Analele Universității din Craiova, seria Agricultură – Montanologie – Cadastru (Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series) Vol. XLIII 2013

AGROCHEMICAL CHARACTERIZATION OF SOILS FROM OLT COUNTY

ANA MARIA DODOCIOIU¹, NICOLAE ANDREEA MARIA¹, BALANESCU DUMITRU², BUZATU GILDA-DIANA¹

provided by Annals of the University of Craiova - Agr

¹University of Craiova, Faculty of Agriculture and Horticulture, ²OSPA Olt

Keywords: agrochemical characteristics, soil, humus, nitrogen, phosphorus.

ABSTRACT

In order to characterize from the agrochemical point of view the soils from Olt County, there were considered agrochemical studies conducted in the county by OSPA Olt in the period 2008-2012, on the entire surface of the county at all land use categories. In the period subject to the agrochemical study, soil samples were collected from agrochemicals plots with different surfaces according to usage and were analyzed: the pH, humus content, nitrogen, phosphorus and potassium. After analysis it was found that:

- Soil humus content is low and very low to cca.48% of agricultural land, requiring large expenses with additional fertilization;

-The presence of large areas of acidic soils (about 45% of agricultural land) limits yields per unit of area;

- Low and very low-supply in mobile phosphorus (cca.57% of agricultural land) limiting production in all cultures and affects crop quality.

INTRODUCTION

The soil is considered as the basis of any natural source of productive and sustainable agricultural system, while being exhaustively and more complex than air and water, representing the essential support of life. Dynamics of soil, or complex changes that occur in it, is evidenced by the many processes that are in constant change, until it reaches a certain steady state (Dumitru Elisabeta, 2004).

Once with the increased of tillage agricultural technology systems, especially mechanization and irrigation in order to increase productivity and, at the same time, protecting the soil against degradation, also appeared the need to develop studies on physical, chemical and biological soil condition and its quality.

Today it is widely recognized that there are neither practical and nor can promote the agricultural technology systems that improve, enhance and preserve soil quality status without knowing the local specific (Mocanu R., 2011). In this study we performed analysis on soil agrochemical properties in the period 2008-2012 in order to characterize soils from the agrochemical point of view and establish the degree of fertility.

Olt County is located on two main geomorphologic units: Getic Piedmont (north) and the Romanian Plain (south), representing the 2 major landforms that are found within the county: hills and plains. The climate is temperate continental, with slight Mediterranean influence, with a touch wetter in the north and drier in the south. Annual average temperature of the coldest month (January) is between -2° and -3°C, and annual average temperature of the hottest month is between 22° and 23°C. The average annual amount of rainfall increases from south (below 500 mm), to north (600 mm) and fell more in the form of rain.

MATERIAL AND METHOD

In order to agrochemical characterize soils from Olt county, there were considered agrochemical studies conducted in the county by Olt OSPA in the period 2008-2012 over the entire county in land use categories: 388 603 ha of arable, 433 903 ha agricultural, 32867 ha of pasture, 12433 ha of vineyards and orchards.

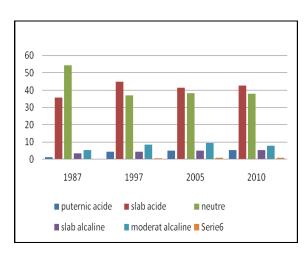
In period subject to the agrochemical study, soil samples were collected from agrochemical plots with different areas depending on mode of use, according to ICPA. On

samples taken the following tests were performed: pH, content of humus, nitrogen, potassium and phosphorus.

RESULTS AND DISCUSSIONS

Agrochemical properties of soils are a key factor in determining the degree of fertility, so their productive potential and also to develop measures to improve agrochemical and increasing fertility through the use of chemical and organic fertilizers. The main agrochemical properties that are used to characterize soil fertility are: soil reaction, humus content, the degree of provision in phosphorus, potassium and nitrogen, the nitrogen index (Dodocioiu Ana Maria, 2009).

Analyzing soil reaction, in Olt County in 2010, situation is as follows:


Table 1

Utilization		Soil reaction												
Otilization	heavily acidic		moderately acidic		weak acidic		Neutral		weak alkaline		moderately	/ alkaline		
	Ha	%	ha	%	Ha	%	ha	%	ha	%	ha	%		
Arable	19607	5,02	168648	43,18	148650	38,06	18357	4,70	33667	8,62	1640	0,42		
Pasture	531	1,71	7234	23,32	13904	44,82	2274	7,33	6018	19,4	1061	3,42		
Hayfield	Х	Х	357	56,00	259	40,67	21	3,33	Х	х	х	Х		
Vineyard vines	536	7,02	2487	32,6	2771	36,32	1022	13,4	780	10,2	34	0,44		
Orchards	1145	15,7	1926	26,36	1719	23,52	607	8,31	1303	17,8	607	8,31		
Agricultural	21819	4,99	180652	41,33	167303	38,27	22281	5,10	41768	9,55	3342	0,76		

Table 2

Evolution of agricultural areas in terms of soil reaction since 1987 until 2010 in Olt (% of agricultural land)

Soil reaction	1987	1997	2005	2010
heavily acidic	1,21	4,24	4,99	5,31
Moderately acidic	35,59	45,01	41,33	42,73
weak acidic	54,47	36,90	38,27	38,02
neutral	3,38	4,34	5,10	5,24
weak alkaline	5,19	8,44	9,55	7,89
moderately alkaline	0,16	0,67	0,76	0,81

The data in table 2 shows that around the 21 819 ha agricultural area, ie 4.99% are strongly acidic soils, 180 652 ha, representing 41.33% are moderately acidic soils, 1,167,303, representing 38.27% are slightly acid soils and only 22 281 ha, representing 5.10% are neutral soils and 41768 ha, representing 9.55% are mildly alkaline soils.

