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Abstract. This study is part of an ongoing report on an analysis of production processes
using a lead-time function. We present a strategy for determining the optimal production
capacity using a quadratic form evaluation function in the production process. A math-
ematical model of production process is introduced by a stochastic differential equations
with a lognormal type. In general, a production capacity is proportional to the rate of
return. To determine the optimal production capacity, we calculated the optimal solu-
tion by introducing the Hamilton-Jacobi-Bellman equation. We determine the optimum
parameters of the quadratic form evaluation function on the basis of the optimal capac-
ity solution. We reported that an optimal production capacity is highly dependent on a
volatility in workers. Further, we present the actual throughput data for a production
flow process with high productivity (using a synchronous method) and in the absence of
a production flow process (using an asynchronous method). The production efficiency of
the synchronous process becomes clear from the actual data. For further verification, we
confirmed the benefit of using the synchronization process to attempt to perform dynamic
simulation.
Keywords: Hamilton-Jacobi-Bellman equation, lead-time function, log-normal distri-
bution, financial theory

1. Introduction. Based on mathematical and physical understandings of production
engineering, we are conducting research aimed at establishing an academic area called
mathematical production engineering. As our business size is a small-to-medium-sized
enterprise, human intervention constitutes a significant part of the production process,
and revenue can sometimes be greatly affected by human behavior. Therefore, when
considering human intervention from outside companies, a deep analysis of the production
process and human collaboration is necessary to understand the potential negative effects
of such intervention.

With respect to mathematical modeling of deterministic systems, a physical model of
the production process was constructed using a one-dimensional diffusion equation in
2012[1]. However, the many concerns that occured in the supply chain are major prob-
lems facing production efficiency and business profitability. A stochastic bi-linear partial
differential equation with time-delay was derived for outlet processes. The supply chain
was modeled by considering with a time delay system[3]. With respect to the analysis
of production processes in stochastic system based on financial engineering, we have pro-
posed that a production throughput rate were able to be estimated by utilizing Kalman
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filter theory based on the stochastic differential equation[2]. We have also proposed a
stochastic differential equation (SDE) for the mathematical model describing production
processes from the input of materials to the end. We utilized a risk-neutral principal in
stochastic calculus based on the SDE[4].
With respect to a bottleneck in production processes, there is the famous theory of

constraints (TOC) that describes the importance of avoiding bottlenecks in production
processes[6]. Small fluctuations in an upstream subsystem appear as large fluctuations in
the downstream (the so-called bullwhip effect)[12]. The bullwhip effect generates a large
gap between the demand forecasts of the market and suppliers. Large fluctuations can be
suppressed by the following mechanisms.

(1) Reducing the lead time, improving the throughput, and synchronizing the production
process by the TOC.

(2) Sharing the demand information and performing mathematical evaluations.
(3) Analyzing the reduction and fluctuating demands of the subsystem (using nonlinear

vibration theory).
(4) Basing the inventory management approach on stochastic demand.

When using manufacturing equipment, delays in one production step are propagated to
the next. Hence, the use of manufacturing equipment itself may lead to delays. The
improvement of production processes was presented that the“ Synchronization with pre-
process”method was the most desirable in practice using the actual data in production
flow process based on the cash flow model by using the SDE of log-normal type[7]. In
essence, we have proposed the best way, which is a synchronous method using the Vasicek
model for mathematical finance[8]. Then, the supply chain theme, which was a time delay
in the production processes, was proposed for the throughput improvement based on a
stochastic differential equation of log−normal type[12].
Moreover, the analysis of the synchronized state indicated that this state was a much

better method from the viewpoint of potential energy[12, 13]. We have also shown that
the phase difference between stages in a process corresponded to the standard deviation of
the working time[14]. When the phase difference was constant, the total throughput could
be minimized. We showed that a synchronous process could be realized by the gradient
system. The above problem is not limited to small- and medium-sized companies; in all
cases, human interventions that directly affect the production process present a major
challenge.
In general, we may reasonably consider that human interventions within and outside of

