

Proceedings of the APAN – Research Workshop 2016

ISBN 978-4-9905448-6-7

Abstract— SDN architecture overwhelms traditional network

architectures by software abstraction for a centralize control of

the entire networks. It provides manageable network

infrastructures that consist millions of computing devices and

software. In this work, we present multi-domain SDNs

architecture with an integration of Spamhaus server. The

proposed method allows SDN Controllers to update the

Spamhaus server with latest detected spam signatures. It can

help to prevent any spam email from entering others SDN

domains. We also discussed a method for analyzing SMTP spam

frames using a decision tree algorithm. We use Mininet tool to

simulate the multi-domain SDNs with the Spamhaus server. The

simulation results show that a packet Retransmission Timeout

(RTO) between server and client can help to detect the SMTP

spam frames.

Index Terms—SDN, Software Define Network, SMTP, Spam,

Botnet, SDN Security, OpenFlow, Mininet

I. INTRODUCTION

SDN is an architecture for multi devices communication in

integrated networks. It provides manageable network

infrastructures that consist millions of computing devices and

software. Due to growing of device connectivity and speeds,

tradition networks such as LANs and WANs are no longer

capable of optimizing all connectivity (e.g. network routing)

and to secure networks from multi-faceted security threats.

Traditional firewall and IDS are not capable of preserving a

large network such as monitoring all inbound and outbound

packets because the internet data is too huge to be monitored.

Cloud Computing, Bigdata and IoT create deadly network

traffics for the traditional network architecture, which it will

cause an obsoleting and soon it will cripple the existing

network functionality. SDN is one of a promising architecture

that allows huge WANs/MANs to be controlled using a

high-level of abstraction. The SDN architecture splits the

centralize control of the entire networks (control plane) from

an actual network data and routing process (data plane). All

network behavior will be programmed in the centralize control

using programmatic software such as SDN Application and

Controller. The SDN architecture also provides a centralized

security control that can help to prevent illegitimate access or

network attacks such as DDos.

In this work, we present multi-domain SDNs architecture

with an integration of Spamhaus server. The proposed method

allows SDN Controllers to update the Spamhaus server with

latest detected spam signatures. It can help to prevent any spam

email from entering others SDN domains. We also discussed

the method for analyzing SMTP spam frames using a decision

tree algorithm. We divided this work into six sections. The first

Introduction section provides an introduction to SDN and

traditional network architecture. It follows the Related Works

section that discusses SDN and STMP attack using botnets.

After that, we discuss methodology adopted to prevent spam in

SMTP protocol in the Methodology section. In the Simulation

Setup section, we simulate the proposed method using an

actual data in Mininet tool. We present simulation results and

discussion using the Mininet in the Results and Discussion

section. Finally, we conclude this work and propose a future

work in the Conclusion section.

II. RELATED WORKS

This section presents related works:

A. Software Define Network (SDN)

SDN is an architecture for multi devices communication in

integrated networks. In the initial stage, it allows multiple

LANs devices and systems to be integrated into WAN

networks. The first SDN began after Java language released by

Sun Microsystem, which AT&T Labs Geoplex project used

Java to program APIs to implement middleware networking

[1]. The Geoplex provided open networking standard for

network integrations and communications such as system

An Analysis of Botnet Attack for SMTP Server

using Software Define Network (SDN)

Mohd Zafran Abdul Aziz1,2, Koji Okamura3
1Faculty of Electrical Engineering,Universiti Teknologi Mara,40450, Shah Alam, Selangor.

Malaysia
2Department of Advanced Information Technology, Graduate School of Information Science

and Electrical Engineering, Kyushu University, Japan
3Research Institute for Information Technology, Kyushu University, Japan

E-Mails: zafran.fke@gmail.com, oka@ec.kyushu-u.ac.jp

21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceedings of the Asia-Pacific Advanced Network

https://core.ac.uk/display/229876686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

managements and provisions, integrated security and system

authentication, network monitoring etc. The most prominent

functionality of the Geoplex is it allows network IPs to be

mapped to one or many system and services [2]. In 2008,

research and development for SDN continue by UC Berkeley

and Stanford University [3]. By 2011, Open Networking

Foundation (ONF) continues to develop OpenFlow for SDN

[4]. The ONF provides SND resources (e.g. switch

specification) for product manufacturer and software

developer to implement SDN using the OpenFlow’s standard

and protocol [5].

Figures 1 and 2 show a general SDN architecture and its

stacks. In SDN topology, all network nodes or devices are

controlled using a control plane. The architecture splits the

control plane from actual network data and routing process

(data plane). The infrastructure layer communicates with SDN

Controller using Control Data Plane (CDP) API (e.g.

OpenFlow). All nodes or routers in the SDN network will use

the CDP API for all control plane communication. The control

layer consists of SDN Control Software or Controller, which

extract information from the infrastructure layer such as a list

of all devices in the SDN network and its states. It does not

provide the entire information of all connected devices, but it

provides an abstract view of the SDN network and topology.

The application layer uses information from the control layer

for a network abstraction administrative such as network

analytics; network, system and topology managements etc.

[6,7].

Fig. 1. SDN architecture [8].

Many SDN runs over a virtualized architecture, which the

application and control layers may execute in various devices

that including a virtual machine in cloud computing [10,11].

This allows application and control layers to be distributed on

various computing platforms, which it will increase flexibility,

mobility and computing power using the virtualized

architecture, system and devices [12–14].

In this work, we will not discuss the advantage of SDN in

distributed systems, but we want to assess a network security

through SDN. The next subsection will discuss further the

network security and threats in the SDN.

Fig. 2. SDN’s stacks [9].

B. Network Security by SDN

Distributed systems such as cloud computing and Internet of

Things (IoT) are not the main factors for organizations to

migrate theirs network infrastructure into SDN, another main

reason is a network security that offered by the SDN [15,16].

The SDN allows an abstraction of network security that

provides a central authority in a network, which previously

hard to be done by traditional distributed networking systems

and infrastructures [4,5]. There are also new security problems

introduces by an implementation the SDN in network

infrastructure, but we are not going to discuss in this

publication and one may refer to [16–19] for further

examinations regarding these security problems. The

following paragraphs will discuss security threats and its

countermeasures using SDN.

N. Hoque et al. [20] discuss tools use by attackers and

network administrators in SDN. Major attacks on SDN are Dos

and DDos [21] that mounted by botnets [22]. Most botnets will

try to prevent access to computing resources in the SDN by

draining computing capability of the target computing system.

An attacker(s) frequently used SYN-Flooding Attack [23],

which sends a flood of TCP/SYN packets (by zombie

machines) and leave the 3-ways TCP handshake protocol

hang-up without ACK packets. This attack applied to all

application protocols that are used TCP based connections

such as SMTP, FTP, HTTP, DNS etc. Traditional network

security systems and infrastructures rely on Intrusion

Detection System (IDS) and firewall to protect LAN, WAN

from the internet. It might work well for a small and

manageable network such as LAN, but not for multi-WANs in

a large organization (or a join of multiple organizations) in

distance geographical locations. Furthermore, applying SDN

for the entire internet is far away than a current topic, which

requires, at least a successful implementation of SDN for

multi-WANs. We skipped this part, but we want to narrow

down our discussion that to improve an efficiency for botnet

attack detections on SMTP protocol. The next paragraph will

explore the existing methods in preventing the botnet attacks

on SMTP protocol.

The most common way to detect botnet attacks are using a

signature-based of known attacks [24], and a real-time

detection of network anomalies [24,25] using IDS. Both

22

methods used congestion control and drop packet to block

DDos attacks, which called Pushback method [21]. The

signature-based requires others systems to provide the

signature of known attacks, which can be derived from the

real-time detection from a shared database. Routers within the

same LANs/WANs may share or distribute attack signatures,

for examples a list of blacklisted source and destination IPs,

payloads, Time-to-Live (TTL) [26] etc. Another method to

detect potential attacks is using a network traffic classification.

It can help to identify packets send by botnets at local and

enterprise networks [27]. This method may be integrated into

the real-time detection method.

In this work, we used Round-Trip Time (RTT) and

Retransmission Timeout (RTO) to detect an anomaly in SMTP

traffic, which similar to works done by [27–32]. We enhance

the existing detection methods using a new decision tree

algorithm for improving detection efficiency. Second, we

integrated Spamhaus [33] into SDN for a detection botnet

controller list (BCL) among SDN domains. The Spamhaus

server will serve all SDN Domain Controllers with latest

botnet controller list (BCL). We discuss the proposed

solutions in the Methodology section.

III. METHODOLOGY

This section will present the problem statements and

proposed solutions. Based on latest literature as

aforementioned for botnet focusing on smtp protocol detection

in SDN, RTT and RTO are used for anomaly detection in

SMTP traffic. However, the aforementioned literature did not

integrate the multi-domain SDNs with Spamhaus server. S.

Seeber et al [33] proposed to use the existing database (spam

signatures) to secure SDN domain. We propose to integrate the

Spamhaus server with multi-domain SDNs, which allow SDN

Controllers to update the Spamhaus with latest botnet

controller list (BCL). This will mitigate any botnet attack on

smtp server from entering others SDN domains because all

SDN domains will have the latest latest botnet controller list

(BCL) from the Spamhaus server.

Fig. 4. Decision tree

Figure 3 show the proposed method for the Spamhaus

implementation in multi-domain SDNs. For an example, a

bulk botnet attack SMTP server were executed by botnets in

Domain A. Controller SDN in the Domain A will verify all

SMTP frames using information from the Domain A

Controller. The Domain A will have latest botnet controller list

Fig. 3. Integrated Spamhaus in multi-domain SDNs.

23

(BCL) because the Domain A Controller is connected to the

Spamhaus server. At the same time, SDN Controller in the

Domain A will begin to learn and detect anomaly traffic in the

Domain A. The SDN Controller will use the existing

algorithms and the proposed decision tree algorithm to analyze

the SMTP frames as shown in Figures 4 and 5. The SDN

controller Domain A will all blocked traffic based on

algorithm decision tree and this information is forwarded and

will update the Spamhaus server. This will enable botnet

controller list (BCL) sharing between multi-domain SDNs.

Fig. 5. Decision tree algorithm

IV. SIMULATION SETUP

This section discussed the simulation setup using Mininet

[34]. It allows one to create a virtual network and its

components. The Mininet being used by OpenFlow for SDN

simulation [35]. Figure 3 shows the overview architecture of

simulation setup for this work. The simulation used the

internet traffic dataset from University New Brunswick

(UNB), Canada [36]. The same dataset was used by E. B. Beigi

et al. [32] for botnet detection in their publication. Figures 6

and 7 show the simulation of the dataset using Mininet.

Fig. 6. A flow graph of SYN flood

Figures 8 and 9 show two traffics from seven traffic

datasheets that were tested in the simulation. Figures 10 and

Table 1 show the summary of max RTT and RTO for seven

traffic datasheets. These results can be used to identify botnet

smtp attack packets in a network. Refer to the decision tree in

Fig. 4, any packet does not satisfy the decision tree is dropped

from the SDN domain.

Refer to the Botnet training and testing columns, any packet

RTO between server and client greater than 2.2 seconds (a

baseline from botnet training), the packet must be dropped.

The RTO and RTO2 (2nd time runs of the RTO) provided

significant results for a botnet detection. The 3WHS is

expected to be less or equal to 0.045 second, which provides an

unimportant timing for a botnet detection.

Fig. 7. A flow graph botnet for SYN flood (comment)

V. RESULTS & DISCUSSION

Refer to the Jun-12 until Jun-16 columns, the RTT between

client and server must be less or equal to 0.03 second. The

RTO and RTO2 are less than zero second, which provides an

insignificant timing for a botnet detection. The 3WHS is

expected to be less or equal to 0.045 second, which also

provides an unimportant timing for a botnet detection. Refer to

Figure 11 and Table 2, the TTL for botnet training and testing

are equal to 128.

Fig. 8. A total of SMTP packets per second on 13 Jun 2010

Fig. 9. A total of SMTP packets per second on 15 Jun 2010

24

Fig. 10. A summary of max RTT and RTO for seven traffic datasheets

Table 1
A summary of max RTT and RTO for seven traffic datasheets

Fig. 11. A graph of average TTL for packet for seven traffic datasheets

Table 2
A table of average TTL for packet for seven traffic datasheets

VI. CONCLUSION

We have presented multi-domain SDNs with Spamhaus

server. The proposed method allows SDN Controllers to

update the Spamhaus server with latest botnet controller

list (BCL) and it will help to prevent any botnet attack on

smptp server from entering others SDN domains. We also

discussed the method for analyzing SMTP traffics flow using

decision tree algorithm. The method utilized a packet RTO

between server and client to detect the SMTP traffic flow. We

plan to implement the multi-domain SDNs with Spamhaus

server as a future work. We hope the future experiment will

provide a solution for securing the multi-domain SDNs from

botnet attack to smtp server.

REFERENCES
[1] G. Vanecek, GeoPlex: Universal Service Platform for IP Network-based

Services, 1997.

http://www.cerias.purdue.edu/news_and_events/events/security_seminar/

details/index/56218-noZCKZKV1F3c-372-hq15nTbsPk31bQ8W.
[2] N.V. Michah Lerner, George Vanecek, Middleware Networks: Concept,

Design and Deployment of Internet Infrastructure, Kluwer Academic
Publishers Norwell, 2000.

[3] S. Shenker, Gentle Introduction to Software-Defined Networking, 2012.

https://www.youtube.com/watch?feature=player_detailpage&v=eXsCQd

shMr4&t=168.

[4] Open Networking Foundation, Software-Defined Networking: The New

Norm for Networks, 2012.
[5] O.N. Foundation, OpenFlow, (2016).

https://www.opennetworking.org/sdn-resources/openflow/57-sdn-resourc

es/onf-specifications/openflow?layout=blog (accessed January 29, 2016).
[6] S.H. Park, B. Lee, J. You, J. Shin, T. Kim, S. Yang, RAON: Recursive

abstraction of OpenFlow networks, Proc. - 2014 3rd Eur. Work.

Software-Defined Networks, EWSDN 2014. (2014) 115–116.
doi:10.1109/EWSDN.2014.29.

[7] V.K. Gurbani, M. Scharf, T. V. Lakshman, V. Hilt, E. Marocco,

Abstracting network state in Software Defined Networks (SDN) for
rendezvous services, IEEE Int. Conf. Commun. (2012) 6627–6632.

doi:10.1109/ICC.2012.6364858.

[8] Mouli, Why SDN Concepts Need To Extend Into The Wan, (2016).
http://www.aryaka.com/blog/why-sdn-concepts-need-to-extend-into-the-

wan/ (accessed January 31, 2016).

[9] SDxCentral, Inside SDN Architecture, (2016).
https://www.sdxcentral.com/resources/sdn/inside-sdn-architecture/

(accessed January 31, 2016).

[10] S. Azodolmolky, SDN-based cloud computing networking, in:
Transparent Opt. Networks, 2013: pp. 2–5.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6602678.

[11] R. Jain, S. Paul, Network virtualization and software defined networking
for cloud computing: A survey, IEEE Commun. Mag. 51 (2013) 24–31.

doi:10.1109/MCOM.2013.6658648.

[12] A. Dixit, F. Hao, S. Mukherjee, Towards an elastic distributed sdn
controller, in: Proc. …, 2013: pp. 7–12. doi:10.1145/2491185.2491193.

[13] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, et al.,

Onos, in: Proc. Third Work. Hot Top. Softw. Defin. Netw. - HotSDN ’14,
2014: pp. 1–6. doi:10.1145/2620728.2620744.

[14] R. Beverly, K. Sollins, Exploiting Transport-Level Characteristics of

Spam, (2008). http://18.7.29.232/handle/1721.1/40287.

[15] S. Scott-Hayward, G. O’Callaghan, S. Sezer, Sdn Security: A Survey,

2013 IEEE SDN Futur. Networks Serv. (2013) 1–7.

doi:10.1109/SDN4FNS.2013.6702553.
[16] R. Kl, P. Smith, OpenFlow: A Security Analysis, in: 21st IEEE Int. Conf.

Netw. Protoc., 2013. doi:10.1109/ICNP.2013.6733671.

[17] R.L. Smeliansky, SDN for network security, Sci. Technol. Conf. (Modern
Netw. Technol. (MoNeTeC), 2014 First Int. (2014) 1–5.

doi:10.1109/MoNeTeC.2014.6995602.

[18] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, et al.,
Heuristic Approaches to the Controller Placement Problem in Large Scale

SDN Networks, IEEE Trans. Netw. Serv. Manag. 12 (2015) 4–17.

doi:10.1109/TNSM.2015.2402432.
[19] Z.Y. and F.B. Wang Shuling, Li Jihan, Research on SDN Architecture and

Security, Telecommun. Sci. 29 (2013) 117–122.
[20] N. Hoque, M.H. Bhuyan, R.C. Baishya, D.K. Bhattacharyya, J.K. Kalita,

Journal of Network and Computer Applications Network attacks :

Taxonomy , tools and systems, 40 (2014) 307–324.

[21] J. Ioannidis, S.M. Bellovin, Implementing Pushback: Router-Based

Defense Against DDoS Attacks, 2014. doi:10.1007/s13398-014-0173-7.2.

[22] S. Lim, J. Ha, H. Kim, Y. Kim, S. Yang, A SDN-oriented DDoS blocking
scheme for botnet-based attacks, 2014 Sixth Int. Conf. Ubiquitous Futur.

Networks. (2014) 63–68. doi:10.1109/ICUFN.2014.6876752.

[23] R.K. Sahu, N.S. Chaudhari, A performance analysis of network under
SYN-flooding attack, IFIP Int. Conf. Wirel. Opt. Commun. Networks,

25

WOCN. (2012) 2–4. doi:10.1109/WOCN.2012.6335561.

[24] M.-S.K.M.-S. Kim, H.-J.K.H.-J. Kong, S.-C.H.S.-C. Hong, S.-H.C.S.-H.

Chung, J.W. Hong, A flow-based method for abnormal network traffic

detection, 2004 IEEE/IFIP Netw. Oper. Manag. Symp. (IEEE Cat.

No.04CH37507). 1 (2004) 1–14. doi:10.1109/NOMS.2004.1317747.
[25] P. Nevlud, M. Bures, L. Kapicak, J. Zdralek, Anomaly-based Network

Intrusion Detection Methods Keywords Detection of Network Anomalies,

(2013) 468–474. doi:10.15598/aeee.v11i6.877.
[26] B. Xiao, W. Chen, Y. He, E.H.M. Sha, An active detecting method against

SYN flooding attack, Proc. Int. Conf. Parallel Distrib. Syst. - ICPADS. 1

(2005) 709–715. doi:10.1109/ICPADS.2005.67.
[27] H. Chen, C. Mao, S. Tseng, An Approach for Detecting a Flooding Attack

Based on Entropy Measurement of Multiple E-Mail Protocols, 18 (2015)

79–88. doi:10.6180/jase.2015.18.1.10.
[28] C. Schafer, Detection of Compromised Email Accounts Used by a Spam

Botnet with Country Counting and Theoretical Geographical Travelling

Speed Extracted from Metadata, 2014 IEEE Int. Symp. Softw. Reliab.
Eng. Work. (2014) 329–334. doi:10.1109/ISSREW.2014.32.

[29] H. Luo, B. Fang, X. Yun, Anomaly detection in SMTP traffic, Proc. -

Third Int. Conf. onInformation Technol. New Gener. ITNG 2006. 2006
(2006) 408–413. doi:10.1109/ITNG.2006.34.

[30] G. Kakavelakis, J. Young, Auto-learning of SMTP TCP Transport-Layer

Features for Spam and Abusive Message Detection., Lisa. (2011).
http://static.usenix.org/events/lisa11/tech/slides/beverly.pdf.

[31] T. Sochor, Overview of e-mail SPAM Elimination and its Efficiency, Res.

Challenges Inf. Sci. (RCIS), 2014 IEEE Eighth Int. Conf. (2014) 1 – 11.
[32] E. Biglar Beigi, H. Hadian Jazi, N. Stakhanova, A.A. Ghorbani, Towards

effective feature selection in machine learning-based botnet detection
approaches, 2014 IEEE Conf. Commun. Netw. Secur. (2014) 247–255.

doi:10.1109/CNS.2014.6997492.

[33] S. Seeber, L. Stiemert, Towards an SDN-Enabled IDS Environment, in:
Commun. Netw. Secur., 2015: pp. 751–752.

[34] Mininet Team, Mininet, (2016). http://mininet.org/ (accessed February 22,

2016).
[35] M. Gupta, J. Sommers, P. Barford, Fast, accurate simulation for SDN

prototyping, Proc. Second ACM SIGCOMM Work. Hot Top. Softw.

Defin. Netw. - HotSDN ’13. (2013) 31. doi:10.1145/2491185.2491202.
[36] U.N. Brunswick, CTU-Malware-Capture-Botnet-1, (2015).

http://mcfp.felk.cvut.cz/publicDatasets/CTU-Malware-Capture-Botnet-1/

(accessed May 20, 2012).

Mohd Zafran Abdul Aziz has received

his first Bachelor Degree (B. Eng of

Electrical and Computer Science) from

Kumamoto University ,Japan on March

2001 and obtained his Master Degree

(MSc of Engineering) from Tokyo

University Of Technology ,Japan on

March 2008. He also has 6 years in

industrial as project engineer in several

multinational company focus on industrial automation and

instrument engineer. Currently on study leave as lecturer from

Computer Department of Universiti Teknologi MARA, Shah

Alam ,Selangor , Malaysia .

 He is currently a PhD candidate and belong to Department

of Advanced Information Technology, Graduate School of

Information Science and Electrical Engineering, Kyushu

University, Japan.

Koji Okamura is a Professor at Research

Institute for Information Technology,

Kyushu University and Director of

Cybersecurity Centre Kyushu University,

Japan. He received B.S and M.S. Degree

in Computer Science and Communication

Engineering and Ph.D. in Graduate School

of Information Science and Electrical

Engineering from Kyushu University,

Japan in 1988,1990 and 1998,respectively.

He has been a researcher of MITSUBISHI Electronics

Corporation Japan for several years and has been a Research

Associate at the Graduate School of Information Science ,Nara

Institute of Science and Technology ,Japan and Computer

Centre, Kobe University , Japan. He’s area of interest is Future

Internet and Next Generation Internet, Multimedia

Communication and Processing, Multicast/IPV6/QoS , Human

Communication over Internet and Active Network. He is a

member of WIDE, ITRC , GENKAI , HIJK project and Key

person of Core University Program on Next Generation

Internet between Korea and Japan sponsored by JSPS/KOSEF.

26

