

Proceedings of the APAN – Research Workshop 2017

ISBN 978-4-9905448-7-4



Abstract—The Software-Defined Networking (SDN) is

considered to be an improved solution for applying flexible

control and operation recently in the network. Its characteristics

include centralized management, global view, as well as fast

adjustment and adaptation. Many experimental and research

networks have already migrated to the SDN-enabled architecture.

As the global network continues to grow in a fast pace, how to use

SDN to improve the networking fields becomes a popular topic in

research. One of the interesting topics is to enable routing

exchanges among the SDN-enabled network and production

networks. However, considering that many production networks

are still operated on legacy architecture, the enabled SDN routing

functionalities have to support hybrid mode in operation. In this

paper, we propose a routing exchange mechanism by enabling

reactive BGP peering actions among the SDN and legacy network

components. The results of experiments show that our SDN

controller is able to mask as an Autonomous System (AS) to

exchange routing information with other BGP routers.

Index Terms—Software-Defined Networking, OpenFlow, BGP,

Software-Defined Routing.

I. INTRODUCTION

S the evolution of the network, there are more and more

requirements for new protocol testing or devices update

in all network environments. However, under current network

architecture, it takes both huge time and financial cost to carry

out these tasks. For example, routers play an indispensable role

in the environment such as data centers or backbone networks

in which even shutdown a little while for update will result in

an unpredictable loss. Besides, network management and

performance tuning is quite challenging because that network

devices are usually vertically-integrated black boxes [1]. The

development of devices is mastered by the vendors, whereas

customers can only passively wait for the expensive and

inflexible products provided by them.

The above-mentioned example shows the limit of the legacy

 Hao-Ping Liu, Pang-Wei Tsai, Wu-Hsien Chang and Chu-Sing Yang are

with the Institute of Computer and Communication Engineering, Department
of Electrical Engineering, National Cheng Kung University, Taiwan (email:

alen6516@gmail.com, pwtsai@ee.ncku.edu.tw, shane50306@gmail.com,

csyang@ee.ncku.edu.tw)

network. Eventually, networks with this closed architecture

become ossified [2] and lead to a bottleneck for the progress of

the real world. Yet the emergence of Software-Defined

Networking (SDN) [3] provides a solution to this problem.

SDN brought the concept that separating the data plane and the

control plane of a network. Allowing network operators to

directly operate networks in a centralized manner with an

independent controller in the control plane. In addition, the

devices in the data plane such as switches, just simply perform

the forwarding of packets according to the policies set by the

SDN controller. There are already some ongoing researches

and implements of SDN [4], and Figure 1 shows the most

popular referred SDN architecture [5].

In this SDN architecture, developers can easily deploy their

innovations just by programming applications in the

application layer. The core network services in the control

layer interact with the applications through the Northbound

Interface such as a RESTful Application Programming

Interface (API) [6], and dynamically modify the forwarding

behavior of the network devices in the infrastructure layer

through the Southbound Interface, that is, the OpenFlow

protocol [2]. A device in the infrastructure layer maintains

flow tables which are composed of several flow rules. A flow

rule contains a match field and an instruction field. The match

field defines a series of characteristics of a packet, and the

instruction field defines several actions to manipulate a

matched packet. When a packet comes into a data plane device,

a pipeline procedure starts to compare the incoming packet

through the match field of these flow rules, and finally figure

out the output port or other operations to this packet.

Design and Development of the Reactive BGP

peering in Software-Defined Routing Exchanges

Hao-Ping Liu, Pang-Wei Tsai, Wu-Hsien Chang and Chu-Sing Yang

A
Fig. 1. The logical view of a SDN architecture [5].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceedings of the Asia-Pacific Advanced Network

https://core.ac.uk/display/229876632?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:alen6516@gmail.com
mailto:pwtsai@ee.ncku.edu.tw
mailto:shane50306@gmail.com
mailto:csyang@ee.ncku.edu.tw

Through centralizing the control intelligence and modifying

the flow tables, SDN breaks the monopoly of the

vender-dependent network appliances by using commodity

hardware with a free, open source Network Operating System

(NOS) [7]. Network hardware and software can then evolve

independently, and the function developers turn to just focus

on the exploitation of their new ideas without concerning about

the difficulty in the subsequent deployment. SDN augments

the programmability and virtualization while simultaneously

simplifies the configuration and troubleshooting of networks.

