finite automaton generated from Γ4 (see Table 2).

v1 δΓ4 v2

i1,i2/ i1,i2,i4/

i3,i4/

i3/

Figure 3: Boolean transition figure of δΓ4

Example 3.4 (Two type of traffic signals with a push button [9])

(a) There exist two type of traffic signals. One signal A is for cars, and the other B with a
push button is for pedestrians.
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C     A1 A2 B1 B2 D1 D2
0      0       0     (d1)    0       0     (d1)    0       0     (Bl)

0      0       1     (d2)    1       1     (d3)    0       1     (Ye)

0      1       1     (d3)    1       0     (d4)    1       1     (Re)

0      1       0     (d4)    0       0     (d1)    1       0     (Re)

1      0       0     (d1)    0       1     (d2)    0       0     (Bl)

1      0       1     (d2)    1       1     (d3)    0       1     (Ye)

1      1       1     (d3)    1       0     (d4)    1       1     (Re)

1      1       0     (d4)    0       0     (d1)    1       0     (Re)

Off

On

= (¬A1 ∧A2) ∨ (A1 ∧A2) = A2.
B2 = (¬A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧ ¬A2 ∧ C) ∨ (¬A1 ∧A2 ∧ C) = (¬A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧ C)
D1 = (A1 ∧A2 ∧ ¬C) ∨ (A1 ∧ ¬A2 ∧ ¬C) ∨ (A1 ∧A2 ∧ C) ∨ (A1 ∧ ¬A2 ∧ C)

= (A1 ∧A2) ∨ (A1 ∧ ¬A2) = A1

D2 = (¬A1 ∧A2 ∧ ¬C) ∨ (A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧A2 ∧ C) ∨ (A1 ∧A2 ∧ C)
= (¬A1 ∧A2) ∨ (A1 ∧A2) = A2

C

A1
A2

D1
D2
B1
B2

Γ5

I O

MS

Figure 4: Sequential machine generated ftom Γ5 (Signal A)

We define Γ5 = {(A0
1, A

1
2), (A

0
2, ((¬A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧ C))1)} as a set of pair-sentence

formulas. Since we have X0 = {A1, A2}, X1 = {A2, (¬A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧ C)} and X =
Sub(X1)/Sub(X0) = {C,¬A1,¬C,¬A1 ∧A2, . . .}, so Prim(X) = {C}. If we define δΓ5 : TVΓ

i
5

×IΓ
i
5 → TVΓ

i+1
5 , and let’s TVΓ5 = {v(A1)× v(A2); v : Sub(X0) ∩ Sub(X1) → {0, 1}} = {v1(d3)

, v2(d4), v3(d2), v4(d1)}, IΓ5 = {v(C); v : Prim(X) → {1, 0}} = {i1(On), i2(Off)},O = {v(D1)×
v(D2); v : {D1, D2} → {0, 1}} = {00(Blue), 01(Yellow), 11(Red), 10(Red)}, v0 ∈ TVΓ5 and λΓ5

: TVΓ
i
5 × IΓ

i
5 → Oi then we get MS = ⟨TVΓ5, IΓ5,O, v0, δΓ5, λΓ5⟩ as a sequential machine

generated from Γ5 (see Table 5).

v3v2v1 v4

i1/(1,1),i2/(1,1)

i1/(0,0),i2/(0,0)

i1/(0,1),i2/(0,1)

i1/(0,0)

i2/(0,0)

(d3) (d4) (d1)(d2)

δΓ5

Figure 5: Boolean transition figure of δΓ5 (Signal A)
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Table 5: Truth transition table of Γ5 (Signal A)

IΓ
i
5 Ci TVΓ

i
5 Ai

1 Ai
2 Ai+1

1
def
= Ai

2 Ai+1
2 TVΓ

i+1
5 Di

1 Di
2

i1 1 v1 1 1 1 0 v2 1 1
1 v2 1 0 0 0 v4 1 0
1 v3 0 1 1 1 v1 0 1
1 v4 0 0 0 1 v3 0 0

i2 0 v1 1 1 1 0 v2 1 1
0 v2 1 0 0 0 v4 1 0
0 v3 0 1 1 1 v1 0 1
0 v4 0 0 0 0 v4 0 0

where we assume that Ai+1
2

def
= (¬Ai

1 ∧ Ai
2 ∧ ¬Ci) ∨ (¬Ai

1 ∧ Ci) and every output formulas are

Di
1

def
= Ai

1 and Di
2

def
= Ai

2.

