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ABSTRACT. We analyze the cause of fluctuations in the lead time of production processes
by applying a phase-field model, which is a new approach. Occurrence factors are attrib-
uted to state variables in an internal process. The factors of such fluctuations are an
uncertainty of logistics, uncertainty of production planning, and stochastic characteris-
tics of the order and start time series. These fluctuations are found to affect production
costs. We represent a mathematical model to constrain the throughput deviation; this
model is dependent on volatilities that are generated from both inside and outside noise.
Keywords: Phase-field, Throughput deviation, Lead time, Potential, Production pro-
cess

1. Introduction. Many currently implemented production systems are mechanized and
highly integrated with information technologies, which creates systems where human in-
tervention is unnecessary. In certain aspects of the production system, there is a high
volume of build-to-order manufacturing that requires human intervention in the produc-
tion process [1, 2]. In small- and medium-sized enterprises, human intervention constitutes
a significant part of the production process, and revenue can sometimes be greatly affected
by human behavior. Therefore, with respect to human intervention with outside compa-
nies, a deep analysis of the production process and human collaboration is necessary to
understand the potential negative effects of human intervention [1, 2]. Naturally, the
effect of human behavior is not just a problem with small- and medium-sized companies;
it must be regarded as one of the major problems that may occur when humans directly
intervene in the production process [3, 4, 8].

In general, the potential uncertainties should be considered before proceeding with a
system that combines human intervention (Internal force) with outside companies (Exter-
nal force) in the production system [5, 6]. With respect to two elements in a production
system, a total system is formed by connecting the two elements. In this case, a sys-
tem with certain uncertainties will be formed when connecting “human intervention” and
“outside companies” in a production system. In general, an important concept in the
production system is to develop the best system that results in efficient production. How-
ever, in most analysis of the production process, researchers have not taken advantage of
the noise inherent in the system. Such noise may have a unique usefulness in the system.

Thus, we have been researching mathematical modeling and system evaluations from
a physical point of view to develop “mathematical production engineering”, in order to
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develop a mathematical system for describing production processes. In a previous study
of stochastic modeling, we considered the internal force and external force as parameters
in a production system. The correlation of lead time vs. throughput is important for
implementing the overall synchronization as a strategy. We had reported a production
system with an intervention of workers in the prior study [5, 6]. In case of a production flow
system with human intervention, we need to fulfill an empirical analysis of worker-specific
production ability. Thus, to achieve optimal general production systems, knowledge of
the importance of biological fluctuations in the system is important.

In our previous study, an on-off intermittency exists in the rate-of-return and lead time
deviations of production processes. In physics, an on-off intermittency is present in case of
power-law distributions, phase transitions, and self-similar phenomena. In the production
process described in this study, we observed on-off intermittency on lead time data with
respect to time series outset [7].

Previously, we have reported that by creating a state in which the production density
of each process corresponds to physical propagation, the manufacturing process is most
appropriately described using a diffusion equation [1]. In other words, if the potential
of the production field (stochastic field) is minimized, the equation is defined by the
production density function S;(x,t) and the constraint is described using an advective
diffusion equation to determine the transportation speed p [1, 20].

To enable efficient application to a production system, we have proposed a mathematical
model that focuses on the selection process and production lead time adaptation mech-
anism. To model the throughput time for a production demand/manufacturing system
in the manufacturing stage, the dynamic behavior is derived using a lognormal stochas-
tic differential equation. Using this model, the evaluation equation for the compatibility
condition production lead time is defined using the risk-neutral integral, and the eval-
uation formula for the above conditions is calculated. Furthermore, by performing the
synchronization process, the throughput for the manufacturing process is reduced [2].

We have been studying throughput improvements and factors in production processes
from the viewpoint of physical and mathematical properties. In this study, we represented
the analysis of the throughput (lead time) fluctuation in a production system by applying
a phase-field model. The factors of this fluctuation are as follows.

e Uncertainty of logistics
e Uncertainty of production planning
e Stochastic characteristics of the order and start time series

In this study, we report on production throughput improvement method by combining the
diffusion equation with the phase-field method. The phase-field method is a continuous
model in inhomogeneous field with an order parameter. The fluctuation of lead time in the
process is caused by restraining the Burgers equation in the fluid dynamics; that is, the
propagation of state variables, which denotes a throughput deviation between processes
in this case, shows the fluctuation. At this time, the start time series of period lead time
in the production processes have an on-off intermittent characteristics.