Though many challenges still in processing, SDN has been

considered as the revolution to the current networking. Besides

the newly deployment of SDN in wide-area networks [8], the

conversion from legacy IP networks to the SDN or hybrid

networks is also an ongoing research issue now [4]. The

challenge is, as Sezer et al. [9] has pointed out, it requires a

hybrid infrastructure in which the legacy and SDN-enabled

network nodes can operate in harmony. Such interoperability

needs SDN communication interfaces to provide backward

compatibility with the existing IP routing to retain the

connection between the SDN network and other legacy IP

networks. To solve this challenge, Lin et al. [10], Rothenberg

et al. [12], and Thai et al. [13] have mentioned the utilization of

BGP [14]. Due to its stable and widely deployed in current IP

networks, keeping using BGP during the gradual update is

more practical.

In this paper, we design a virtual BGP entity that combines a

reactive BGP peering mechanism to the SDN control logic.

With this design, the SDN domain is able to act as a transit AS

which can reactively build BGP sessions with external legacy

networks and propagate the routing information as well as the

inter-domain IP flows from one external network to the others.

The remainder of this paper is organized as follows. Section II

gives a brief introduction to the related works. Section III

demonstrates the comprehensive design of our system. Section

IV brings an experiment to verify the functionality of our

implementation. Section V gives the discussion over the

experimental results and indicates the potential improvements.

Finally, a conclusion of this paper is provided in Section VI.

II. RELATED WORK

There are already some researches and implementations

about designing a BGP-enabled SDN framework or a hybrid

system that associating SDN with IP routing. These works

bring about many great ideas, and this section gives a brief

introduction to them.

2.1 RouteFlow [15] uses virtual machines (VMs) to control

the behavior of OpenFlow switches by mapping each

active ports of switches to a virtual network interface on

VMs one by one. These VMs run open source routing

protocols such as BGP and Open Shortest Path First

(OSPF) [16], and form a virtual topology by connecting

with each other. Therefore, VMs can exchange the

routing information and control the behavior of the

switches as if they are running a distributed control plane.

2.2 Open Source Hybrid IP/SDN networking (OSHI) [17]

combines the regular IP routing with SDN-based

forwarding and provides a hybrid IP/SDN network node

on Linux. This hybrid node uses Quagga software [18] for

OSPF routing and Open vSwitch software [19] for

OpenFlow-based switching. Packets can be routed in

regular IP method or SDN-based paths (SBPs)

alternatively by considering the headers at different

protocol levels. Evaluations are also presented to display

the performance of SBPs.

2.3 Hong et al. [20] propose a hybrid system consisting of

both legacy forwarding devices and programmable SDN

switches. They study how to satisfy a variety of traffic

engineering goals such as load balancing or fast failure

recovery during the incremental deployment of SDN. An

evaluation on real ISP and enterprise topology is also

presented with discussion.

2.4 SDN-IP [10] and BTSDN [11] both propose a peering

manner between SDN and IP networks. In their SDN

context, several legacy BGP routers are attached to the

OpenFlow switches. These BGP routers are responsible

for peering with the external IP networks. The routing

information received by these routers in the data plane

should be synchronized to the SDN-IP application in the

SDN controller via an out-of-band control link as Figure 2

shows. This approach utilizes legacy BGP routers as a

BGP proxy for the SDN domain. However, considering

the spirit of SDN, that is, centralizing all configuration

and control of the network, we think removing the proxy

BGP routers and just integrating the BGP control

mechanism into the SDN/OpenFlow architecture is more

intuitive. This idea then turns out to be our motive.

III. SYSTEM DESIGN

Since the biggest difference between SDN-IP and our

system is that we combine the BGP capacity to the SDN

control logic rather than using a legacy BGP router in the data

plane as a proxy, the BGP messages from neighbors are

actually encapsulated as OpenFlow packet-in messages and

sent to the controller by switches. Similarly, the replies from

the controller are also encapsulated as OpenFlow packet-out

messages and sent to the corresponding switch which will

forward it to the corresponding neighbor afterward. The details

of the operation will be described in the following article. In

this chapter, part A gives an overall view of the scenario. Part

Fig. 2. The architecture of SDN-IP network peering [9].

B describes how to achieve the peering mechanism by the

cooperation of modules designed by us. Part C shows the

receipt, handling and advertisement of the routing information

as well as the subsequent update of Routing Information Base

(RIB). Finally, part D describes how we fulfill the requirement

of software-defined routing for IP traffics over the SDN

network.