4 3-valued �Lukasiewicz logic on PSC

Let L3 =< FOR3,¬3,∧3,∨3,→3,≡3,⊥,N,⊤ > be a sentential language constructed from sen-
tential variables, constants ⊥(strictly false), ⊤(strictly true) and N(possible) by means of
�Lukasiewicz connectives: ¬3 (�L-negation), →3 (�L-implication), ∧3 (�L-conjunction), ∨3 (�L-
disjunction) and ≡3 (�L-equivalence). FOR3 is a set of all formulas of L3. Here each connective
is defined by the following truth tables [10]:

Table 6: Truth table of each connective in L3

Α      ¬3Α

0         1

1/2     1/2

1         0

∧3      0      1/2        1
0 0       0         0

1/2 0     1/2      1/2
1 0     1/2        1

→3      0      1/2       1
0 1       1        1

1/2 1/2      1        1
1 0      1/2      1

∨3      0       1/2       1
0 0      1/2       1

1/2 1/2     1/2      1
1 1        1        1

≡3      0       1/2       1
0 1      1/2       0

1/2 1/2      1       1/2
1 0      1/2       1

Where A3 = ⟨A3,∼3,∩3,∪3,⊃3, ◦, {0, 1/2, 1}⟩ is the well-known �L3-algebra and D3 = {1}
a designated subset of A3, then the pair M3 = ⟨A3,D3⟩ is the �Lukasiewicz’s 3-valued model.
For any formula A ∈ FOR3 is true in M3 model under the assumption of X ⊆ FOR3,
M3, X |= A in symbol, if for every assignment h : FOR3 → A3, h(X) ⊆ D3 implies h(A) = 1,
where h(⊥) = 0, h(N) = 1/2 and h(⊤) = 1. Moreover,

h(¬3A)
def
= (1− h(A))

h(A →3 B)
def
= min{1, 1− h(A) + h(B)}

h(A ∨3 B)
def
= ((h(A) →3 h(B)) →3 h(B)) = max{h(A), h(B)}

h(A ∧3 B)
def
= ¬3(¬3A ∨3 ¬3B) = min{h(A), h(B)}

To interpret the tautology set of L3 onPSC logic, we define the truth assignment vh : FOR3 →
{0, 1} such that for any algebraic assignment h : FOR3 → A3, vh(A)

def
= h(¬3(A →3 ¬3A)).

C     A1 A2 B1 B2 D1 D2
0      0       0     (d1)    0       0     (d1)    0       0     (Bl)

0      0       1     (d2)    1       1     (d3)    0       1     (Ye)

0      1       1     (d3)    1       0     (d4)    1       1     (Re)

0      1       0     (d4)    0       0     (d1)    1       0     (Re)

1      0       0     (d1)    0       1     (d2)    0       0     (Bl)

1      0       1     (d2)    1       1     (d3)    0       1     (Ye)

1      1       1     (d3)    1       0     (d4)    1       1     (Re)

1      1       0     (d4)    0       0     (d1)    1       0     (Re)

Off

On

= (¬A1 ∧A2) ∨ (A1 ∧A2) = A2.
B2 = (¬A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧ ¬A2 ∧ C) ∨ (¬A1 ∧A2 ∧ C) = (¬A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧ C)
D1 = (A1 ∧A2 ∧ ¬C) ∨ (A1 ∧ ¬A2 ∧ ¬C) ∨ (A1 ∧A2 ∧ C) ∨ (A1 ∧ ¬A2 ∧ C)

= (A1 ∧A2) ∨ (A1 ∧ ¬A2) = A1

D2 = (¬A1 ∧A2 ∧ ¬C) ∨ (A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧A2 ∧ C) ∨ (A1 ∧A2 ∧ C)
= (¬A1 ∧A2) ∨ (A1 ∧A2) = A2

C

A1
A2

D1
D2
B1
B2

Γ5

I O

MS

Figure 4: Sequential machine generated ftom Γ5 (Signal A)

We define Γ5 = {(A0
1, A

1
2), (A

0
2, ((¬A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧ C))1)} as a set of pair-sentence

formulas. Since we have X0 = {A1, A2}, X1 = {A2, (¬A1 ∧A2 ∧ ¬C) ∨ (¬A1 ∧ C)} and X =
Sub(X1)/Sub(X0) = {C,¬A1,¬C,¬A1 ∧A2, . . .}, so Prim(X) = {C}. If we define δΓ5 : TVΓ

i
5

×IΓ
i
5 → TVΓ

i+1
5 , and let’s TVΓ5 = {v(A1)× v(A2); v : Sub(X0) ∩ Sub(X1) → {0, 1}} = {v1(d3)

, v2(d4), v3(d2), v4(d1)}, IΓ5 = {v(C); v : Prim(X) → {1, 0}} = {i1(On), i2(Off)},O = {v(D1)×
v(D2); v : {D1, D2} → {0, 1}} = {00(Blue), 01(Yellow), 11(Red), 10(Red)}, v0 ∈ TVΓ5 and λΓ5

: TVΓ
i
5 × IΓ

i
5 → Oi then we get MS = ⟨TVΓ5, IΓ5,O, v0, δΓ5, λΓ5⟩ as a sequential machine

generated from Γ5 (see Table 5).

v3v2v1 v4

i1/(1,1),i2/(1,1)

i1/(0,0),i2/(0,0)

i1/(0,1),i2/(0,1)

i1/(0,0)

i2/(0,0)

(d3) (d4) (d1)(d2)

δΓ5

Figure 5: Boolean transition figure of δΓ5 (Signal A)
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This means that for any formula A ∈ FOR3, vh(A) = 1 if h(A) = 1 and otherwise, vh(A) = 0.
Then we can define the �Lukasiewicz’s 3-valued logic on PSC as follows:
Let LP =< FORP ,¬,∧,∨,→, (( ), ( )),⊤,⊥ > be a PSC language, where

¬A def
= (A →3 ¬3A)

A → B
def
= (A →3 (A →3 B))

A ∨B
def
= ((A →3 B) →3 B)

A ∧B
def
= ¬3(¬3A ∨3 ¬3B)

(A,B)
def
= ((A →3 B) ∧3 (B →3 A)) = (A ≡3 B)

Every connectives {¬,∧,∨,→, (( ), ( ))} are classical and have one of two truth values (⊤,⊥).
Also in this case, a pair-sentence connective (( ), ( )) is an identity, so vh((A,B)) = 1 if
h(A)=h(B) and otherwise, vh((A,B)) = 0 (see Table 6 and 7).

Table 7: Truth table of each connective in LP

Α      ¬3Α    ¬Α = (Α→3 ¬3Α)

0         1                  1                     = min{1, 1-0+1}

1/2     1/2                 1                     = min{1, 1-1/2+1/2}

1         0                 0                     = min{1, 1-1+0}

Α     Β      Α→3Β   Α→Β = (Α→3(Α→3Β)) Α∨Β = ((Α→3Β)→3Β)

0 0         1                        1                                        0
0 1/2       1                        1                                     1/2 (0)
0 1         1                        1                                        1

1/2 0       1/2                      1                                      1/2 (0)
1/2 1/2      1                        1                                      1/2 (0)
1/2 1        1                        1                                         1
1       0        0                         0                                        1
1      1/2     1/2                     1/2 (0)                                 1
1       1        1                         1                                        1

Α     Β      ¬3Α     ¬3Β        ¬3Α ∨3 ¬3Β               Α∧Β = ¬3(¬3Α ∨3 ¬3Β)

0 0         1         1                  1                                        0
0 1/2       1        1/2                1                                        0
0 1         1         0                  1                                        0

1/2 0       1/2       1                   1                                        0
1/2 1/2    1/2       1/2               1/2                                    1/2 (0)
1/2 1      1/2        0                 1/2                                    1/2 (0)
1       0        0          1                  1                                        0
1      1/2      0        1/2               1/2                                    1/2 (0)
1       1        0          0                  0                                        1

Here if we interpret the �Lukasiewicz’s connectives {¬3,→3} by ¬3A
def
= (A,¬(A,A)) and

A →3 B
def
= (A ∧B,A) on PSC logic, then we can get the 2-valued (classical) system PSC
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with Γ6 = {(¬3A, (A,¬(A,A))), (A →3 B, (A ∧B,A))} as a set of pair-sentence formulas, and
which has the same tautology set as �Lukasiewicz’s 3-valued logic (see Table 8 and Figure 6).

Table 8: Interpretation of each �Lukasiewicz’s connective in LP

Α      ¬3Α       (Α, Α)       ¬(Α, Α)        (Α, ¬(Α, Α))

0         1            1                  0                    1

1/2     1/2           1                  0                (1/2, 0)   (=1/2)

1         0            1                  0                    0

≡
Α     Β       Α→3Β        Α∧Β            (Α∧Β, Α) 

0 0           1               0                      1        
0 1/2         1               0                      1      
0 1           1               0                      1

1/2 0         1/2             0             (1/2, 0)  (=1/2)
1/2 1/2        1              1/2                    1
1/2 1          1              1/2                    1
1 0          0                0                      0 
1 1/2       1/2            1/2           (1, 1/2)  (=1/2) 
1 1          1                1                      1

≡

I = {0, 1/2, 1}
A D1 = ¬Α

D2 = Α→Β

O = {0, 1}

PSC
B

(¬3Α)0

(Α→3Β)0

D3 = A∨Β
D4 = A∧Β

(A, ¬(A, A))0

(Α∧Β, Α)0

Γ6

Figure 6: 2-valued (classical) system of �Lukasiewicz’s 3-valued logic on PSC

where D1
def
= (A →3 ¬3A), D2

def
= (A →3 (A →3 B)), D3

def
= ((A →3 B) →3 B) and

D4
def
= ¬3(¬3A ∨ ¬3B).

5 Conclusion

In this paper we have defined a sequential machine MS = ⟨TVΓ, IΓ,O, v0, δΓ, λΓ⟩ and also a
finite automaton MA = ⟨TVΓ, IΓ, v

0, δΓ,F ⟩ by using PSC system with Γ as a finite set of pair-
sentence formulas. Here Γ = {(A0

1, B
1
1), (A

0
2, B

1
2), . . . , (A

0
m, B1

m)} is a finite set of pair-sentence
formulas, X0 = {A1, A2, . . . , Am} and X1 = {B1, B2, . . . , Bm} are sets of all formulas appeared
in the first stage 0 and the second stage 1, respectively. Moreover, TVΓ = {Πm

j=1v(A
j);Aj ∈

(Sub(X0) ∩ Sub(X1))} is a set of all truth value assignment products where Sub(Xi) a set of
all subformulas of each element of Xi (i ∈ {0, 1}), IΓ = {Πk

j=1v(C
j);Cj ∈ Prim(X)} a set of

all input truth value assignment products where X = Sub(X1)/Sub(X0) a subtraction of each
Sub(Xi) and Prim(X) a set of all primitive formulas of X, O = {Πl

j=1v(D
j);Dj ∈ Y } a set

of all output truth value assignment products where Y a set of all output formulas, v0 ∈ TVΓ

an initial truth value assignment product, δΓ : TVΓ
i × IΓ

i → TVΓ
i+1 a truth value assignment

transition function, λΓ : TVΓ
i × IΓ

i → Oi a truth value assignment output function and F a
set of all final(accepted) truth value assignment.

This means that for any formula A ∈ FOR3, vh(A) = 1 if h(A) = 1 and otherwise, vh(A) = 0.
Then we can define the �Lukasiewicz’s 3-valued logic on PSC as follows:
Let LP =< FORP ,¬,∧,∨,→, (( ), ( )),⊤,⊥ > be a PSC language, where

¬A def
= (A →3 ¬3A)

A → B
def
= (A →3 (A →3 B))

A ∨B
def
= ((A →3 B) →3 B)

A ∧B
def
= ¬3(¬3A ∨3 ¬3B)

(A,B)
def
= ((A →3 B) ∧3 (B →3 A)) = (A ≡3 B)

Every connectives {¬,∧,∨,→, (( ), ( ))} are classical and have one of two truth values (⊤,⊥).
Also in this case, a pair-sentence connective (( ), ( )) is an identity, so vh((A,B)) = 1 if
h(A)=h(B) and otherwise, vh((A,B)) = 0 (see Table 6 and 7).

Table 7: Truth table of each connective in LP

Α      ¬3Α    ¬Α = (Α→3 ¬3Α)

0         1                  1                     = min{1, 1-0+1}

1/2     1/2                 1                     = min{1, 1-1/2+1/2}

1         0                 0                     = min{1, 1-1+0}

Α     Β      Α→3Β   Α→Β = (Α→3(Α→3Β)) Α∨Β = ((Α→3Β)→3Β)

0 0         1                        1                                        0
0 1/2       1                        1                                     1/2 (0)
0 1         1                        1                                        1

1/2 0       1/2                      1                                      1/2 (0)
1/2 1/2      1                        1                                      1/2 (0)
1/2 1        1                        1                                         1
1       0        0                         0                                        1
1      1/2     1/2                     1/2 (0)                                 1
1       1        1                         1                                        1

Α     Β      ¬3Α     ¬3Β        ¬3Α ∨3 ¬3Β               Α∧Β = ¬3(¬3Α ∨3 ¬3Β)

0 0         1         1                  1                                        0
0 1/2       1        1/2                1                                        0
0 1         1         0                  1                                        0

1/2 0       1/2       1                   1                                        0
1/2 1/2    1/2       1/2               1/2                                    1/2 (0)
1/2 1      1/2        0                 1/2                                    1/2 (0)
1       0        0          1                  1                                        0
1      1/2      0        1/2               1/2                                    1/2 (0)
1       1        0          0                  0                                        1

Here if we interpret the �Lukasiewicz’s connectives {¬3,→3} by ¬3A
def
= (A,¬(A,A)) and

A →3 B
def
= (A ∧B,A) on PSC logic, then we can get the 2-valued (classical) system PSC
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We have also explained some concrete examples of Γ:
Γ1 = {(A0, A1)} : The principle of identity “A is A”
Γ2 = {(A0,¬A1)} : A simple Liar sentence
Γ3 = {(A0,¬B1), (B0,¬C1), (C0, A1)} : Dialogue for Socrates, Plato and Aristoteles
Γ4 = {(C0, (A ∨ (B ∧ ¬C))1)} : Circular definition in Gupta’s book [3]
Γ5 = {(B0, C1), (C0, ((¬A ∧ ¬B ∧ C) ∨ (A ∧ ¬B))1)} : Two type of traffic signals with a

push button [9]. Finally we have constructed the 2-valued classical system of �Lukasiewicz’s
3-valued logic on PSC with Γ6 = {(¬3A, (A,¬(A,A))), (A →3 B, (A ∧B,A))} as a set of pair-
sentence formulas, and which has the same tautology set as �Lukasiewicz’s 3-valued logic.
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