Analyzing the soil reaction during the period 1987 - 2010, that, due to missing regular improvement agrochemical works, the percentage of strongly acidic soils increased by 1.21 to 5.31%, of the moderately acidic increased also from 3.59 to 42.73%, while the percentage of slightly acid soils has decreased from 34.47 to 38.02 due to transition to strong and medium acid category.

In general the acid reaction is characteristic to luvisoils; neutral reaction is specific to cambisoil, and the alkaline to salsodisoils and some alluvisols. The reaction of soil solution influences the fertilizers absorption by crops.

Neutral or weak alkaline reaction favors the absorption of ammonia nitrogen fertilizers, while acid reaction favors the absorption of nitric forms.

An acid soil promotes the absorption of phosphorus fertilizer forms sparingly soluble, whereas phosphorus fertilizer forms easily soluble, instead, are passing in the sparingly soluble compounds.

Saturated soil in base as well as the neutral reaction, but with a high CaCO₃ content promotes the absorption of slightly soluble phosphorus fertilizer.

Mineral potassic fertilizers on bases saturated soils can lead to decalcification these soils and administration of potassium fertilizers on acid soils produces a stronger acidification of soil solution. Strongly acidic soil reaction, coupled with a low base saturation, causes the appearance in soil solution of quantities of mobile aluminum, which exceeding the tolerance of plants, becomes toxic.

Soil reaction directly influence plant growth, so that both the crop and the plants from spontaneous flora exhibit certain preferences to soil reaction solution, but the most preferred reaction by crops is weakly acid, neutral or slightly alkaline.

Plants from the spontaneous flora used as reaction indicator are *Oxalis acetosella* (sorrel rabbit) indicates acidic reaction, *Anemone nemorosa* (easter flower) indicates slightly acidic-neutral reaction. Crops that support soil acidity are: rye, potatoes, oats, lupine, etc.

An essential component of soil is humus, which confers it a certain degree of fertility. Humus and soil organic matter represents permanent reserve of soil nutrients (Borlan, 1988, 1999).

After humus content, soil supply status data is presented in Table 3 and Figure 2.

Table 3

		The humus supply												
Utilization	extremely small		very small		small		medium		lar	ge				
	ha	%	ha	%	Ha	%	ha	%	ha	%				
Arabile	1640	0,42	12772	3,27	164664	42,16	209696	53,69	1797	0,46				
Pasture	1080	3,48	5004	16,13	15585	50,24	9353	30,15	Х	х				
Hayfield	42	6,67	53	8,33	256	40,00	265	41,67	21	3,33				
Vineyard	84	1,10	356	4,67	5354	70,17	1836	24,06	Х	х				
Orchard	57	0,78	1022	13,98	3710	50,78	2391	32,72	127	1,74				
Agricultural	2903	0,66	19207	4,39	189569	43,37	223541	51,14	1945	0,44				

State of soil humus supply in Olt at 31.12.2010 - OJSPA Olt

Analele Universității din Craiova, seria Agricultură – Montanologie – Cadastru (Annals of the University of Craiova - Agriculture, Montanology, Cadastre Series) Vol. XLIII 2013

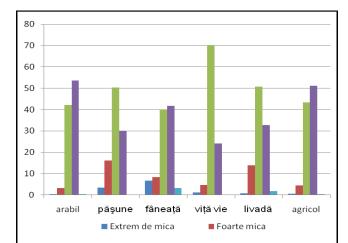


Figure 2. State of soil humus supply in Olt at 31.12.2010, according to utilization

Insurance state of soils humus in the County of Olt is relatively low, since, as is apparent from the data in Table 3, over 48% of the agricultural area of the county has a degree of provision extremely small, very small and small humus, about . 50% have a medium degree of provision and only 0.44% has a high degree of assurance.

Phosphorus participates directly in the formation of plant cells and tissues, contributes to the roots, stimulates fructification processes, accelerating rate of assimilation of nitrogen and potassium, and increases plant resistance to frost and drought.