A. Overview

Our approach simplifies the peering mechanism from

SDN-IP by removing the legacy BGP routers in the SDN data

plane. Figure 3 describes the scenario that two legacy networks

with AS number 65001 and 65002 connect to a SDN network

with AS number 65000. Each external network has an edge

BGP router (named r1 or r2) which are used to peer with the

SDN domain. In the SDN domain, s1 and s2 are

OpenFlow-enabled switches that connect to r1 and r2

respectively, and the remaining OpenFlow-enabled switches in

the SDN domain are named as intermediate switches. All of

these switches are controlled by a SDN controller.

In the controller, we leverage virtual network interfaces and

several programming modules to constitute a virtual BGP

entity to handle the procedure of the External BGP (eBGP)

sessions. Figure 4 shows all of the modules used by the virtual

BGP entity with their organization. After an initialization by

Main module, every BGP control message from the neighbors

(i.e., r1 and r2) will match a proactively installed table-miss

flow rule in the data plane and then be encapsulated as an

OpenFlow packet-in message to the controller. Protocol

Handler module is responsible for parsing the BGP packets in

these packet-in messages and deciding the next step, such as

replying a BGP open message or a BGP keep-alive message to

start or maintain an eBGP session. In this manner, our virtual

BGP entity can properly interoperate with the neighbors.

B. Peering Mechanism

To achieve the BGP peering, what we need to handle is the

entire control of the communication. So our Protocol Handler

module must be able to respond correctly for different kinds of

requests including ARP, TCP handshake and BGP queries. In

the initialization, Main module acquires neighbors’

information by reading a configuration file set in advance.

Then the system gets ready to parse the incoming packets and

starts waiting for the requests from the external BGP routers.

To respond to the layered design of TCP/IP suite, our Protocol

Handler is also designed in a layered manner. For an incoming

packet from a neighbor, Protocol Handler judges and calls

submodules, including ARP Handler, ETH Handler, IPv4

Handler, TCP Handler and BGP Handler, to handle packet

headers at different protocol level, and generates the

appropriate reply. Afterward, Main module assigns the

corresponding switch to send out this reply back to the

neighbor. This is how a control packet from neighbors be

handled.

C. RIB Update

We need to update the RIB of the virtual BGP entity once a

BGP update message is recognized by Protocol Handler. An

RIB update event will be triggered and inform BGP Handler to

take out the information, including Network Layer

Reachability Information (NLRI), path attributes and

withdrawn routes (if any) from the packet, then RIB Handler

uses this information to insert or delete prefixes in the local

RIB. Finally, after the RIB update, our BGP entity should also

advertise this update information to the other neighbors to

continue the information propagation.

D. Software-defined Routing Mechanism

Our virtual BGP entity has learned and propagated the

routing information among neighbors after RIB updates. Each

external BGP router regards our virtual BGP entity as the next

hop to the others. For the external IP flows from one external

BGP router to another, that is, the inter-domain IP flows, we

design a software-defined routing mechanism to arranges a

path inside the SDN data plane. This path, called flow path, is

composed of a series of switches that can forward the IP

traffics one switch by one switch over the SDN domain.

However, OpenFlow switches can do nothing before flow

rules have been installed to them. Also, the destination MAC

address of the IP flows is still the MAC address of our virtual

BGP entity. Some of above functionalities are based on our

previous works [21][22]. The following descriptions will

introduce how Path Handler module dynamically install and

remove flow rules to achieve the routing of the external IP

flows.

1) Flow Path Installation

To prepare a path between two corresponding neighbors

for a new inter-domain IP flow. In current prototype we

select the shortest path among the switches. The first

packet of this IP flow causes a packet-in event to the

controller and triggers Path Handler to install a series of

flow rules to the switches along the selected flow path.

Switches with these flow rules match the input port as well

Fig. 3. The scenario of our approach.

Fig. 4. The organization of our modules.

as the destination IP prefix of the packets, and send out the

matched packets to an output port. Traffics of the IP flows

can be routed along this path by continuously matching

these rules from one switch to the next switch and finally

reach the corresponding neighbor.

2) Layer 2 and Layer 3 Routing Mechanism

Even though we have arranged a path for the

inter-domain traffics from one neighbor to another

neighbor, the question is that the destination MAC address

of these traffics are still the MAC address of the virtual

interface because the sender regards our virtual BGP entity

as the next hop. If switches just forward them, packets will

be dropped due to the wrong destination MAC address. So

in order to satisfy layer 2 connection, we add a destination

MAC rewriting action to the flow rule. As for satisfying

layer 3 routing, we also add a Time To Live (TTL) value

decreasing action to this flow rule. