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Abstract. The Vasicek model, which is used in mathematical finance, was adopted to
evaluate the production throughput of a production flow system. The production through-
put was assumed to behave as an average regression. The production consisting of asyn-
chronous and synchronous processes was evaluated theoretically using the average regres-
sion. Three patterns, which combined asynchronous and synchronous methods involving
nine workers and six stages each, were also tested. Both experiment and calculations
gave almost the same production throughput data, thereby validating the mathematical
model proposed in this study.
Keywords: Production throughput, Vasicek model, Average regression, Stochastic dif-
ferential equation of log-normal type

1. Introduction. Several studies have addressed the problem of productivity improve-
ment in industrial production processes [1, 2]. Moreover, various theories have been
applied to improve and reform production processes and increase productivity. In [3], an
analysis that uses the queuing model and applies a log-normal distribution to model a
system in the steel industry is described.

Several studies have reported approaches to shorten lead times [4, 5]. From the time of
product ordering, the lead time is dependent on the work required to prepare the system
for production.

We have reported that an analysis of the rate-of-return deviation for a certain equip-
ment manufacturer over the past ten years displays “power-law distribution character-
istics”. Because the power-law distribution reveals the existence of a phase transition
phenomenon, we expect that the rate-of-return deviation and the production system are
correlated in a manner that is mediated by the power-law distribution [6]. By performing
a data analysis, the relation between the rate-of-return deviation and production through-
put has been clarified to some extent. The “fluctuation model of rate-of-return deviation”
is self-similar and shows a fractal nature [7, 18]. Also, this power-law distribution char-
acteristic has a “fluctuating” nature during phase transition. For example, occurrence of
fluctuation is found at where the phase transition occurs at the point. Then, we have re-
ported on the self-similarity of these fluctuations and noted the f−1 and f−2 fluctuations
[8]. We have also verified self-similarity in the system through experiments on the supply
chain system, and have used the supply chain system to produce control equipment. In
total, nine workers were involved, and the production process was composed of six stages.
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To compare the forms of production, we roughly conducted four patterns of asynchronous
and synchronous methods. In this report, we propose that it is possible to increase man-
ufacturing profits by adopting a management strategy that purposefully leads to a state
of excessive production or excessive order entries. This management strategy is ideal on
the basis of analysis of the cost rate of the production process.

Although the traditional approach to avoiding bottlenecks in production processes is
to use the theory of constraints [9], we have reported that the synchronization method
is superior for shortening throughput in production processes. This method requires
synchronization between processes [10].

In our previous study [11], we constructed a state in which the production density of
each process corresponded to the physical propagation of heat [18]. Using this approach,
we showed that a diffusion equation dominates the production process. In other words,
when minimizing the potential of the production field (stochastic field), the equation,
which is defined by the production density function Si(x, t) and boundary conditions,
is described by the use of diffusion equation with advection to move in transportation
speed ρ. The boundary conditions describe a closed system in the production field. The
adiabatic state in thermodynamics represents the same state [11].

With respect to the production flow system, generally, low volumes of a wide variety
of products are produced through several stages in the production process. This method
is good for producing specific control equipment such as semiconductor manufacturing
equipment in our experience. We have reported many research findings in this area. The
production flow process has nonlinear characteristics [12]. Moreover, we have made it
clear that the manufacture of products proceeds in multiple stages from the beginning of
production. Such volatility is encountered in every stage of manufacturing, and delays
in the production line propagate this volatility to the successive steps. A delay in the
production process is equivalent to a “fluctuation” in physical phenomena [13].

To achieve the production system goals, we propose the use of a mathematical model
that focuses on the selection process and adaptation mechanism of the production lead
time [14]. We model the throughput time of the production demand/production system
in the production stage by using a stochastic differential equation of the log-normal type,
which is derived from its dynamic behavior. Using this model and risk-neutral integral,
we define and compute the evaluation equation for the compatibility condition of the
production lead time. Furthermore, we apply the synchronization process and show that
the throughput of the production process is reduced [14, 15].