We present the actual data, derived from the fluctuation of the throughput average
data, for the starting time series (order time-series) of production from customers. We
also represent a potential function in the phase-field model for the throughput volatility
as the main parameter.

Our theoretical study can be applied for throughput analysis. Volatility reduction in
production processes is very important. The production efficiency of a synchronization
process for a flow production system became clear from the actual data. For further
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verification, we confirmed the benefit of using this process for the system by perform-
ing a dynamic simulation. To the best of our knowledge, this is the first study on the
contribution of fluctuations to production processes.

2. Description of Ginzburg-Landau (G-L) Free Energy.

2.1. Cyclic production flow process. Figure 1 depicts a production process that is
termed as a production flow process. This production process is employed in the produc-
tion of control equipment. In this example, the production flow process consists of six
stages. In each step S1-S6 of the production process, materials are being produced.

The direction of the arrows represents the direction of the production flow. In this pro-
cess, production materials are supplied through the inlet and the end-product is shipped
from the outlet. For this flow production system, we make the following two assumptions.

2.2. Description of potential energy. The purpose of this subsection is to guide the
gradient system from potential energy and Ginzburg-Landau (G-L) free energy equation
[9]. In our previous study, we reported the multimode vibration analysis in terms of
the average potential energy [10]. Kuramitsu and Nishikawa certified that the structure
is derived using the van der Pol equation [11, 12]. Moreover, data gathered from a
production flow process indicates that all production stages correlate with each other.
Thus, according to the method proposed by Kuramitsu and Takase, Figure 1 indicates a
production flow process using the circuit diagram shown in Figure 2 [11, 12]. In Figure
2, “osc” indicates the working-time delay at each stage in the process.

(i-1) = Ji1 i — Ji(i+1)
/@\ @JYYL@JYY‘\_

G
ﬁ® @ Léz%v

Outlet Source potential

Ficure 1. Cyclic production Ficure 2. Lattice model for
flow process electric circuit

From discrete model [13], we define the flow of Figure 2.

Definition 2.1. Discrete stage model shown as Figure 2

Ji(a,t) = max (o, min (Li(t), Jila, t))) (1)
jz-(a, t) = CYTi(t — dl) — Dz (ni+1(t — dl) — nz(t))
where L;(t) is the constraint function between processes, d; is the time delay, « is a
constant and n; is the working time at process .
Then, let a delay elements be as follows:
D;
D=—
d
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where D is an overall diffusion coefficient.
- on(z,t)

Ji(a,t,x) = an(z,t) — D 5 (2)
T
on(z,t)  9On(z,t) ?n(z,t)  on(z,t)  0J(at,x)
o - o Pa2 0 Ta T o ®)

From Equation (75) in Appendix B, we similarly defined the overall stage average hy(t)
as follows.

Definition 2.2. Overall stage average hy(t)

ho at equilibrium is as follows:

Then, we obtain as follows:

hi(t + At) — hi(t) = — + O(e) At (6)

S(i,t) is a process load at i process and €; is the i-th process.
We ignored the second-order term of Equation (6) and converted the variable h;(t).

o (t)  hI(t) — he
ot D 0

where h(t) is expanded as follows:

hi(t) = KO (t) + eu(t) + O(€?) (8)

Definition 2.3. Pi(z < hi(t) < z + dx) is a probability density function, where x is a
positive real number.

From statistical mechanics, we obtain as follows:

O P = > Lo (5 awopn )

Cu(z,t) = /r”w(t,x,r)dr

where C,,(x,t) is the n-th moment of w(¢, z,r). w(t,x,r) is a transition rate from h; = x
to x + r. Equation (9) is called Kramers-Moyal expansion [14, 15].

Definition 2.4. Characteristic function Q(t,€) of Pr(z,1t)

QL. &) = / Py(w, £)ei€ da (10)

Definition 2.5. Characteristic function w(t,&) of the transition rate

w(t,r, &) :/w(t,r,x)eigmdx (11)
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The master equatlon of Q(t €) is as follows:

— 5 [ ar [ an / dsie=Q(t, € — nyuw(t, r,1)

where the solution of Q(t, §) is as follows:

Q(t,€) = exp(g(x,t)) = exp [Z (ig)ngn(t)]

n=1

where g,(t) is the n-th cumulant of Ay [19].
According to Equation (8), g,(t) is as follows:

g1(t) = y(t) + eu(t) + O(e")
g2(t) = ev(t) + O(e?)

We obtain as follows:

dy(t) _

W — Cl (ta y)

315_55’5) — 20, (1, y)v(t) + Colt, y)
8@59 = Gy (ty)ult) + 201t y)ul)

1601

(12)

(13)

(16)
(17)

(18)

where C] and C denote the first and second derivatives of C| with respect to y respec-
tively. Note that the temporal evolution of the cumulants is determined by the moments

of the transition rate.
According to Equation (7), Equation (16) is as follows:

Cl(ta y) = _y ;)yo

Further, we assume as follows.

Assumption 2.1. Cs(t,y) denotes a constant data [13, 19].
Cy(t,y) = b, = const.

where Cy(t,y) denotes a constant like Brownian motion.

We obtain as follows:
oy(t —
y( ) Cl (t, y) Yy Yo

ot D
ou(t) 1
ou(t) 1
o ~ p"Y
Then, Pr(z,t) is the solution of Fokker-Planck equation.
0 0 1 0
EP[(I,t) = — [—%Cl(l',t) + 65@02(1‘,t):| P](l‘,t)
Let v(t) be as follows:
b.D N
v(t) = (1 e 2t/D)

(19)

(20)
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Then,
_ b.D
tlggov(t) 2 (26)
Let the initial value of P;(z,t) be as follows:
Pr(z,t) = d(z — o) (27)

From Equation (24), non-equilibrium distribution of Pj(x,t) near equilibrium state is as
follows:

{x — o — (zo — yo)e’é}2

1
Pr(z,t) = ———exp | — 28
(@,9) 2mev(t) P 2ev(t) (28)
Then from Equation (28), let ¢ — oo,
. 1 (7 — 40)”
Hm Pil, ) = ——==s exp {_ b, D (29)

where C(z,t) and Cy(z,t) denote the drift coefficient and diffusion coefficient respectively.
Moreover, we assume as follows.

Assumption 2.2.

Pl(xat):()a Pl(xat):+PLa Pl(xat):_PL (30)
where Pr(x,t) = 0 denotes stable point (Synchronous state), and Pj(x,t) = +P;, and
Pi(x,t) = — Py, denote both of asynchronous transition state.

Further the mathematical model of h;(t) is derived by Langevin equation [16].
dhy(t)

— o~ =F(t.h) + VHr(t) (31)
According to Vasicek model [6],
dh;(t)
dt =a {Wopt (A(p) - hI (t)} + \/Er(t) (32)
where Ap = hy(t) — kY. hY denotes an equilibrium point (synchronous point) and

Wopt(Ap) denotes an optimal throughput function, which was calculated according to
Ay, and is a C'* function.
From Equation (31) and Equation (32), we can consider as follows:

F(t, hr) = a{Wop(Ap) = hi(t)} (33)

where the throughput deviation Ay = h;(t) — hY.
Then let the transition probability density function be W;(t, hy),

oWy 0 O*W;

- =—-——F H— 4
o o (t, hr)Wr(t, hr) + o2 (34)
Wi (t, hy) is derived by Fokker-Plank equation.
opP, OP; 0* Py
ke - (t, hl)é’—h[ + Cy(t, hl)a—h% (35)
Let F(t, h]) =a {Wopt(A(p) - hf(t)}’
ow, 0 Wi
50 = ~amy [ {Won(80) = b (DN Wit ) + Hogp (36)

From nonlinear scaling theory [15], we obtain the following Fokker-Plank equation [13, 19].
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Lemma 2.1.

0P, 0 0?

o = |n (—=rhr + gh}) + b_;a—h% Py (37)
We simplify as follows:
Ut — o (hala)) + 6 (a(0)) Z (1) (38)
where < Z(t) - Z(t') >= 2e6(t — t').
« (h(t)) is derived as follows:
a(hr(t)) = rhi(t) + (Higher-order term) (39)

where a(hy(t)) can be deployed in the vicinity of h;(t) =0 and r > 0.
Then the scaling vairiable 7(¢) is as follows:

7(t) = ew(t), 7= eexp(2rt) (40)
The fluctuation < |h;(t)|* > is as follows:

< |h(t)|? >=< h? >4 -fC(r) (41)
Then, we introduce as time dependent Ginzburg-Landau (TDGL) equation,

8]DI (.CL', t)
ot
where < n(z,t) - n(t,2') >= 260 (t—1t) and let the initial condition be ¢(0,z) =
w0l (%):
Thus, ¢(x,t) denotes an order parameter, such as the throughput (lead time) deviation
between processes. Generally, the potential energy of a system is set to f ().

= {r—g¢*(@,t)} p(z,t) + DV p(a,t) + n(x,1) (42)

Definition 2.6. G-L free energy
2
F(e) =/ [5|v<pl2+f(<p)] dv (43)
Q

According to our previous study [16], we define as follows.

Definition 2.7. Gradient system

0 OF
ot dp
where M;—EO@ denotes a functional derivative [15].
G-L free energy is written with respect to Equation (44) as follows:
dp 0F (p) 2 2 1
T = — 45
e g i (49

2.3. Description of the phase-field model. We define a phase-field model as follows.
Definition 2.8. Phase-field model

f(p) = ag(p) +bh(p) + c(1 — h(p)) (46)
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where b and ¢ denote liquid and solid phases, respectively. These parameters are depen-
dent on the dispersion of non-occurrence probability that depends on the noise intensity
in production processes.
Figure 3 denotes a double well potential function, which is (1 — ¢).
Then according to a phase-field model [17], the particular solution of h(¢) like p?(1—p)?
is denoted as follows:

go(x,t):% {1—tanh{M}], o bele=b) (47)

2¢ art

The direction of a particular solution has been suggested a transition from ¢(z,t) =1 to
¢(z,t) = 0 with respect to x in Equation (45).

Next, we denoted the static solution at V' — 0, where we assumed that the condition
was b = ¢. Considering ¢ = 0 in Equation (47), we obtained as follows:

1
wo(r) = 3 [1 — tanh {%H (48)
From Equation (45), it is written as follows:
d*po(7)
2 _
PR i) =0 (49)

When we run the integration to Equation (49) after multipling (%) on both sides of

that, then it is written as follows:

oo(z)] (%0 0f (o) ( dipo

2 PO g — 0 g =

/Qe [ dx? ] (d:z:> v /Q Jvo v )" 0 (50)
From Equation (50), we obtain as follows:

2] - s = (51)

where C' is an integration constant.
With respect to Equation (51), as |z| — oo, C'= 0.
Therefore, it is written as follows:

’ @]2 - 52
2] = fleo) (52)
Moreover, it is written as follows:
®o 2/ (o)
7 _ V2N 53
dx € (53)
¢
f(¢p)
)
/\ 0 —Ts — X
0 1 @ Ts —
F1cure 3. Double well potential FicureE 4. Transition width

of lead time
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From Equation (53), G-L energy is written as follows:

Flw) = [ [5 (%) f(m] wr= " agtoin= [ 250 -y

infty infty

= /01 2/ (o) (%) R dpo = 6/01 V2f(po)dgo (54)

Therefore, if f(¢pp) is determined, a transition boundary width (phase transition width)
F(¢o) can be obtained (See Figure 4).
From Figure 4, the transition area AT} is written as follows:

AT, =T, —T. (55)

where AT, denotes the lead time transition.
ATy is influenced by the noise intensity or it is depending on volatility of non-normal
probability.

3. Relation between Fluctuations and Potential Energy. In Figure 5, it is to
modulate only the phase difference # for the fundamental period T was observed to
modulate. Main causes were dependent on an endogenous disturbance and stochastic
worker abilities, which are outside forces of basic potential energy in production processes.
Figure 6 shows the potential energy in terms of the time variable in the phase.

fy)

dh

FIGURE 5. Probability dis- FIGURE 6. Concept of phase
tribution of fluctuations and for lead time potential energy
throughput threshold

The potential energy is written as follows:

V(0) =00+ B(—4C cosf + cos 20) (56)

where o denotes a volatility of endogenous disturbance. Specifically, o denotes the volatil-
ity of stochastic throughput C(¢) [18]. Then, 0 ~ K, and K, denotes a real number.
Therefore, Equation (56) is deformed as

V(0) =K, -0+ B(—4C cos 0 + cos 20) (57)

According to Table 1, K, &~ 0.29 in test runl, K, ~ 0.06 in test run2, and K, ~ 0.03 in
test run3 (see Table 1).
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TABLE 1. Correspondence between the table labels and the test-run number

Production process Working time | Volatility
test runl Asynchronous process 627(min) 0.29
test run2 Synchronous process 500(min) 0.06
test run3 [“Synchronization with preprocess” method] [470(rnin)]

According to the value of K,, the potential energy was displaced and changed the
direction of the deviation of the displaced by the positive and negative of the value of K,.
According to test runl through test run3 of our production flow system obtained using
the actual data, the coefficient for the external force denoted a parameter that indicated
the ability to execute against the lead time of workers. In other words, the use of the
volatility led to the same results as the use of the uncertainty factor. Please refer to our
previous study for the actual data [4, 6].

The production throughputs are as follows. Here, the trend coefficient, which is the
actual number of pieces of equipment/the target number of equipment, represents a factor
that indicates the degree of the number of pieces of manufacturing equipment.
test runl: 4.4 (pieces of equipment)/6 (pieces of equipment) = 0.73,
test run2: 5.5 (pieces of equipment)/6 (pieces of equipment) = 0.92,
test run3: 5.7 (pieces of equipment)/6 (pieces of equipment) = 0.95.

4. Consideration of the Practical Meaning of the Parameters B and C. If we
can define parameters B and C, we can explicitly denote the potential function for the
deviation (phase) of a set value. A useful technique is to combine a threshold of the
determination of the lead time using stochastic resonance (throughput) so that we can
obtain in forming a mathematical model of production processes.

The potential energy may change a certain direction according to an external force. The
transition of the lead time threshold value mainly depends on the volatility of production
processes. Therefore, by setting the volatility of a synchronization process to o, and that
of a real process to o, we defined the potential energy function using a phase-field method
as follows.

Definition 4.1. Potential energy function f(p)
f(p) = ag(e) +bsh(p) + CL{l — h(p)} (58)

From the relationship between o, and o, we classify as follows.
[1]&80'520', OZbSZCL TSZT
2lasos <o, 0=CL<bs Ty<T
Blasos >0, 0=CL>bs Ty>T

where T denotes the lead time of the synchronization process (set threshold) and T
denotes the lead time of the actual measurement data.

From the above-mentioned description, the overall lead time 7" in the case of batch
processes is the time taken to produce a piece of equipment in one period of work. Note
that only one person produces one piece of equipment in a batch process, and thus,
T, = T. However, in the case of a production flow system, Item no.[1] and Item no.[3]
are not appropriate for determining the throughput. In the case of a batch process, only
[tem no.[2] is not appropriate. The lack of sufficient throughput thus leads to increased
costs.
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Here, the deviation of the lead time is constrained as follows:

Of _ _yy )
ot dp
Equation (59) indicates that the lead time deviation (phase deviation) is an equation to
move the surface of lead time function. The cause is dependent on the fluctuation of
volatility fluctuation (see Figures 12-14).
As a result, we obtain generally as follows:

(59)

9(p) = (1 = ¢)? (60)
h(p) = ¢*(3 = 2¢) (61)
Then,
2
a
() = F9(0) + bsh(p) + er{l = h()} (62)
G-L free energy F(yp) is as follows:
2
Fio = [ |51962 + 50| av (63
)
Then,
dp oF
T 4
ot T 5y (64)
By calculation of Equation (64), we obtain as follows:
dp 22 2 1 3(CL - bS)
Tat—eVg0+2ag0(1 )RR 2+ "
1 3(cp — b
:€2V290+2a280(1—80){80—§+5}, 3:% (65)

The deviation of the throughput average of a monthly period showed a fluctuation of
the throughput from September to December, 2014 in Figure 7 and Figure 8. The z-axis
of both graphs represents the order date from a customer.

10
10
g 9
o 8
- 7 = 1
X 56
g 4 S 4
[ 1 f: 1
400,700 7 e 1 AV
AV WAL AA e WVANY AT
! iy I e
1.5 9 1317 21 25 29 33 37 41 45 1 5 9 13 17 21 25 29 33 37 41 45
Time series Time series
FIGURE 7. Average interval FiGURE 8. Average interval
data (September through De- data (September through De-
cember, 2014), Average = cember, 2014), Average =

2.04, Volatility = 3.7 2.02, Volatility = 1.8
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o) o)
0.1 0.3
008 | 025 r
02 f
006
015 |
004 |
01 f
0.02 005 |
0 0
-05 0 0.4 08 12 16
o]
F1GURE 9. Potential function FiGure 10. Potential func-
in production processes (a = tion in production processes
01,6=0,¢=0,0=b=¢) (@ =01, b =0, c = 0.1,
0=b<c)
12
f(p)
0.12 1
0.1 038 _\
0.08 = \
, 06
X
0.06 > \
0.4
0.04 \
0.2
o \h-
o b
0 -5 -3 -1 1 3 5
Deviation width
FiGURE 11. Potential func- Ficure 12. Particular solu-
tion in production processes tion of normalized lead time
(@ =01, b =01, ¢ = 0, (a=01,b=0,¢=0,0=
0=c<b) c=b,e=1,V=0)

5. Dynamic Simulation of Production Processes. We attempted to perform a dy-
namic simulation of the production process by utilizing the simulation system that NTT
DATA Mathematical Systems Inc. (www.msi.co.jp) has developed. With respect to the
meaning of the individual parts in Figure 15, we conducted a simulation of the following
procedure.

e When the simulation began, it generated one of the products on “generate” parts
to “finish”.

e In each process, including the six workers in parallel, the slowest worker waited till
the work was completed.

e When the work of each process was completed, it moved to the next process.

e Simultaneously as each process was completed, it recorded the working time of each
process.
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Deviation width

Ficure 13. Particular solu-
tion of normalized lead time
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1\
08

N
o

¢ (x,t)

0.2 \‘
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Deviation width

FiGureE 14. Particular solu-
tion of normalized lead time
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(@ =010 =05 c=0,
O=c<be=1,V=3)

/

product

(a=01,b=0,¢=1,0 =
c>be=1V=-6)

W~ O — o~ 0Hd 7o
start processl recordl process2 record2
Q— = O —
process3 record3 processd record4

0 —

Processs records

— g o

processh recordé finish

F1GURE 15. Simulation model of production flow system

With respect to Table 2 and Table 3,

e Process No. indicates each process (1-6).

e Average indicates the average time.

e STD indicates the standard deviation of process time (sec).

e Worker efficiency (WE) indicates the efficiency of six workers.

“record” calculates the worker’s operating time, which is obtained by multiplying the
specified WE data for the log-normally distributed random numbers in Table 2.

Figure 16 shows the operating time of processes 1-6 (record1-record6). As the working
time of the synchronous process is less volatile, the work efficiency became higher than
the asynchronous process. In Figure 16, the total working time of asynchronous and
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TABLE 2. Working data for six production asynchronous processes

Process No. | No.1 | No.2 | No.3 | No.4 | No.5 | No.6
Average 20 22 25 22 25 21
STD 21 | 25 |16 | 1.9 | 20 | 1.9
W.E 1 0.83 | 1.0 | 0.66 | 0.76 | 0.88 | 0.91
W.E 2 1.27 1 1.26 | 1.21 | 1.31 | 1.17 | 1.20
W.E 3 096 | 1.11 | 1.01 | 1.12 | 0.88 | 0.89
W.E 4 0.92 1096 | 1.06 | 0.98 | 0.91 | 0.9
W.E 5 1.2 {1.03]1.07]0.89 |1.03| 1.1
W.E 6 1.09 | 1.1 1.2 [ 0.98 | 1.13 | 0.89

TABLE 3. Working data for six production synchronous processes

Process No. | No.1 | No.2 | No.3 | No.4 | No.5 | No.6

Average 20 20 20 20 20 20
STD 1.1 15| 12| 14| 10 | 14

W.E 1 1.0 { 1.0 | 1.0 | 1.0 | 1.0 | 1.0
W.E 2 1.0 { 1.0 | 1.2 | 1.3 | 1.1 1.2
WE3 1.7 | 1.1 1.0 | 1.1 1.0 | 1.0
W.E 4 1.0 { 1.0 | 1.0 | 1.0 | 1.0 | 1.0
WES5 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0
W.EG6 1.0 [ 1.3 ] 1.2 | 1.0 | 1.1 1.0

40

o
o

Working time(sec)

10

Process No.

B : Asynchronous
* :Synchronous

FiGure 16. Working time for process number one through six

synchronous processes is 1241.7(sec) and 586.4(sec) respectively. The synchronous process
shows more better production efficiency than the asynchronous process.

6. Conclusion. We discussed the fluctuation of the throughput (lead time) in a produc-
tion system by applying a phase-field model. We introduced a potential function in the
model for describing the throughput volatility as the main parameter.

As a result, Figures 9-11 show that the model can be theoretically applied to un-
derstanding real systems. Moreover, we represented Equation (65) for constraining the
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throughput deviation. In future work, we will focus on the analysis of fluctuations using
Burgers equation for determining the throughput deviation.
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Appendix A. Description of the production stage flow using Riemannian man-
ifolds. Figure 17 shows the direction of production flow from ¢ through h. Each of the
items 4, j, and h has a different manifold, and each of the production pathways is also a
different manifold.
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Production stage

-

FIGURE 17. Business structure of company of research target

Definition A.1. The Riemannian manifolds were derived as follows:
1
B(f) = [ Slafae, (69

With a local coordinate system of M to (x1, 22, -+ ,zp) and (y1, Y2, ,Yn), the cor-
responding Riemann manifold is as follows:

i,j=1 i,j=1

If an inverse matrix is written as (g;;) and (hy;) to (¢*) and (h¥), respectively, then with

respect to the matrix (y1, 42, -, ¥a), a Christoffel symbol to ¥T'}; is written as follows:
1 o Oh;;  Ohy  Ohyj
N1k kl gl il 1]
| I h — 68
Y 2; { Ay " dy; Oy } (68)
In the same manner of Equation (68), we establish MT¥; with respect to (1,22, , %m)
of g.
We establish Laplace operator’s A, of (M, g) as follows:
m - 82 m a
A = i — Mpk _~ 69
g 1]2::19 {axzﬁx] — K Sxk } ( )

Here, the mapping f using a local coordinate system,

f:(f17f277fn)7 fz:ylof (70)
fi=filfis for -+ s fu) (71)
From Equations (70) and (71), the equation of harmonic maps is as follows:
= oft of
A fF = MINTE — =0, k=12, 72
gf i];Ig l](f) al‘k axl Y ) 9 7n ( )

Equation (72) is a quasi-linear second-order elliptic type.

Af = —div(gradaf) + > V0 f (73)

where b’ is elements of the flow velocity vector, which indicates b = (b',b?,---  b").
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Appendix B. Diffusion equation for production processes. If an external force
(control force) does not work, then each process element will converge to a uniform solution
and thus the finished product will not have a set deadline. In other words, this will indicate
a product with a natural timeline of production.

0S(z,t)
ot
The left term of Equation (74) saves the total load }>, o, p S(%,?), and thus the cor-
responding load balancing solution is as follows:

5= 7%55”1’)? (75)

Monotonically decrease the square error Y S(z,t) — S.
The saving of total load is as follows:

/ div(gradaS(z,t)) / LS(z,t)d (76)
M

= LS = div(gradgS) (74)

—> LS(z,t)=0 (77)

LS(z,t) has different metrics (Average and Volatility), which also refer to the Riemannian
metrics on each process and transport function.

£S(x,t):Zgij(x){ Gx@xﬂ Za g ( } (78)

0]

div(X) = Zain', gradgf = Zgijajfai (79)
i ij

0S(u, t)
ot

= LS(u,t)

=Y laaf 7 5w) ~Saett “] (50)