the production system (internal and external forces, respectively) introduce uncertainties
into the system’s progress[4, 8]. The production system is formed by connecting both
elements. When human intervention from outside companies involves an uncertainty,
the noise element is frequently overlooked; instead, researchers have focus on efficient
production or manufacturing the best system. Moreover, by including the noise element,
we can recognize the unique advantage of the system.
With respect to an optimal control system, we reported an optimal control system

for a semiconductor manufacturing equipment[9, 10]. This study, which determines an
optimal production capacity based on SDE is not yet. In this study, to determine the
optimal production capacity, we are seeking the optimum parameters to determine the
optimal production capacity. A production capacity is modeled by a stochastic differential
equation with a lognormal type. Because, a production capacity is proportional to a rate of
return. Our historical data, which is a rate of return, shows a lognormal as to a probability
distribution. To calculate an optimal capacity, we introduce a Hamilton−Jacobi−Bellman
equation. As a result, we calculate optimum parameters of a production capacity.
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From a theoretical result, an optimal production capacity is affected from a volatility.
Therefore, using a production flow process, we compare three type of tests, which are
an asynchronous method and basic two a synchronous methods, to verify a volatility.
Consequently, a synchronous method is a best way for a production process. In this
study, we simulate a small-to-midsize firm without sufficient working capital to continue
operations. Therefore, we need to raise working capital from financial institutions. Here,
we call this cash flow. In essence, the rate of return (RoR) is at least proportional to
the production lead time. In other words, if RoR forms a log-normal distribution, it is
realistic to assume that the cash flow will also have the same log-normal distribution.

To evaluate the total production of a business, we utilize the actual throughput data
of a firm with high productivity and implement a dynamic simulation for evaluation to
confirm effectiveness of the synchronous and asynchronous processes. To the best of our
knowledge, a determination of an optimal capacity has not been undertaken by previous
studies.

2. Production process analysis for lead-time function.

2.1. Production systems in the manufacturing equipment industry. In Figure
1, the production methods used in manufacturing equipment are briefly covered in this
paper. More information is provided in our report[5]. This system is considered to be a
“Make-to-order system with version control,”which enables manufacturing after orders
are received from clients, resulting in“ volatility”according to its delivery date and lead
time. In addition, there is volatility in the lead time, depending on the content of the
make-to-order products (production equipment).

A manufacturing process that is termed as a production flow process is shown in Figure
2. The production flow process, which manufacture low volumes of a wide variety of
products, are produced through several stages in the production process.

2.2. Production flow process. In Figure 2, the processes consists of six stages. In each
step S1−S6 of the manufacturing process, materials are being produced.

The direction of the arrows represents the direction of the production flow. Production
materials are supplied through the inlet and the end-product is shipped from the outlet[7].

2.3. Monthly rate of return. From data for observed monthly rate of return (RoR),
we calculate a probability density function (PDF, Figure 4)[5]. Results indicate that it
conforms to a lognormal distribution (Figure 4, Theoretical). Our previous study provides
further information.

f(x) =
1√

2π(x− γp)σp

exp
{
−1

2

((lnx− γp)− µ

σp

)2}
(1)

Theoretical curve was calculated using EasyFit software (http://www.mathwave.com/),
and as a result of Kolmogorov and Smirnov test, the observed values conformed to a
log-normal type probability density function. Because, in the goodness-of-fit test of
Kolmogorov-Smirnov, a null hypothesis that it is“ log-normal”was not rejected with
rejection rate 0.2, this data conforms to“ log-normal”distribution. P −value was 0.588.
The parameters of a theoretical curve were: µ =- 0.134 (average), σp = 0.0873 (stan-
dard deviation), γp = -0.900. The theoretical curve is given by Equation (1). For more
information, please refer our previous study[5].



4 KENJI SHIRAI AND YOSHINORI AMANO

!"#$%&'()*'

(+#,-,."/'%01,23%.&'

3".14"5&1#,.-'6#7%#8*!

!"#$%&'

9%:%/623%.&'

9,:,8,6.'(;*!

!".14"5&1#,.-'

8%5&6#'(<*!

=122/,%#'

(9*'

<18&63%#'8,7%!

!".14"5&1#%#!

Figure 1. Business structure
of company of research target
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Figure 2. Production flow process

2.4. Lead-time function. Figure 5 shows that a throughput is proportional to a rate
of return in production processes. Then, we introduce the lead-time function so that
we can analyze a production process[15]. The lead time of production equipment is
proportional to the RoR. Therefore, we determined that the lead time PDF was also
the same PDF of RoR. Thus, the lead-time function f(y) is assumed as a log-normal
probability density function so that we can calculate the lead time using a continuous
expected value calculation as shown in Figure 6.

Assumption 2.1. Lead time function of a probability density function with log-normal
type.

f(y) ≡ 1√
2πσ(y/y0)

exp
{
−(ln(y/y0)− µ)2

2σ2

}
(2)

where, µ is an average value, σ is a volatility and y0 is an initial lead time.
Now, let F as a cash-in flow and let C0 as a fixed cost, and we calculate a continuous

expected loss value F [15].

F =

∫ ∞

−∞
f(y)B(y)dy + C0 =

∫ L

−∞
B(y)f(y)dy +

∫ U

L

B(y)f(y)dy

+

∫ ∞

U

B(y)f(y)dy + C0 (3)

where,

B(y) = py + q, p ≥ 0 (4)
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Figure 4. Probability den-
sity function of rate-of-return
deviation: actual data (solid
line) and data based on theo-
retical formula (dotted line)

where q is a constant parameter. L is a minimal lead time. L is a minimal lead time,
U = kL and k(> 1) is a constant parameter. p is as diminishing increasing function, for
example, believes that the following function. p = α

√
y − kU , α is a constant value. U is

a maximum lead time.
When y < L, production activities are not running. When y > U , the quantity ordered

exceeds the physical limits of the production. Therefore, we must reduce the demand,
and the problem becomes an analysis of L ≤ y ≤ U .

F =

∫ U

L

(py + q)f(y)dy + C0 (5)

For more information, please refer our previous study[15].

3. Optimal production capacity control. We describe that this study obtains an
optimal production capacity by determining the parameters of quadratic form evaluation
function.

3.1. Mathematical modeling of production capacity. We describe the mathemati-
cal model for an optimal production capacity.

dX(t) = P (a)C(t)dt+ σC(t)dW (t) (6)
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Figure 6. Lead time func-
tion f(y) and Loss Function
py + q

where P (a) is a production value, and this is corresponding the way of calling to fi-
nance theory. a is a trend coefficient for production value improvement. C(t) denotes a
production capacity. σ is a volatility and W (t) is a a standard Brownian motion.
With respect to a production value, a residual value sets as r and then we assume that

the unit production value is one. Therefore the required value of the management side is
1 − r. Naturally, there is an upper limit to the production capacity which describes as
follows:

r · C(t) ≤ r̃t · C(t) = E[X(t)] = P (a)C(t) (7)

where r̃t is the upper limit of residual value and E[•] is the expectation value.
With respect to optimal investment problems in the manufacturing industry, we have

researched from a mathematical point of view in order to develop a strategy for the
allocation balanced revenue by integrating both of management and production division.
A corporate revenue is proportional to the production capacity and the order rates. The
order rates can be regarded as a demand distribution by analyzing from the viewpoint of
quantitative. Order rate was difficult to order at a constant rate throughout the year. In
other words, the order rate varies every month. Considering our experience, the product
value sometimes becomes to decrease in inverse proportion to the volume of orders .
A corporate management is for an investment in production business about a product
volume efficiency. Therefore, we need to quantify the product size. When investing,
its limit exists in the company capability for business sales. Therefore, the corporate
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management must determine an investment to get the product value in consideration of
the demand distribution.

Let an order rates to ξ(t) and then, assuming that the mass product effect is already
known for business. A turnover X(t) is proportional to an order rates ξ(t) and a produc-
tion capacity C(t) and then, needless to say, its turnover has some relationship with an
order rates and a production capacity. We consider as follows:

X(t) ≈ ξ(•)C(t) (8)

The dynamic model of the production capacity represents Equation (6):

dC(t) =
P (a)

ξ(•)
C(t)dt+ σξC(t)dW (t) (9)

where σξ = σ/ξ(•) is a volatility.
With respect to P (a)/ξ(•), a product value decreases in inverse proportion to an order

rates in some cases (mass production effect).
The mathematical model of a production capacity is as follows:

dC(t) = P ∗(a)C(t)dt+ σξC(t)dW (t) (10)

where, P ∗(a) = P (a)/ξ(•).
Naturally, ensuring a turnover involves risks. For example, the external probability

fluctuation factor, which are the demand fluctuation, material prices fluctuation, and
logistics price itself fluctuation, etc, exists.

Therefore, the model with some fluctuation factors a, r and I are required to design
the manufacturing business need to design in conjunction with a turnover risk on the
manufacturing business.

r = {r(t) : r(t) ∈ [0, rmax]}, a = {[a(t) : a(t) ∈ [0, amax]} (11)

where, rmax and amax are a maximum value of r and a respectively.

Definition 3.1. • u(r(t)) represents an average value of the residual amount.
• h(a(s)) represents an average value of the product value at the time of trouble. For
example, h(a(s)) denotes a quadratic function.

These values u(r(t)) and h(a(t)) should be originally estimated by utilizing Kalman
filter[4].

The sales involve risks, which are a change demand, material price fluctuations and
logistics change etc. Therefore, the value u(r(t)) is varied in conjunction with the risk of
sales in production devision. From view of the entire company, any unit residual value
r(t) is determined in after time t.

Definition 3.2. G(t) is the total expected payoff in the entire period.

G(t) =

∫ t

0

e−rs{u(r(s))− h(a(s))}C(s)ds+ e−rtC(t) (12)

Moreover, an adaptive process Y (t), {Y (t) : 0 ≤ t < ∞} exists :

G(t) = G(0) +

∫ t

0

e−rsσY (s)C(s)dW (s) (13)
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where 0 ≤ t < ∞ Differentiating Equation (12) and Equation (13) at t, and first, from
Equation (12),

dG(t) = e−rt
[
{u(r(t))− h(a(t))}C(t)

]
+d

[
e−rtC(t)

]
= e−rt

[
{u(r(t))− h(a(t))}C(t)− rC(t)

]
dt+ e−rtdC(t) (14)

From Equation (18),

dG(t) = e−rsσG(t)C(t)dW (t) (15)

From Equation (14) to Equation (15),

dC(t) =
[
rC(t)− {u(r(t))− h(a(t))}C(t)

]
dt+ σY (t)C(t)dW (t) (16)

3.2. Formulation of Hamilton-Jacobi-Belman equation. Hamilton-Jacobi-Belman
equation is described as follows[11]:

H(t) =
[
P (C(t))− θJ(G(t)) +

∂J

∂C
{r · C

− {u(r(t))− h(a(t))}C(t)}+ 1

2
σ̃2C · ∂

2J

∂C2

]
(17)

where P (C(t)) is defined as follows. J is a cost function.

Definition 3.3. Utility function

E
[∫ ∞

0

e−rt · P (C(t))dt
]

(18)

From above description, the optimal production capacity problem is formulated by
allocating the profits which is gained from each corporate division, by executing strategy.
In Equation (8), we need to clarify C(t).
We define the utility like a second order function as follows:

Definition 3.4. Second order utility function

E
[∫ ∞

0

{ξ(g(r, a)C(t))− η(g(r, a)C(t))2}e−rt
]

(19)

From Eqs.(18), (19), we obtain as follows:

P (C(t)) = ξ[g(r, a)C(t)− η(g(r, a)C(t))]2 (20)

Therefore Equation (17) is rewritten as follows:

H(t) =
[
{ξ · g(r, a)C(t)− η(g(r, a)C(t))2} − θ · J(G(t))

+
∂J

∂C

[
r · C(t)− {u(r(t))− h(a(t))}θ(t)

]
+
1

2
σ̃2C(t)2 · ∂

2J

∂C2

]
(21)

where, θ is a parameter.
Thus, from a optimal control theory, we obtain as follows:

max
C(t)

H(t) =
∂H(t)

∂C(t)
= 0 (22)

From Equation (22), we obtain as follows:

ξg(r, a)− 2η · g(r, a)C(t)− ∂J

∂C
{u(r(t))− h(a(t))} = 0 (23)
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From Equation (23), we obtain as follows:

C(t) =
1

2ηg(r, a)

[
ξ · g(r, a)− ∂J

∂C(t)
{u(r(t))− h(a(t))}

]
(24)

where

κ(r, a) = u(r(t))− h(a(t)) (25)

Substitute Eqations (24) and (25) to Equation (21) considering Equation (22), then we
obtain as follows:

0 =
[
ξ · g(r, a) ·

{ 1

2ηg(r, a)
(ξ · g(r, a)− ∂J

∂C(t)
κ(r, a))

}
− ηg2(r, a)

{ 1

2ηg(r, a)
(ξ · g(r, a)− ∂J

∂C(t)
κ(r, a))2

}
− θ(t)J

]
+

∂J

∂C(t)

[
r · C(t)− κ(r, a)

{ 1

2ηg(r, a)
(ξ · g(r, a)

− ∂J

∂C(t)
) +

1

2
σ̃2C2(t)

∂2J

∂C2(t)

}]
(26)

3.3. Optimal control of a production capacity and a production revenue. We
define a quadratic form evaluation function as follows:

Definition 3.5. Quadratic form function of J(G(t))

J(G(t)) = aJG
2(t) + bG(t) + c (27)

where aJ , b and c are parameters.
Substitute Equation (27) to Equation (21), and using Equation (22), these parameters

(aJ , b and c) are calculated from an identical equation on G(t). We can obtain the
optimal parameters a∗, b∗ and c∗, which represent Eqs.(64), (67) and (68) respectively
(see Appendix A).

From Equation (26), the optimal solution of production capacity C∗(t) is as follows:

C∗(t) =
1

2ηg

[
ξg − {(2a∗G(t) + b∗)}{u(r(t))− h(a(t))}

]
(28)

Equation (28) is rewritten as follows:

C∗(t) =
1

2ηg

[
ξg − b∗{u(r(t))− h(a(t))} − 2a∗{u(r(t))− h(a(t))}G(t)

]
(29)

Here, we replace Equation (29) to as follows:

C∗(t) = w − ρG(t) (30)

where, ρ represents an optimal feedback coefficient and ρ = ((−2a)/(2ηg))κ.
We substitutes Equation (30) to Equation (29), then we obtain as follows:

dG(t) =
[
rG(t)− κ{w − ρG(t)}

]
dt+ σ̂G(t)dW (t)

=
[
(r + κρ)G(t)− κw

]
dt+ σ̂G(t)dW (t) (31)

By calculating An expectation of Equation (31), we obtain as follows:

E[dG(t)]

dt
= E

[
(r + κρ)G(t)− κw

]
+E

[
σ̂G(t)dW (t)

]
(32)
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The solution of Equation (32) is as follows:

E[G(t)] =
(
G(0)− κw

r + κρ

)
e(r+κρ)t +

κw

r + κρ
(33)

Therefore, we obtain as follows:

E[C∗(t)] = ρ
[(

G(0)− κw

r + κρ

)
e(r+κρ)t +

κw

r + κρ

]
+w (34)

By providing the appropriate parameters, it was revealed that a stationary equilibrium
value existed between a production continued evaluation value and a production capacity.
From above relation, g, κ are as follows:

g ≡ g(r, a), κ ≡ κ(r, a) (35)

From above results, Equation (29) represents an optimal production capacity.
However, as an state variable G(t) is difficult to measure, we consider an assumption

of the revenue model for production.

Assumption 3.1. Revenue Model in Production Devision

dX(t) = α(a(t))X(t)dt+ σdW (t) (36)

where, α(a(t)) is an coefficient representing a demand trend.

With respect to α(a(t)), it can be obtained by calculating an expected rate of return
as representing a probability distribution of a demand trend.
From Equation (30), let w = 0 for simplicity, we obtain as follows:

C∗(t) = −ρG(t) (37)

From Equation (29), we obtain as follows:

ξg − b∗{u(r(t))− h(a(t))} = 0 (38)

Consequently, we obtain as follows:

{u(r(t))− h(a(t))} =
ξg

b∗
(39)

An optimal solution C∗(t) is as follows:

C∗(t) = − 1

2ηg

{
a∗(u(r(t))− h(a(t)))

}
= −ρG(t) (40)

Therefore, let an optimal solution of G(t) to G∗(t), from Equation (31), we obtain as
follows:

dG∗(t) = (r + κρ)G∗(t)dt+ σ̃G∗(t)dW (t) (41)

where, let κ ≡ u(r(t))− h(a(t)), κ represents substantially a trend coefficient of revenue.
Note that, the original model is as follows:

dG(t) =
[
rG(t)− {u(r(t))− h(a(t))}C(t)

]
+σ̃G(t)dW (t) (42)

Now, we analyze an expectation trend. From Eqs.(33) and (34), we obtain as follows:

K ≡ r + κρ, L ≡ κω (43)

Then, we obtain as follows:

E[G(t)] =
[
G(0)− L

K

]
eKt +

L

K
(44)
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E[C(t)] = ρ
[(

G(0)− L

K

)
eKt +

L

K

]
+ω = ρ

(
G(0)− L

K

)
eKt +

(ρL
K

+ ω
)

(45)

From Equation (29), C∗(t) can be rewritten as follows:

C∗(t) =
1

2ηg
(ξg − κb∗ − 2a∗κG(t)) =

(ξg − κb∗)

2ηg
− 2a∗κ

2ηg
G(t) (46)

where, the parameters w and ρ are as follows:

ω =
(ξg − κb∗)

2ηg
(47)

ρ =
a∗κ

ηg
(48)

where, a∗, b∗ are as follows:

a∗ =
σ̃ − θ + 2r

1− 2κ
ηg

(49)

b∗ =
1

[A] + κ2

ηg
a∗

×
[ξ
η
+

κξga∗

ηg

]
(50)

where, [A] is as follows:

[A] =≡ a∗κ

ηg
+ r − θ (51)

Consequently, a value of K in Equation (43) cab be considered as follows:

1. K > 0
2. K = 0
3. K < 0

where, from Eqs.(46) − (50), as a∗ = σ̃2, ρ ≈ σ̃2 and w ≈ {a∗, b∗}. Then, b∗ is a linear
fractional function of a∗.

Thus, K(≡ r + κρ) is an increasing function of σ̃. Moreover, as classified finely as
follows:

(a)
(
G(0)− L

K

)
< 0,

(
L
K

)
> 0, K < 0, L < 0

(b)
(
G(0)− L

K

)
> 0,

(
L
K

)
> 0, K > 0, L > 0

(c)
(
G(0)− L

K

)
> 0,

(
L
K

)
= 0, K < 0, L = 0

Now, in the real production process, because C∗(t) → ∞ can not be there, it can be
ignored in the case of Equation (b). Also, if it is C∗(t) → 0, the case of Equation (c)
can be ignored from the production process is not working. Therefore, if you have any
meaning, it becomes the case of Equation (a).

Consequently, a steady-state equilibrium value are as follows:

E[C∗] =
L

K
=

L

r + κρ
≈ σ̃−1 (52)

where, E[C∗] represents a expectation of an optimal production capacity.

E[G∗] =
ρL

K
+ ω =

ρL

r + κρ
+ ω ≈ ω (53)

where, E[G∗] represents a expectation of an optimal production revenue.
From above description, K is an increasing function as to a volatility σ. Therefore, the

more a volatility of a production system is small, the individual revenue is larger.
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4. Verification of the theoretical optimal control capacity. From the above results,
K is restricted by a volatility, and affects a production throughput significantly. Therefore,
we present an actual testing result, which is obtained by using a production flow process.

4.1. Analysis of the Test run results. The production throughput is evaluated using
the number of equipment pieces in comparison with the target number of equipment
pieces (production ranking) and simulating asynchronous and synchronous production
(see Appendix A). The asynchronous method is prone to worker fluctuations imposed
by various delays, whereas worker fluctuations in the synchronous method are small. In
terms of the production lead times results presented in the Appendix A, the productivity
ranking tests indicate that test run 3 > test run 2 > test run 1, where test run 1 is
asynchronous and test runs 2 and 3 are synchronous.
Here, the throughput values calculated from the throughput probability in Test run

1−Test run 3, are as follows:

• Test run 1: 4.4 (pieces of equipment)/6 (pieces of equipment) = 0.73
• Test run 2: 5.5 (pieces of equipment)/6 (pieces of equipment) = 0.92
• Test run 3: 5.7 (pieces of equipment)/6(pieces of equipment) = 0.95

With respect to the actual data, please refer our previous study[7, 15].

4.2. Dynamic simulation of production processes. We attempted to perform a dy-
namic simulation of the production process by utilizing the simulation system that NTT
DATA Mathematical Systems Inc. (www.msi.co.jp) has developed. With respect to the
meaning of the individual parts in Figure 7, we conducted a simulation of the following
procedure. For more information, please refer our previous study[15].

• When the simulation began, it generated one of the products on a“generate”parts
go to“ finish.”

• In each process, including the six workers in parallel, the slowest worker waited till
the work was completed.

• When the work of each process was completed, it moved to the next process.
• Simultaneously as each process was completed, it recorded the working time of each
process.

With respect to Table 1 and Table 2,

• Process No. indicates each process (1−6).
• Average indicates the average time.
• STD indicates the standard deviation of process time (sec).
• Worker efficiency (WE) indicates the efficiency of six workers.

“ record”calculates the worker ’s operating time, which is obtained by multiplying the
specified WE data for the log-normally distributed random numbers in Table 1.
Figure 8 shows the operating time of process 1−6 (record1−record6). As the working

time of the synchronous process is less volatile, the work efficiency became higher than
the asynchronous process. In Figure 8, the total working time of asynchronous and syn-
chronous processes are 1241.7(sec) and 586.4(sec) respectively. The synchronous process
shows more better production efficiency than the asynchronous process.

5. Conclusion. We calculated the parameters of quadratic form evaluation function.
Then, it was clarified that they can be affected by a volatility. To evaluate the validity of
the parameters obtained on the basis of the production flow processes, we compared the
method variation between an asynchronous method, which had a large volatility and a
synchronous method, which had small volatility. Consequently, the product manufactur-
ing throughput was clarified that the synchronization method was superior. The validity
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Figure 7. Simulation model of production flow system

Table 1. Working data for six
production asynchronous pro-
cesses

Process No. No.1 No.2 No.3 No.4 No.5 No.6
Average 20 22 25 22 25 21
STD 2.1 2.5 1.6 1.9 2.0 1.9
W.E 1 0.83 1.0 0.66 0.76 0.88 0.91
W.E 2 1.27 1.26 1.21 1.31 1.17 1.20
W.E 3 0.96 1.11 1.01 1.12 0.88 0.89
W.E 4 0.92 0.96 1.06 0.98 0.91 0.9
W.E 5 1.2 1.03 1.07 0.89 1.03 1.1
W.E 6 1.09 1.1 1.2 0.98 1.13 0.89

Table 2. Working data for six
production synchronous pro-
cesses

Process No. No.1 No.2 No.3 No.4 No.5 No.6
Average 20 20 20 20 20 20
STD 1.1 1.5 1.2 1.4 1.0 1.4
W.E 1 1.0 1.0 1.0 1.0 1.0 1.0
W.E 2 1.0 1.0 1.2 1.3 1.1 1.2
W.E 3 1.7 1.1 1.0 1.1 1.0 1.0
W.E 4 1.0 1.0 1.0 1.0 1.0 1.0
W.E 5 1.0 1.0 1.0 1.0 1.0 1.0
W.E 6 1.0 1.3 1.2 1.0 1.1 1.0

of the parameter values that determined the optimal capacity was able to guarantee.
Next, we plan to evaluate production processes by utilizing the Test run data on the basis
of the Black-Scholes equation.
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Figure 8. Working time for process number one through six
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Appendix A. Derivation of the parameters a and b. Substitute Equation (27) to
Equation (26). Then, we obtain as follws:

ξ · g(r, a)− ∂J

∂G(t)
κ(r, c) = ξ · g(r, a)− (2aG(t) + b)κ(r, a)

=
(
ξ · g(r, a)− bκ(r, a)

)
−2aG(t) = π(r, a)− 2aC(t) (54)

where

π(r, a) = ξ · g(r, a)− bκ(r, a) (55)

Then, substitute Equations (27) and (55) to Equation (26). We obtain as follows:

First term =
[
ξg(r, a)× 1

2ηg(r, a)
(π(r, a)− 2aG(t))

]
−η2g2(r, a)

× 1

4η2g2(r, a)
(π(r, a)− 2aG(t))2

=
ξ

2η
(π(r, a)− 2aG(t))− 1

4
(π(r, a)− 2aG(t))2

=
ξ

2η
π(r, a)− aξ

η
G(t)− 1

4
π2(r, a) + aπ(r, a)G(t)− a2G2(t)

= −a2g2(t)− aξ

η
g(t) +

( ξ

2η
π(r, a)− 1

4
π2(r, a)

)
(56)

Second term = −aθG2(t)− bθG(t)− cθ (57)
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Third term = (2aG(t) + b)
{
rG(t)− κ(r, a)

2ηg(r, a)
(π(r, a)− 2aG(t))

}
= 2arG2(t)− aκ(r, a) ·G(t)

ηg(r, a)
(π(r, a)− 2aG(t)) + brG(t)

− bκ(r, a)

2ηg(r, a)
(π(r, a)− 2aG(t))

= 2arG2(t)− aκ(r, a) · π(r, a)
ηg(r, a)

G(t) +
2a2κ(r, a)

ηg(r, a)
G2(t) + brG(t)

− bκ(r, a) · π(r, a)
2ηg(r, a)

+
2abπ(r, a)

2ηg(r, a)
G(t)

=
{
2ar +

2a2κ(r, a)

ηg(r, a)

}
G2(t) +

{
br − aκ(r, a) · π(r, a)

ηg(r, a)
+

2abπ(r, a)

2ηg(r, a)

}
×G(t)− bκ(r, a) · π(r, a)

2ηg(r, a)
(58)

Fourth term =
1

2
σ̃2G2(t)× 2a = aσ̃2G2(t) (59)

Using Equations (56) − (59), the identical equation is as follows:

− a2 − aθ + 2ar +
2a2κ

ηg
+ aσ̃2 = 0 (60)

− aξ

η
− bθ + br − aκπ

ηg
+

2abκ

2ηg
= 0 (61)

ξπ

2η
− π2

4
− cθ − bκπ

2ηg
= 0 (62)

Then, from Equation (60), we obtain as follows:(2κ
ηg

− 1
)
a2 + (σ̃2 − θ + 2r)a = a

{(2κ
ηg

− 1
)
a+ (σ̃2 − θ + 2r)

}
= 0 (63)

From a ̸= 0, we obtain as follows:

a∗ =
σ̃2 − θ + 2r

1− 2κ
ηg

(64)

By transforming Equation (62), we obtain as follows:

κπ

2ηg
b+ cθ =

ξπ

2η
− π2

4
(65)

Substitute Equation (64) to Equation (61), we obtain as follows:(2a∗κ
2ηg

+ r − θ
)
b =

ξ

η
a∗ +

κπ

ηg
a∗ =

(ξ
η
+

κπ

ηg

)
a∗ (66)

b∗ is as follows:

b∗ =
1(

a∗κ
ηg

+ r − θ
)
+κ2

ηg
a∗

[ξ
η
+

κ

ηg
ξg
]

(67)

Substitute Equation (67) to Equation (65), c∗ is as follows:

c∗ =
1

θ

{ξπ

2η
− π2

4
− κπ

2ηg
b∗
}

(68)