Table 4

		Phosphorus supply											
Utilization	Utilization very we		veak weak		medium		good		very g	lood			
	ha	%	ha	%	ha	%	ha	%	ha	%			
Arable	69482	17,79	153806	39,38	75809	19,41	70927	18,16	20545	5,26			
Pasture	5156	16,62	9694	31,25	7185	23,16	6105	19,68	2882	9,29			
Hayfield	221	34,67	251	39,33	91	14,33	17	2,67	57	9,00			
Vineyard vines	3752	49,17	2866	37,57	348	4,56	348	4,56	316	4,14			
Orchard	3125	42,77	3215	44,00	453	6,20	354	4,84	160	2,19			
Agricultural	81736	18,69	169832	38,85	83886	19,19	77751	17,79	3960	5,48			

The state of soil phosphorus supply in Olt at 31.12.2010- OJSPA

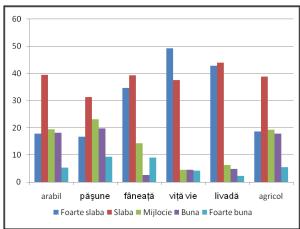
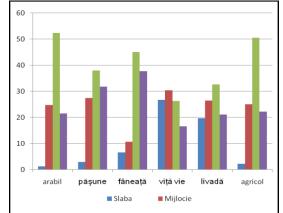


Figure 3. State of soil mobile phosphorus supply in Olt at 31.12.2010, according to utilization


Analyzing the supply of soil phosphorus in Olt County, as shown in the table 4, 18.69%, respectively, 81 736 hectares are weak soils supplied, 169 832 ha representing 38.85% are poorly supplied soils and 19, 19% and respectively 83 836 hectares are medium soils and soils well supplied and very well supplied represents only 23.47%.

Potassium participates in the assimilation of carbohydrates, lipids; starch plant provides greater resistance to diseases, pests, frost, drought and increase the quality of fruit and vegetables. The Olt county land supply with this element is shown in Table 5.

Table 5

The state of mobile potassium soil supply in Olt at 31.12.2010- OSPA Olt

	Soil supply with mobile potassium										
Utilization	weak		medi	um	goo	d	very good				
	Ha	%	ha	%	ha	%	Ha	%			
Arable	5077	1,30	96705	24,76	204697	52,41	84090	21,53			
Pasture	893	2,88	8491	27,37	11782	37,98	9856	31,77			
Hayfield	42	6,60	68	10,67	287	45,00	240	37,67			
Vineyard vines	2040	26,74	2323	30,44	2002	26,24	1265	16,58			
Orchard	1442	19,73	1933	26,45	2386	32,66	1546	21,16			
Agricultural	9494	2,17	109520	25,05	221154	50,59	96997	22,19			

Figure 4. The state of mobile potassium soil supply in Olt at 31.12.2010, according to utilization

As shown in the table above, soil supply with potassium from Olt County is better than the phosphorus and humus supply, only 2.7% of the agricultural area of the county and respectively 25.05% represent low and medium soils supplied, while 73% of the surface is represented by soil well and very well supplied with assimilable potassium.

Nitrogen is found in every cell of the plant, where it participates in the synthesis of chlorophyll, protein substances, of various enzymes and ferments as well as vitamins.

From the point of view of the degree of provision of nitrogen, after calculating nitrogen index, the situation is very similar to the level of supply of humus. Thus, 48.18%, respectively, 210 624 hectares is represented by weak soils supplied, 51.42%, or 224,769 hectares is represented soil medium supplied and only 0.40%, respectively, 1 772 hectares is represented by soils well supplied with nitrogen.

Table 6

State of supply of agricultural soil with nitrogen in Olt County 31.12. 2010 - OSPA Olt

	Soil supply according to the value I.N.									
Utilization	рос	or	medi	um	good					
	ha	%	ha	%	ha	%				
Arable	179349	45,92	209501	53,64	1719	0,44				
Pasture	21669	69,85	9353	30,15	-	-				
Hayfield	351	55,00	265	41,67	21	3,33				
Vineyard vines	5794	75,94	1836	24,06	-	-				
Orchard	3461	47,36	3814	52,19	32	0,45				
Agricultural	210624	48,18	224769	51,42	1772	0,40				

CONCLUSIONS

From the data presented are worthy highlighted the following issues:

- The presence of large areas of acid soils (about 45% of agricultural land) limit the productions per unit area.

- Supply of low and very low phosphorus (cca.57% of agricultural land) limiting production in all cultures and affect crop quality.

- The content of soil humus is small and very small to cca.48% of agricultural land, requiring large expenses with additional fertilization.

- Most of the soils have low structural stability due to lack of calcium in the soil colloidal complex, being prone to crust formation and are vulnerable to work wet conditions soil.

- Steep slope of land coupled with their low fertility requires reduction of arable land and increasing other categories of use (orchards, pastures or forests).

BIBLIOGRAPHY

1. Dodocioiu Ana Maria, 2009 – Agrochimie. Editura Sitech, Craiova

2. **Dumitru Elisabeta, Canarache A.,** 2004 – Soil conservation in Romania – problems, Research, Control. În Proceedings of the 4 th International Congress ESSCO Soil Conservation in a change Europe, Budapest, Hungary: 311-315.

3. **Mocanu R. și colab.,** 2011 – Pierderile de nutrienți și sol în zona colinară a Olteniei și Moldovei și implicațiile lor. Editura Sitech, Craiova