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ABSTRACT: Monitoring the adhesion force between a railway wheel and a rail surface is very essential 

in maintaining high acceleration and braking performance of railway vehicles. Due to the difficulties 

encountered in direct measurement of friction coefficient, creepage and adhesion force; state observers 

are used as indirect estimation methods. This paper proposes an effective estimation method, which 

exploits railway traction motor behaviour to give an assistance for realizing wheel slip and adhesion 

control in order to be used in railway applications. This method plays an active role in optimizing the 

use of the existing adhesion and reducing wheel wear by decreasing high creep values. With this 

method, adhesion force can be indirectly estimated by measuring stator currents, and angular speed of 

the AC traction motor and using dynamic relationships based on the extended Kalman filter (EKF) 

simulation model. The re-adhesion controller can be designed to regulate the motor torque command 

according to the maximum available adhesion depending on the estimated results. To test the proposed 

method, simulations were performed under different friction coefficients.      
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Demiryolu Cer Motorları için Genişletilmiş Kalman Filtresi Tasarımı 

 

ÖZ: Bir demiryolu tekerleği ile rayı arasında meydana gelen tutunma kuvvetinin izlenmesi, demiryolu 

araçlarının yüksek hızlanma ve frenleme performansının korunmasında oldukça önemlidir. Sürtünme 

katsayısı, kayma ve tutunma kuvvetinin doğrudan ölçülmesinde karşılaşılan zorluklardan dolayı, 

durum gözetleyicilerine dayalı dolaylı tahmin yöntemleri kullanılır. Bu makale, demiryolu 

uygulamalarında kullanılmak üzere tekerlek kayma ve yeniden tutunma kontrolünü gerçekleştirmek 

için demiryolu cer motor davranışını kullanan etkili bir tahmin yöntemi önermektedir. Bu yöntem, 

mevcut tutunmanın kullanımını iyileştirmede ve yüksek kayma değerlerini düşürerek tekerlek 

aşınmasının azaltılmasında etkin bir rol oynamaktadır. Bu yöntemle, stator akımları ve asenkron cer 

motorun açısal hızı ölçülerek, genişletilmiş Kalman filtresi (GKF) simülasyon modeline dayanan 

dinamik ilişkiler kullanılarak tutunma kuvveti dolaylı olarak tahmin edilebilir. Yeniden tutunma 

kontrolörü, tahmin sonuçlarına bağlı olan maksimum erişilebilir tutunma özelliklerine göre motor 

moment komutu düzenlenerek tasarlanabilir. Önerilen yöntemi test etmek için, farklı tekerlek-ray 

sürtünme katsayıları altında simülasyonlar gerçekleştirilmiştir. 
 

Anahtar Kelimeler: Demiryolu Cer sistemi,  Genişletilmiş Kalman filtresi, Tam durum kestirimi, Tutunma 

modeli. 
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INTRODUCTION 

 

In railway vehicles, estimating the maximum adhesion force between the wheel and rail, which is a 

non-linear function of friction coefficient and mass of the rail vehicle, is very important in terms of 

providing effective acceleration and braking performance. In traction systems, excessive creepage at the 

wheel-rail must be limited to reduce traction, poor ride comfort, wheel wear and noise. A large creepage 

usually occurs when the traction force applied during acceleration and deceleration exceeds the 

maximum admissible adhesion. When investigating the slip&slide phenomenon in railway traction, a 

procedure based on the second order Luenberger observer that indirectly define the frictional force is 

proposed and the results obtained are verified on the test rig (Rizzo and Iannuzzi, 2002). The load is 

evaluated by means of the interaction between the torsional oscillations of the friction forces, mechanical 

transmission forces, and the motion components to optimize the vector control algorithm, which 

prevents slip&slide oscillations. An adaptive observer algorithm has been developed to approximate the 

true wheel-rail friction coefficient by using the measured values of the angular velocity of the wheel, the 

moment generated by the brake force and the torque generated by the wheel load. Friction coefficient 

values estimated under suddenly changing wheel-rail contact conditions are used to improve anti-slip 

brake control performance (Gaspar et al., 2006). However, in this method, it is necessary to know the slip 

ratio and vehicle speed so that the friction coefficient can be estimated. This method does not seem to 

have enough accuracy because of the difficulty of measuring slip ratio and vehicle speed. Lateral 

dynamics of the train have also been analyzed to estimate the low adhesion at the wheel-rail contact by 

using Kalman filter algorithm (Charles and Goodall, 2006). The shortcoming of this method is that it 

only detects significant changes in friction coefficient. Subsequent studies have involved searching for 

the least residuals operated at saturation points under the influence of different friction coefficients, 

using the series of state observers in the estimation of the vehicle lateral dynamics and friction 

coefficients (Mei and Hussain, 2010). The creep force between the wheel and roller is estimated using 

Kalman filter based on stator voltage, current and motor speed measurement focusing on the torsional 

dynamics of a simplified drive system. The estimated creep force-creepage relationship is compared 

with those under different friction coefficients, and the friction coefficient is estimated by calculating the 

root mean square value of residuals (Zhao et al., 2012). A multiple-induction motor system driven by a 

single inverter, which utilize the estimated adhesion force to adjust the torque command and suppress 

the slip&slide, has been investigated. The ability of the traction system to be adjusted to work at the 

peak of the adhesion force curve depends on accurately estimating the friction coefficient and vehicle 

speed (Kawamura et al., 2003; Matsumoto et al., 2001). The creep forces occurred at the contact patch 

have been investigated by using the roller test rig and a model to calculate the wheel-rail creep force has 

been proposed (Iwnicki, 2003). Among the alternative methods, there is an indirectly detection and 

estimation process of the slip-slide conditions based on measuring the voltage, current, and speed of the 

AC traction motor with using an EKF (Zhao and Liang, 2013). There is also another method were used to 

detect slip velocity based on the multi-rate EKF state identification by combining the multi-rate method 

and the EKF method to identify traction motor load torque. This method provides a faster detection of 

slip and improves reliability and traction performance (Wang et al., 2016). The EKF algorithm has been 

developed for direct vector control of induction motors. This algorithm includes the estimation of the 

currents, rotor fluxes, and motor speed (Barut et al., 2002). In the sixth-order discrete-time model, 

mechanical equations are taken into consideration by adding the load torque to the state variables 

(Alonge and D'ippolito, 2010). The important problem associated with the use of EKF’s is the proper 

selection of covariance matrices and measurement noises for the system to operate at the optimal state. 

However, both matrices are not known, especially the system noise is very hard to define. For this 

reason, these matrices are often used as parameters for tuning. Adjustment can be accomplished using a 

trial and error approach or using evolutionary algorithms (Cai, et al., 2003). A Kalman-Bucy filter 

estimation method based on a half vehicle non-linear contact mechanics model was developed in (Ward 

et al., 2011) and best estimates were achieved for the front bogie rear wheelset creep forces. The 
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efficiency of this technique was tested with more representative data produced by multi-bodied physics 

simulation package Vampire (Ward et al., 2012). Multiple model estimation approach for the 

identification of the adhesion limit to handle the wheel slip/slide phenomenon was presented by using a 

bank of Kalman filters, which are designed at selected operation points for adhesion estimation (Hussain 

et al., 2013) 

An unscented Kalman filter was also used to estimate the creep force, creepage and the friction 

coefficient from traction motor behaviors (Zhao, et al., 2014). This estimator provided accurate friction 

estimation under different contact conditions, but the estimated friction coefficient was not reliable when 

the traction load is very small, and was also influenced by the traction load. These problems are 

originated from the inaccuracy of the measurements and system dynamic model. An adhesion moment 

estimation in contact point was constructed in order to perform a high precision adaptive control system 

for locomotive electrical drives (Radionov and Mushenko, 2015). By using this method, it is also possible 

to estimate the rotor flux vector components.  

In this paper, a new approach to estimate the adhesion force between wheel-rail contact surfaces 

over an EKF using the measured values of the stator currents of the traction AC motor has been 

examined. The optimum operating point of the system is determined by the estimated adhesion force-

creepage curve. To test the observer, a dynamic model consisting of a wheel set, gear box and traction 

motor is designed. The Polach model is used to express the wheel-rail contact behavior. For sensorless 

control of induction motors, an EKF is proposed that estimates rotor flux and current components, 

motor speed and load torque. The traction motor is designed by first order decomposition of the sixth 

order nonlinear model (Euler method). The mechanical equation is formed by including the load torque 

in the state variables that the account participates in. Then, based on this model, the EKF design was 

completed by selecting the covariance matrices of the system and the measurement noise using a trial 

and error method. The main contribution of this paper is to design and implement the sixth-order EKF, 

which takes into account the railway traction dynamics and predicts the existing adhesion to establish an 

effective sensorless re-adhesion control system on rail vehicles.  

 

MATERIAL AND METHOD 

 

Traction system model 

 

The traction system used in this paper is represented in Figure 1. 

 
Figure 1. Schematic representation of the traction system. 

 
In this system, a wheel set with two wheels is driven by an AC induction motor coupled with a 

gearbox. The movement of the railway vehicle takes place thanks to the creep forces between the wheels 

and the rail. The dynamic equations for the motion of the system are given below. 

 
ⅆ𝜔𝑚

ⅆ𝑡
=

𝑇𝑚−𝑇𝐿

𝐽eqv
                               (1) 
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𝜔𝑤 =
𝜔𝑚

𝑛𝑖
                        (2) 

where 𝜔𝑚 is the motor angular velocity, 𝜔𝑤 is the wheel angular velocity, 𝑇𝑚 is the motor torque, 𝑛𝑖 

is the gear reduction ratio, 𝑇𝐿  is the load torque and represented as 𝑇𝐿 =
2𝑟0𝐹𝑎

𝑛𝑖
, here 𝐹𝑎 is the longitudinal 

creep force, which is also called as adhesion force of a single wheel. 

 𝐽eqv is the equivalent moment of inertia as shown in below    

 

𝐽eqv = 𝐽𝑚 +
𝐽𝑔 + 𝐽𝑥 + 𝐽wR + 𝐽wL

𝑛𝑖
2  

 

where 𝐽𝑔, 𝐽𝑥 , 𝐽wR, 𝐽wL is the moment of inertia of the gearbox, wheelset axle, right wheel, left wheel, 

respectively. 

 

Extended mathematical model of the traction motor 

 

In this paper, the type of the traction motor is an induction motor, which is controlled by an indirect 

flux oriented scheme, which is commonly used in railway traction. Induction motors are described by a 

set of fifth-order differential equations with two input and three state variables suitable for 

measurement. The model for speed sensorless control includes differential equations based on stator 

and/or rotor electric circuits, taking into account stator current and/or voltage measurement. The 

extended induction motor model derived is different from previous EKF-based estimators that estimate 

the rotor speed. The equation of motion to be used for estimating the rotor speed is also included in the 

model. Stator current and rotor flux are the state variables and the equations are listed as (Barut, et al., 

2007; Shi et al., 2002 )     

 

ⅆ𝐼𝑠𝛼

ⅆ𝑡
= −(

𝑅𝑠

𝜎𝐿𝑠
+

𝐿𝑚
2 𝑅𝑟

′

𝜎𝐿𝑠(𝐿𝑟
′ )2
)𝐼𝑠𝛼 +

𝐿𝑚𝑅𝑟
′

𝜎𝐿𝑠(𝐿𝑟
′ )2
𝜓𝑟𝛼 +

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′ 𝑛𝑝𝜔𝑚𝜓𝑟𝛽 +

1

𝜎𝐿𝑠
𝑈𝑠𝛼                          (3) 

 
ⅆ𝐼𝑠𝛽

ⅆ𝑡
= −(

𝑅𝑠

𝜎𝐿𝑠
+

𝐿𝑚
2 𝑅𝑟

′

𝜎𝐿𝑠(𝐿𝑟
′ )2
)𝐼𝑠𝛽 +

𝐿𝑚𝑅𝑟
′

𝜎𝐿𝑠(𝐿𝑟
′ )2
𝜓𝑟𝛽 −

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′ 𝑛𝑝𝜔𝑚𝜓𝑟𝛼 +

1

𝜎𝐿𝑠
𝑈𝑠𝛽                    (4) 

 
ⅆ𝜓𝑟𝛼

ⅆ𝑡
=

𝑅𝑟
′𝐿𝑚

𝐿𝑟
′ 𝐼𝑠𝛼 −

𝑅𝑟
′

𝐿𝑟
′ 𝜓𝑟𝛼 − 𝑛𝑝𝜔𝑚𝜓𝑟𝛽                         (5) 

 
ⅆ𝜓𝑟𝛽

ⅆ𝑡
=

𝑅𝑟
′𝐿𝑚

𝐿𝑟
′ 𝐼𝑠𝛽 −

𝑅𝑟
′

𝐿𝑟
′ 𝜓𝑟𝛽 + 𝑛𝑝𝜔𝑚𝜓𝑟𝛼                       (6) 

 
ⅆ𝜔𝑚

ⅆ𝑡
=

−3𝑛𝑝𝐿𝑚

2𝐽𝑒𝑞𝑣𝐿𝑟
′ 𝜓𝑟𝛽𝐼𝑠𝛼 +

3𝑛𝑝𝐿𝑚

2𝐽𝑒𝑞𝑣𝐿𝑟
′ 𝜓𝑟𝛼𝐼𝑠𝛽 −

𝐵𝑚

𝐽𝑒𝑞𝑣
𝜔𝑚 −

T𝐿

𝐽𝑒𝑞𝑣
                     (7) 

 

The extended model of the induction motor based on the rotor flux is represented in matrix form as 

(Barut et al., 2005) 

 

{
 
 
 
 

 
 
 
 
𝐼
.

sα

𝐼
.

sβ

𝜓
.

rα

𝜓
.

rβ

𝜔
.

𝑚

Ṫ𝐿

⏞
𝑥
.
𝑒

}
 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 
−(

𝑅𝑠

𝜎𝐿𝑠
+

𝐿𝑚
2 𝑅𝑟

′

𝜎𝐿𝑠(𝐿𝑟
′ )2
) 0

𝐿𝑚𝑅𝑟
′

𝜎𝐿𝑠(𝐿𝑟
′ )2

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′ 𝑛𝑝𝜔𝑚 0 0

0 −(
𝑅𝑠

𝜎𝐿𝑠
+

𝐿𝑚
2 𝑅𝑟

′

𝜎𝐿𝑠(𝐿𝑟
′ )2
) −

𝐿𝑚

𝜎𝐿𝑠𝐿𝑟
′ 𝑛𝑝𝜔𝑚

𝐿𝑚𝑅𝑟
′

𝜎𝐿𝑠(𝐿𝑟
′ )2

0 0

𝑅𝑟
′𝐿𝑚

𝐿𝑟
′ 0 −

𝑅𝑟
′

𝐿𝑟
′ −𝑛𝑝𝜔𝑚 0 0

0
𝑅𝑟
′𝐿𝑚

𝐿𝑟
′ 𝑛𝑝𝜔𝑚 −

𝑅𝑟
′

𝐿𝑟
′ 0 0

−3𝑛𝑝𝐿𝑚

2𝐽𝑒𝑞𝑣𝐿𝑟
′ 𝜓𝑟𝛽

3𝑛𝑝𝐿𝑚

2𝐽𝑒𝑞𝑣𝐿𝑟
′ 𝜓𝑟𝛼 0 0 −

𝐵𝑚

𝐽𝑒𝑞𝑣
−

1

𝐽𝑒𝑞𝑣

0 0 0 0 0 0

⏞                                                  
𝐴𝑒

]
 
 
 
 
 
 
 
 
 
 
 

{
 
 
 

 
 
 𝐼sα
𝐼sβ
𝜓rα
𝜓rβ
𝜔𝑚
T𝐿

⏞
𝑥𝑒

}
 
 
 

 
 
 

+

[
 
 
 
 
 
 
 
 1
σL𝑠

0

0
1

σL𝑠

0 0
0 0
0 0
0 0

⏞    
𝐵𝑒

]
 
 
 
 
 
 
 
 

{
𝑈sα
𝑈sβ

⏞
𝑢𝑒

} + 𝑤(𝑡)           
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[
 
 
 
 𝐼sα
𝐼sβ
𝜔𝑚

⏞
z

]
 
 
 
 

=

[
 
 
 
 1
0
0

0
1
0

0
0
0

0
0
0

0
0
1

0
0
0

⏞    
𝐻𝑒

]
 
 
 
 

{
 
 

 
 
𝐼sα
𝐼sβ
𝜓rα
𝜓rβ
𝜔𝑚
𝐹𝑎 }
 
 

 
 

+ 𝑣(𝑡)                         (8-9) 

 

where 𝑛𝑝 is the number of the pole pairs, 𝜎 is the leakage or coupling factor, 𝐿𝑠 and 𝑅𝑠 are stator 

inductance and resistance, respectively, 𝐿𝑟
′   and 𝑅𝑟

′  is the rotor inductance and resistance, referred to the 

stator side, respectively.  𝑈𝑠𝛼  and 𝑈𝑠𝛽 stator stationary axis components of stator voltages, 𝜓𝑟𝛼 and 𝜓𝑟𝛽 

are rotor stationary axis components of stator flux, 𝐿𝑚 is the mutual inductance, 𝐵𝑚 is the viscous 

friction, 𝑤(𝑡) and 𝑣(𝑡)  are process and measurement noise, respectively.    

The longitudinal creep force 𝐹𝑎 at the wheel-rail contact is modeled based on Polach's method as        

(Polach, 1999)  

 

𝐹𝑎 =
2FNμf

π
(

kAϵ

1+(kAϵ)
2 + arctan(kSϵ))                                                    (10)  

 

For the case of the domination of the “longitudinal creepage”      "𝛏𝐱 ≈ 𝛏 ,  𝛏𝐲 ≈ 𝟎"  

 

𝛜 =
𝐆𝛑𝐚𝐛𝐂𝟏𝟏

𝟒𝐅𝐍𝛍𝐟
𝛏                              (11)    

 

where 𝑎, 𝑏 are the semi-axes of the contact ellipse, C11 ise the longitudinal Kalker's coefficients, FN is 

the normal force acting on the wheel. kA, kS are reduction factors regarding to the different conditions 

between wheel and rail surface. kA is related to the area of the adhesion, kS is related to the area of slip, 

and the condition is defined as       
 kS ⩽ kA ≤ 1 

In this model, the traction coefficient relies on the slip velocity and friction coefficient, which is 

defined by the following equation.   

 

𝜇𝑓 = 𝜇0((1 − 𝑄)𝑒
−PξV + 𝑄)                        (12)

 
𝑃, 𝑄 are reduction factors under different friction coefficient. The values of the 𝑃, 𝑄, kA, kS, 𝜇0 are 

given in Table 1. 

 

Table 1. Parameters of Polach model under various friction conditions (Zhao and  Liang, 2013). 

Parameter Dry Wet Low Very Low 

𝒌𝑨 1 1 1 1 

𝒌𝑺 0,4 0,4 0,4 0,4 

𝝁𝟎 0,55 0,3 0,06 0,03 

𝐏 0,4 0,4 0,4 0,4 

𝐐 0,6 0,2 0,2 0,1 

 

 

Since the lateral dynamics of the system are neglected in this work, the creepage terms contain only 

the longitudinal component. Creepage is calculated by the following equation (Kalker, 1968). 
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ξ =
𝜔𝑤𝑟0−𝑉

𝑉
                    (13) 

 

where 𝑉 is the longitudinal velocity of the railway vehicle. 

 

Extended Kalman filter design 

 

An EKF algorithm with the aim of estimating the states of the extended induction motor model 

given in Equations (8-9) , which will be used in the sensorless control of the induction motor,  has been 

developed. The Kalman filter (KF) method used for this purpose is a recursive algorithm in which a 

statistical state space model is added to the system together with the measured outputs to optimally 

estimate states in multiple input & multiple output systems. System and measurement noises are 

considered as white noise and the optimality of the state estimation can be obtained by minimizing of 

the covariance of the estimation error. Since KF cannot express an optimal filter performance for non-

linear problems, this difficulty is solved by the EKF method, which implements a linearization approach 

on the current state estimation. This method demands the discretization of the extended induction motor 

model (Alsofyani et al., 2012;  Barut et al., 2003).      

 

𝑥
^

𝑒
−(𝑘 + 1) = 𝐴𝑒𝑥

^

𝑒
−(𝑘) + 𝑤 (𝑘) = 𝑓

^

𝑒(𝑥𝑒(𝑘), 𝑢𝑒(𝑘)) + 𝑤 (𝑘)                                     (14) 

 

𝑧(𝑘) = Hx𝑒(𝑘) + 𝑣(𝑘)                               (15) 

 

where 𝐴𝑒 is the state matrix, 𝐻 is the measurement matrix, 𝑤(𝑘),  and 𝑣(𝑘)  are process and 

measurement noise, respectively, 𝑧 is the measurement vector.  

The state and measurement vectors are defined as  
𝑥𝑒 = [𝐼sα 𝐼sβ 𝜓rα 𝜓rβ 𝜔𝑚 T𝐿l]𝑇 

z = [𝐼sα 𝐼sβ  𝜔𝑚  ]𝑇 

EKF estimates the state variables by using model inputs and measurements. EKF method has the 

same "prediction-correction" algorithm as the Kalman filter, but linearizes the state and observation 

matrix at every step of estimation and correction by evaluating the Jacobian matrices and their partial 

derivatives (Singh and Singh , 2013). The procedure of the EKF algorithm is depicted in Figure 2. 

 
Figure 2. EKF algorithm. 

 

The linearized approximation of the nonlinear model can be implemented by using the current 

estimation of the states and inputs as 
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𝐹𝑒(𝑘) =
∂𝑓𝑒(𝑥𝑒(𝑘),𝑢𝑒(𝑘))

∂𝑥𝑒(𝑘)
|
𝑥
^
𝑒(𝑘),𝑢

^
𝑒(𝑘)

                                     (16)

              

𝐹𝑢(𝑘) =
∂𝑓𝑒(𝑥𝑒(𝑘),𝑢𝑒(𝑘))

∂𝑢𝑒(𝑘)
|
𝑥
^
𝑒(𝑘),𝑢

^
𝑒(𝑘)

                    (17)

                                

The EKF algorithm can be defined in a recursive form as 

 

𝑃−(𝑘 + 1) = 𝐹𝑒(𝑘)𝑃𝑘(𝑘)(𝐹𝑒(𝑘))
𝑇
+ 𝐹𝑢(𝑘)𝐷𝑢(𝑘)(𝐹𝑢(𝑘))

𝑇
+ 𝑄 (𝑘)                         (18) 

 

K(k) = 𝑃−(𝑘 + 1)𝐻𝑇(𝐻𝑃−(𝑘 + 1)𝐻𝑇 + 𝑅 (𝑘))−1                       (19) 

 

𝑥
^

𝑒(𝑘 + 1) = 𝑓
^

𝑒(𝑥𝑒(𝑘), 𝑢
^

𝑒(𝑘)) + K(k) (𝑧 (𝑘) − 𝐻𝑥𝑒
^
(𝑘))                          (20)    

        

𝑃(𝑘 + 1) = (I − K(k)𝐻)𝑃−(𝑘 + 1)                              (21) 

 

where I is the symbol of unit matrix.    

The values of the covariance matrix of the system noise Q and output noise R, can have a very large 

impact on the performance of the EKF. Both of these matrices should be determined by focusing the 

stochastic properties of the corresponding noises. Since the system and measurement noise Q and R 

have uncertainty, the their valus can be usually obtained by using the trial-and-error process (Bogosyan 

et al., 2007).      

Q and R can be given for this simulation as:        

     
𝑄 = diag{2𝑥10−4 2𝑥10−4 2𝑥10−6   2𝑥10−6 10−4 10−3} 

𝑅 = diag{0.1 0.1    0.1} 

 

State variables 𝜓
^

rα , 𝜓
^

rβ, are hence 𝑇
^

𝑚 are estimated from the EKF as:     

 

𝑇
^

𝑚 =
𝑛𝑝𝐿𝑚

𝐿𝑟
′ (𝐼sβ𝜓

^

rα − 𝐼sα𝜓
^

rβ)                           (22) 

 

The electric torque, which has a remarkable error during the transition of the speed command, 

shares the same pattern as the adhesion force (𝐹
^

𝑎).  

 

RESULT AND DISCUSSION 

 

The presented model is simulated to validate the accuracy. Parameters of the traction system used in 

the simulation are listed in Table 2.  

 
Table 2. Rated values and parameters of the traction system. 

𝑷𝑵(𝐤𝐖) 𝒇𝐬𝐍(𝐇𝐳) 𝑵𝒎(𝐫𝐩𝐦) 𝑼𝐬𝐍(𝑽) 𝑹𝒔(𝜴) 𝑳𝒓
′ (𝑯) 𝒓𝟎(𝒎) 

250 50 2900 750 0,2890 2,39.10−3 0,34 

𝑱𝐞𝐪𝐯(𝐤𝐠.𝒎
𝟐) 

𝑩𝒎(
𝑵.𝒎

𝐫𝐚𝐝. 𝒔
) 

𝒏𝒑 𝑹𝒓
′ (𝜴) 𝑳𝒔(𝑯) 𝑳𝒎(𝑯) 𝒏𝒊 

0,2463 0,0023  2 0,217 1, 9.10−3 1, 95.10−3 6,92 
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The contact ellipse semi-axes, longitudinal Kalker’s coefficient, normal force at the wheel-rail 

contact, shear modulus are calculated as 𝑎 = 1.5 × 10−3 𝑚, 𝑏 = 7.5 × 10−3 𝑚 , 𝐶11 = 4.12, 𝐹𝑁 = 50 𝑘𝑁,

𝐺 = 8.4 × 1010
 𝑁

𝑚2
 . The creep curves with respect to the various wheel-rail contact conditions are 

depicted in Figure 3 and the optimum creepages ξ∗, which corresponds to maximum adhesion forces. 

 
Figure 3. Creepage-adhesion force curves with different contact conditions. 

 

The pattern of the reference motor speed (𝜔𝑚
𝑟𝑒𝑓
) is represented in Figure 4.  

 
Figure 4. Reference motor speed. 

 

The friction coefficients are designed according to the following equation to simulate dry, wet, low 

and very low contact conditions between the wheel and the rail.   

 

𝜇0 = {
0.55 𝑡 ≺ 10
0.3 10 ⩽ 𝑡 ≺ 20

0.06 20 ⩽ 𝑡 ≺ 30
0.03 30 ⩽ 𝑡 ⩽ 35

   

 

The trajectory of the estimated, actual motor speed (𝜔𝑚, �̂�𝑚) and speed error (𝑒𝜔𝑚)  were given in 

Figure 5, respectively.    
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(a) (b) 

Figure 5. a)Trajectory of the estimated and actual motor speed b)The trajectory of the speed error. 

 

It has been shown that the estimator tracks the speed trajectory with a lower bound of error and 

converges fast. In Figure 6, the trajectory of the estimated load torque and load torque error (�̂�𝐿 , 𝑒𝑇𝐿 ) is 

represented, respectively.    

  
(a) (b) 

Figure 6. a) The trajectory of the estimated load torque b) The trajectory of the load torque error. 

 

The trajectory of the estimated motor currents (𝐼sα, 𝐼𝑠𝛽) and current errors (𝑒𝐼sα, 𝑒𝐼𝑠𝛽) are represented 

in Figure 7 and Figure 8, respectively.   

 

  

(a) (b) 

Figure 7. The trajectories of the estimated motor currents a) in α axis b) in 𝛽 axis. 
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(a) (b) 

Figure 8. The trajectories of the motor current errors a) in α axis b) in 𝛽 axis. 

 

 

The trajectory of the estimated rotor fluxes (𝜓
^

rα, 𝜓
^

r𝛽) and flux errors (𝑒𝜓rα, 𝑒𝐼𝜓r𝛽) are represented in 

Figure 9 and Figure 10, respectively.      

 

  
(a) (b) 

Figure 9. The trajectories of the estimated rotor fluxes a) in α axis b) in 𝛽 axis. 

 

 
 

(a) (b) 

Figure 10. The trajectories of the motor flux errors a) in α axis b)in 𝛽 axis. 

 

The estimation and actual dynamics of the motor torque (�̂�𝑚, T𝑚) are given in Figure 11. 
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Figure 11. Actual and estimated pattern of the motor torque. 

 

It can be seen that, when the speed command suddenly changes, the error usually changes in a 

narrow band interval. It can be concluded that the estimator tracks the trajectories of the states with 

higher precision and converges fast. In Figure 12., the trajectory of the estimated adhesion force (�̂�𝑎) can 

be derived from the part of the Equation (1) by  using estimated load torque data as �̂�𝐿 =
2𝑟0

𝑛𝑖
�̂�𝑎.             

 
Figure 12. The trajectory of the estimated adhesion force. 

 

With the help of the estimated longitudinal creep force, it is possible to determine the level of the 

adhesion present, and the effect of the railway vehicle upon the track infrastructure. The performances 

has been checked into thoroughly at various dynamic operation conditions both simulated and 

estimated results.  
 

CONCLUSION 

 

The real-time information about the wheel-rail contact has become essential to satisfy the consistent 

traction and braking performance.  A novel method to detect the wheel-rail contact conditions, which 

are very hard to be known in practical applications, has been investigated in this paper. An extended 

Kalman filter (EKF) based condition monitoring is proposed to make it an effective re-adhesion 

controller. The EKF performance was evaluated by comparing the actual and estimated values of load 

current, motor speed, stator current and rotor currents. Then the electric motor torque and adhesion 

force were calculated by moving from the estimated data. It was observed that the EKF responded 
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quickly and estimated with low error value, as the adhesion conditions of the wheel-rail contact varied. 

Different creep curves, which correspond to different contact conditions are utilized in simulations and 

the estimation results are found robust and accurate. The primary aim of this kind of estimation of these 

variables is to design a real-time system, which detects local adhesion conditions, and predicts wear 

generated. With the help of such an estimator, the performance of the re-adhesion controller can be 

improved, the creepage is reduced, and maximum traction is achieved. It has been proved that proposed 

EKF estimatior has a superiority in estimation while changing the contact conditions.  These predictions 

can be translated into a useful condition monitoring phase, which seeks to reveal the creep 

characteristics at low creep values using a scale roller rig, and validation of the techniques generated by 

a multi-bodied dynamic simulation package such as SIMPACK and data obtained from a full scale 

railway vehicle. These applications shall be carried out in future works. The lateral dynamics of the 

vehicle can also be included in the estimator. The estimator performance under varying traction load can 

also be studied, and several adaptive tuning algorithms should be applied to improve the estimation 

accuracy and stability with the help of sensors,which perform better resolution, and high sampling rate 

of the data acquisition system.   

 

REFERENCES 

 

Alonge, F., D'ippolito, F., 2010, “Extended Kalman Filter for Sensorless Control of Induction Motors”, 

First Symposium on Sensorless Control for Electrical Drives, Padova, Italy, 9-10 July 2010. 

Alsofyani, I. M., Idris, N., Sutikno, T., Alamri, Y. A., 2012, “An optimized Extended Kalman Filter for 

Speed Sensorless Direct Troque Control of An İnduction Motor”,  IEEE International Conference 

on Power and Energy, Kota Kinabalu, Malaysia, 2-5 December 2012.    

Barut, M., Bogosyan, O., Gokasan, M., 2002, “EKF Based Estimation for Direct Vector Control of 

Induction Motors”, IEEE 28th Annual Conference of the Industrial Electronics Society, Sevilla, 

Spain, 5-8 November 2002. 

Barut, M., Bogosyan, S., Gokasan, M., “EKF Based Sensorless Direct Torque Control of IMs in The Low 

Speed Range”,  Proceedings of the IEEE International Symposium on Industrial Electronics, 

2005, ISIE 2005, Dubrovnik, Croatia, 20-23 June 2005.   

Barut, M., Bogosyan, S., Gokasan, M., 2007, “Speed-Sensorless Estimation for Induction Motors Using 

Extended Kalman Filters”, IEEE Transactions on Industrial Electronics, Vol. 54(1), pp. 272-280.   

Barut, M., Gokasan, M., Bogosyan, O., 2003, “An extended Kalman Filter Based Sensorless Direct Vector 

Control of Induction Motors”, IECON'03. 29th Annual Conference of the IEEE Industrial 

Electronics Society (IEEE Cat. No.03CH37468), Roanoke, VA, USA, 2-6 November 2003. 

Bogosyan, S., Barut, M., Gokasan, M., 2007, “Braided Extended Kalman Filters for Sensorless Estimation 

In İnduction Motors at High-Low/Zero Speed”, IET Control Theory & Application, Vol. 1(4), pp. 

987-998.  

Cai, L., Zhang, Y., Zhang, Z., Liu, C., Lu, Z., 2003, “Application of 

Genetic Algorithms in EKF for Speed Estimation of an Inducion Motor”, 

Proc. on IEEE Power Electronics Specialist Conference, Acapulco, Mexico, Vol. 1, pp. 345-349, 15-19 

June 

2003.  

Charles, G., Goodall, R., 2006, “Low Adhesion Estimation”,  IET International Conference on Railway 

Condition Monitoring, Birmingham, UK 29-30 Nov. 2006 

 Gaspar, P., Szabo, Z.,  Bokor, J., 2006, “Observer Based Estimation of The Wheel-Rail Friction 

Coefficient”,  IEEE Conference on Computer Aided Control System Design. Munich, Germany 4-6 

Oct. 2006  

Hussain, I., Mei, T. X., Ritchings, R. T., 2013, “Estimation of Wheel–Rail Contact Conditions and 

Adhesion Using The Multiple Model Approach”, Vehicle System Dynamics, Vol. 51(1), pp. 32-53. 



444  C. UYULAN, M.GOKASAN 

 

Iwnicki, S., 2003, “Simulation of Wheel-Rail Contact Forces”, Fatigue Fracture of Engineering Materials and 

Structures, Vol. 26(10), pp. 887-900.  

Kalker, J., 1968, “On The Rolling Contact of Two Elastic Bodies in The Presence of Dry 

Friction”,  Wear, Vol. 11(4), pp. 303.   

Kawamura, A., Takeuchi, K., Furuya, T., Cao, M., Takaoka, Y., Yoshimoto, K., 2003, “Measurement of 

Tractive Force and the New Maximum Tractive Force Control by the Newly Developed 

Tractive Force Measurement Equipment”, IEEJ Transactions on Industry Applications, Vol. 123(8), 

pp. 885-893.  

Matsumoto, Y., Eguchi, N., Kawamura, A.,  2001, “Novel Re-Adhesion Control for Train Traction System 

of The "Shinkansen" with The Estimation of Wheel-to-Rail Adhesive Force”,  IECON'01, 27th 

Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243), Denver, CO, USA, 
Vol. 2, pp. 1207-1212 29 Nov.-2 Dec. 2001   

Mei, T., Hussain, I., 2010, “Detection of Wheel-Rail Conditions for Improved Traction Control”, IET 

Conference on Railway Traction Systems, Birmingham, UK  13-15 April 2010 

Polach, O., 1999, “A Fast Wheel-Rail Forces Calculation Computer”,  Veh. Syst. Dyn. Suppl, 1999, Vol. 

33, pp. 728–739. 

Radionov, I. A., Mushenko, A. S., 2015, “The method of estimation of adhesion at “wheel-railway” 

contact point”,  2015 International Siberian Conference on Control and Communications (SIBCON), 

Omsk, Russia, 21-23 May 2015. 

Rizzo, R., Iannuzzi, D., 2002, “Indirect Friction Force Identification for Application in Traction Electric 

Drives”, Mathematics and Computers in Simulation, Vol. 60(3-5), pp.379-387.  

Shi, K., Chan, T., Wong, Y., Ho, S., 2002, Speed Estimation of An İnduction Motor Drive Using an 

Optimized Extended Kalman Filter”,  IEEE Transactions on Industrial Electronics, Vol. 49(1), 

pp.124-133.  

Singh, K., Singh, M., 2013, “Design of Kalman Filter for Induction Motor Drive” Students Conference on 

Engineering and Systems (SCES), Allahabad, India, 12-14 April 2013. 

Wang, S., Xiao, J., Huang, J., Sheng, H., 2016, “Locomotive Wheel Slip Detection Based on Multi-Rate 

State İdentification of Motor Load Torque”,  Journal of the Franklin Institute, 2016, Vol. 353(2), 

pp. 521-540.  

Ward, C. P., Goodall, R. M.,  Dixon, R., 2011, “Contact Force Estimation in the Railway Vehicle Wheel-

Rail Interface”, IFAC Proceedings Volumes, Vol. 44(1), pp. 4398-4403. 

Ward, C., Goodall, R., Dixon, R., Charles, G., 2012, “Detection of Low Adhesion in The Railway Vehicle 

Wheel/Rail İnterface: Assessment of Multi-Bodied Simulation Data,  Proceedings of 2012 

UKACC International Conference on Control, Cardiff, UK, 3-5 September 2012. 

Zhao, Y., Liang, B., 2013, “Re-adhesion Control for A Railway Single Wheelset Test Rig Based on The 

Behaviour of The Traction Motor”,  Vehicle System Dynamics, Vol. 51(8), pp. 1173-1185.  

Zhao, Y., Liang, B., Iwnicki, S., 2012, “Estimation of the Friction Coefficient Between Wheel and Rail 

Surface Using Traction Motor Behaviour”, Journal of Physics: Conference Series, 2012, Vol. 364, 

012004.   

Zhao, Y., Liang, B., Iwnicki, S., 2014, “Friction Coefficient Estimation Using an Unscented Kalman 

Filter”,  Vehicle System Dynamics, Vol. 52(Sup1), pp. 220-234.  