In accordance with this result, we show that Kalman filter theory, conventionally used
in state estimation problems in control theory, can be applied under an incomplete infor-
mation state. In addition, by applying a theory of ongoing assessment in real option, the
conditions that determine throughput rate are clarified and confirmed by numerical value
calculations [15].

In this study, the Vasicek financial model was used for the first time as a tool in the
throughput evaluation of a production flow system. Our previous studies showed that
synchronization generally increased the throughput [10]. In an actual production setting,
the throughput exhibits an average regression behavior. The average regression obeys a
normal logarithm-type stochastic partial differential equation and can be evaluated at the
termination time. Three tests, which consisted of an asynchronous method (Testrun1),
a synchronous method involving pre- and post-processing (Testrun2), and a synchronous
method (Testrun3), were performed to validate this theory. The number of devices pro-
duced during each test run and the resulting production throughput were compared. The
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same production volumes were obtained, validating our study. To the best of our knowl-
edge, a work analysis of this type using the Vasicek model has not been undertaken by
previous studies.

2. Applying an Average Regression Model to a Production Flow System. We
utilize the average regression model from financial engineering for a production flow sys-
tem, because the Vasicek model is appropriate to workers in the production process and
provides productivity evaluation at the end time of a process.

The average regression model is as follows (See Appendix A).

dS(t) = a(t)[W (t) − S(t)]dt + σS(t)dB(t) (1)

where a(t) ≡ constant, W (t) ≡ constant for simplicity. We obtain the following, which
is expressed in another equation.

dS(t) = a(t)(W − S(t))dt + σ(S(t), t)dB(t) (2)

where, noise is assumed to be not state-dependent. Thus, we obtain as follows.

dS(t) = a(t)(W − S(t))dt + σS(t)dB(t) (3)

where Equation (3) is assumed to represent the production throughput model.

3. Production Flow Process. Figure 1 depicts a manufacturing process that is termed
as a production flow process. This manufacturing process is employed in the production
of control equipment. In this example, the production flow process consists of six stages.
In each step S1-S6 of the manufacturing process, materials are being produced.

The direction of the arrows represents the direction of the production flow. In this pro-
cess, production materials are supplied through the inlet and the end-product is shipped
from the outlet.

Figure 2 depicts the queuing situation that occurs between stages by irregular work.
This queue greatly affects the throughput performance.

Next, based on Equation (3), we consider the model that represents the value of the
product in the flow production system.

Figure 1. Production flow process
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Figure 2. Queuing time with constraint

Figure 3. Business structure of company of research target

4. Production Systems in the Manufacturing Equipment Industry. The produc-
tion methods used in manufacturing equipment are briefly covered in this paper. More
information is provided in our study [6].

This system is considered to be a “Make-to-order system with version control”, which
enables manufacturing after orders are received from clients, resulting in “volatility” ac-
cording to its delivery date and lead time. In addition, there is volatility in the lead time,
depending on the content of the make-to-order products (production equipment).

In Figure 3(A), the “Customer side” refers to an ordering company and “Supplier (D)”
means the target company in this paper. The product manufacturer, which is the source
of the ordered manufacturing equipment presents an order that takes into account the
market price. In Figure 3(B), the market development department at the customer’s
factory receives the order through the sale contract based on the predetermined strategy.

5. Production Process Model. It is often represented by a log-normal distribution
[3]. The sales figures for the probability density function of the rate of return shows the
log-normal distribution in Figure 4. Because small-to-midsize firms often do not have
enough working capital, to sustain company operations, they are forced to raise working
capital from financial institutions. It is non-linear in the case such as the products of
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Figure 4. Probability density function of rate-of-return deviation: actual
data (solid line) and data based on theoretical formula (dotted line)

different product specifications with fluctuations in demand or multi-kind small lot. We
will report about this separately.

Thus, if the rate of return follows a log-normal distribution, we can assume that the
cash flow will also follow the same log-normal distribution. Therefore, a cash flow model
is defined as follows [20].

Definition 5.1. Definition of a cash flow model

dQ(t)

Q(t)
= µdt + σdWQ(t) (4)

where Q(t) is an expected money amount of production for each month. The left-hand side
is a monthly rate of return, and a rate of return varies with expected value µ. Further, σ
represents a volatility, and WQ(t) standard Brownian motion.

From the data of monthly rate of return observed, its probability density function was
calculated (Figure 4). As a result, it was found that the probability density function
conforms to log-normal distribution (Figure 4, Theoretical).

Theoretical curve was calculated using EasyFit software (http://www.mathwave.com/),
and as a result of Kolmogorov and Smirnov test, the observed values conformed to
a log-normal type probability density function. Because, in the goodness-of-fit test of
Kolmogorov-Smirnov, a null hypothesis that it is “log-normal” was not rejected with re-
jection rate 0.2, this data conforms to “log-normal” distribution. P -value was 0.588. The
parameters of a theoretical curve were: µp = −0.134 (average), σp = 0.0873 (standard
deviation), γp = −0.900. The theoretical curve is given by the following formula.

f(x) =
1√

2π(x − γp)σp

exp
{
−1

2

((ln x − γp) − µp

σp

)2}
(5)

We assumed manufacturing process follows a log-normal probability distribution. In fact,
we found to be the log-normal probability distribution by analyzing the rate of return
on monthly data of manufacturing operations (1999/1 to 2008/12) over the past 10 years
(Figure 4 reference). We think a rate of return is proportional to the manufacturing
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process lead time. The throughput model is derived as follows [10].

dC(t) = µC(t)dt + σC(t)dW (t) (6)

where C(t) is the only time related function same as S(t).
The problem is to determine the product price C(t) as t = T for evaluation of production

value, where C(T ) = 1. However, T represents sufficiently a long time. In the production
flow system, as the number of the product to be produced in each process is the maximum
quantity of the stage number N , the maximum throughput is equivalent to N/N = 1.
Appendix B gives the results of Testrun1-Testrun3 in the production flow system [10].

We obtain from Equation (3) as follows.

∂C(t)

∂t
+ a(W − S(t))

∂C(t)

∂S(t)
+

1

2
σ2∂2C(t)

∂S2(t)
− S(t)C(t) = 0 (7)

where C(T ) = 1.
Equation (7) in the Vasicek model is well known, in that coupon bonds are satisfied

by the partial differential equation. S(t) represents the production throughput, and it is
derived as follows.

S(t) = exp(−at)
{

S(0) + W (exp(at) − 1) + σ

∫ t

0

exp(au)dB(u)
}

(8)

We apply the above theory to the production flow system.
The model is derived as follows.

dϵ(t)

ϵ(t)
=

[
1 − D

2M

]
dt + σdB(t) (9)

We deform Equation (9) as follows.

dS(t) = a(W − S(t))dt + σS(t)dB(t) (10)

where W = 1 − D
2M

.
The throughput model is affected by worker ability. This model holds the assumption

of average regression model. Thus, the production value is affected by the throughput
function.

For the production deviation that gives this function, we represent the productivity
throughput deviation with respect to the standard deviation. Therefore, under the as-
sumptions of the above mentioned model, the partial differential equation for C(t), which
provides product value as described above, has a meaning.

Therefore, the production value C(t) is described by the fluctuation of S(t) as follows.

C(t) = exp{α(t) − β(t)S(t)} (11)

From the results of mathematical finance, we obtain as follows.

C(t) = exp
{
−βS(t) +

(
W − σ2

2a2

)(
β − (T − t)

)
−σ2

4a
β2

}
(12)

β =
1

a

(
1 − exp{−a(T − t)}

)
(13)

dS(t) = a(W − S(t))dt + σdB(t) (14)

where C(T ) = 1.
Then t = 0, the value C(T ) at termination time T is as follows.

C(T ) = exp
{1

a

(
W − σ2

2a2
− S0

)
β̂ −

(
W − σ2

2a2

)
T − σ2

4a3
β̂2

}
(15)

β̂ = 1 − exp(−aT ) (16)
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where S0 is an initial value.
The production throughput is as follows.

y(t, T ) = − 1

T − t
ln C(t)

=
(
W − σ2

2a2

)
− 1

T − t

{(
W − σ2

2a2
− S(t)

)
β − σ2

4a
β2

}
(17)

where the relationship between C(T ) and y(t, T ) is as follows.

C(t) = exp
{
−(T − t)y(t, T )

}
(18)

The equipment production for the price C(t) is carried out until the termination time T
(cycle termination time) under the production flow system. However, if T is sufficiently
long, C(t) does not decrease (S(T ) = 1.0).

6. Numerical Example of Production Throughput. In a numerical example of a
production throughput in Figure 5, the risk evaluation value was calculated using Equa-
tion (16). Therefore, the production progress was determined at the time of completion.
In Figure 6, the evaluation value was estimated using 1− Equation (16). In other words,
the production value corresponds to the production progress at the completion time. In
Figure 6, the thin and thick lines ultimately overlapped, indicating that the production
was completed after a long time.

We present an evaluation of the production process model as follows. Our basic idea is
under average regression.

Herein, we describe about D/2M . M and D are the actual data. M represents the
elements of [6 × 9] (six workers and nine stages in the process). D is ∆X > K (now
K ≥ 4), which represents the number of elements for target throughput (WS in actual
data). Then, D/M represents the error rate in Testrun1-Testrun3. D/2M represents the
average of D/M under normal distribution. Therefore, µ = 1 − (D/2M).

dy(t)

y(t)
=

[
1 − D

2M

]
dt + σdW (t) (19)

Figure 5. Risk evaluation value



8 K. SHIRAI AND Y. AMANO

Figure 6. Throughput using the average regression model

Table 1. Parameters of Figure 5 and Figure 6

Fig Figure 5(Thin-line) Figure 5(Thick-line) Figure 6(Thick-line) Figure 6(Thin-line)
a 0.4 0.4 0.6 0.4
W 0.08 0.09 0.095 0.076
σ 0.09 0.01 0.01 0.1
S0 0.1 0.1 0.1 0.1

where σ ∼= P/M represents deviation.
Assuming that the drift term (average) in Equation (19) is µ = (1 − D/2M), the

throughput probability is derived from the average value to the deviation η as follows.

P (ln y + η > θ) = P
(
y >

θ − (1 − D/2M)

σ
− η

)
(20)

P (ln y − η > θ) = P
(
y >

θ − (1 − D/2M)

σ
+ η

)
(21)

In regard to Equation (20) and Equation (21), see Figure 7. The probability P (ln y+η > θ)
and P (ln y − η > θ) for the threshold θ are as follows.

P
(
ln y >

θ − (1 − D/2M)

σ
− η

)
= P

(
y > exp

(θ − (1 − D/2M)

σ
− η

))
(22)

P
(
ln y >

θ − (1 − D/2M)

σ
+ η

)
= P

(
y > exp

(θ − (1 − D/2M)

σ
+ η

))
(23)

The probability is obtained as follows.

P (y > θ) = Φ
(
exp

(θ − (1 − D/2M)

σ
+ η

))
−Φ

(
exp

(θ − (1 − D/2M)

σ
− η

))
(24)

Figure 8 shows the time transition which is used in M = 54, D = 25, and σ = 0.169
for parameters of Equation (9). Figure 9 shows considerable variation in work capacity.
Therefore, the throughput probability indicates a lower value and corresponds to Testrun1.
Figure 10 shows slightly variation in the ability to work. Therefore, the throughput
probability indicates a high value and corresponds to Testrun2. Figure 11 shows slightly
variation in the ability to work same as Figure 10. Therefore, the throughput probability
indicates a high value and corresponds to Testrun3.
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Figure 7. Probability for normal distribution

Figure 8. Solution process of Equation (9)

With respect to an entropy value, Figure 12 shows a high value which represents the
sum of entropy because of considerable variation and corresponds to Testrun1. Figure
13 shows a low value which represents the sum of entropy because of small variation and
corresponds to Testrun2. Figure 14 shows the lowest value which represents the sum of
entropy because of small variation, and corresponds to Testrun3.

Definition 6.1. Entropy function

H ≡ −
∫

Prob(y > θ) ln Prob(y > θ) (25)
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Figure 9. Throughput probability (→ Testrun1)

Figure 10. Throughput probability (→ Testrun2)

Figure 11. Throughput probability (→ Testrun3)
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Figure 12. Entropy value (→ Testrun1)

Figure 13. Entropy value (→ Testrun2)

Figure 14. Entropy value (→ Testrun3)
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Table 2. Entropy value calculation using regression model

Fig Figure 12 Figure 13 Figure 14
M 54 54 54
D 25 5 6
P 20 5 3

Average of throughput probability 0.77 0.95 0.94
Bias rate 0.37 0.13 0.05

Sum of entropy 5.61 1.55 0.68

Table 3. Pieces of equipment of Testrun1-Testrun3 in practice

Testrun1 Testrun2 Testrun3
Average 0.73 0.92 0.92

STD 0.29 0.06 0.03
Pieces of equipment 4.4 5.5 5.5

Table 4. Throughput value of Testrun1-Testrun3 by the calculation

Testrun1 Testrun2 Testrun3
Fig Figure 9 Figure 10 Figure 11

Throughput probability 0.77 0.95 0.94
Throughput 6 × 0.77 = 4.6 6 × 0.95 = 5.7 6 × 0.94 = 5.6

7. Validation of Evaluation. Here, the trend coefficient, which is the ratio of actual
number to the target number of pieces of equipment, represents a factor that indicates
the trend for the number of pieces of production equipment, as shown in Table 3.

Here, the throughput values calculated from the throughput probability in Testrun1-
Testrun3, are as follows. The unit of throughput in Table 3 is pieces of equipment. The
throughput data of Table 4 are almost equal to the pieces of equipment which is produced
in practice (Table 3). Therefore, the validity of this approach can be verified.

8. Conclusions. As shown in Table 4, the throughput decreased in the order Testrun2
> Testrun3 > Testrun1. Testrun2 and Testrun3 were both synchronous processes while
Testrun1 was asynchronous. The regression model and entropy analysis showed that the
synchronous process is the best method for improving the process throughput, suggesting
that the financial model proposed in this study was valid.

Acknowledgment. We thank Dr. E. Chikayama, Associate professor of Niigata Uni-
versity of International and Information Studies, for verifying the log-normal distribution
type data.
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Appendix A. Induction of Vasicek Model Equation. Equation (6) is the through-
put model as follows.

dC(t) = µC(t)dt + σsC(t)dW (t)

We obtain from Equation (6) as follows [20].

µC(t) =
∂C(t)

∂t
+

1

2
σ2∂2C(t)

∂S2(t)
+ m

∂C(t)

∂S(t)
(26)

σCC(t) = σ
∂C(t)

∂S(t)
(27)
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Because the market is risk free, the production price of value risk is constant, the same
as the market price of interest rate risk. Then, we obtain as follows.

µ − S(t)

σC

= λ(constant) (28)

We obtain as follows same as Vasicek model.

λ =
µ − S(t)

σC

=
m − a(W − S(t))

σ
(29)

Using the above equation of Equation (29), we calculate σC , and then we substitute σC

into Equation (28). We obtain as follows.

µ − S(t)
σ

C(t)
· ∂C(t)

∂S(t)

=
m − a(W − S(t))

σ
(30)

Rearranging Equation (30), we obtain as follows.

µC(t) = (m − a(W − S(t))
∂C(t)

∂S(t)
+ S(t)C(t) (31)

We substitute Equation (31) into Equation (26). Then, Equation (7) is derived as follows.

∂C(t)

∂t
+ a(W − S(t))

∂C(t)

∂S(t)
+

1

2
σ2∂2C(t)

∂S2(t)
− S(t)C(t) = 0

The production throughput S(t) is assumed as follows.

dS(t) = a(W − S(t))dt + σdB(t) (32)

where B(t) represents the Wiener process. Equation (32) is the so-called Vasicek equation.
Next, we consider the following for induction of Equation (7).

f(t, S(t)) = exp(at)S(t) (33)

f = S(0) as t = 0, then using Theorem of Ito, we obtain as follows.

df =
∂f

∂t
dt +

∂f

∂S
dS +

1

2

∂2f

∂S2
(dS)2 (34)

Here,

∂f

∂t
= a exp(at)S(t),

∂f

∂S
= exp(at),

1

2

∂2f

∂S2
= 0 (35)

We substitute Equation (35) into Equation (34). Then, we obtain as follows.

df = a exp(at)S(t)dt + exp(at)
(
a(W − S(t))dt + σdB(t)

)
= aW exp(at)dt + σ exp(at)dB(t)(from Ito’s integral)

exp(at)S(t) =

∫ t

0

aW exp(au)du +

∫ t

0

σ exp(au)dB(u) + S(0)(from Ito’s integral)

S(t) = exp(−at)
{

S(0) + W (exp(at) − 1) + σ

∫ t

0

exp(au)dB(u)
}

(36)

Appendix B. Testrun1 through Testrun3 Results Using Production Flow Pro-
cess. In Table 5, the circle mark represents the working delay by comparing with WS
data (working standard).
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Table 5. Total manufacturing time at each stage for each worker

WS S1 S2 S3 S4 S5 S6

K1 15
�� ��20

�� ��20
�� ��25

�� ��20
�� ��20

�� ��20
K2 20 22 21 22 21 19 20

K3 10
�� ��20

�� ��26
�� ��25

�� ��22
�� ��22

�� ��26
K4 20 17 15 19 18 16 18

K5 15 15
�� ��20 18 16 15 15

K6 15 15 15 15 15 15 15

K7 15
�� ��20

�� ��20
�� ��30

�� ��20
�� ��21

�� ��20

K8 20
�� ��29

�� ��33
�� ��30

�� ��29
�� ��32

�� ��33
K9 15 14 14 15 14 14 14

Total 145 172 184 199 175 174 181

Table 6. Standard deviation of Table 5

K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33

Figure 15. Total work time for each stage (S1-S6) in Table 5
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Figure 16. STD data for each stage (S1-S6) in Table 5

Table 7. Total manufacturing time at each stage for each worker

WS S1 S2 S3 S4 S5 S6
K1 20 20 24 20 20 20 20
K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20
K4 20 25 25 20 20 20 20
K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20
K8 20 27 27 22 23 20 20
K9 20 20 20 20 20 20 20

Total 180 192 196 182 183 182 180

Table 8. Deviation of Table 7

K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0
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Table 9. Total manufacturing time at each stage for each worker, K5 (*):
Previous process

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 18 18 18
K2 20 18 18 18 18 18 18
K3 20 21 21 21 21 21 21
K4 16 13 11 11 13 13 13
K5 16 * * * * * *
K6 16 18 18 18 18 18 18
K7 16 14 14 13 14 14 13
K8 20 22 22 22 22 22 22
K9 20 20 20 20 20 20 20

Total 148 144 143 141 144 144 143

Table 10. Standard deviation of values stated in Table 9, K5: Previous process

K1 0.67 0.33 0.67 0.67 0.67 0.67
K2 0.67 0.67 0.67 0.67 0.67 0.67
K3 0.33 0.33 0.33 0.33 0.33 0.33
K4 1 1.67 1.67 1 1 1
K5 * * * * * *
K6 0.67 0.67 0.67 0.67 0.67 0.67
K7 0.67 0.67 1 0.67 0.67 1
K8 0.67 0.67 0.67 0.67 0.67 0.67
K9 0 0 0 0 0 0


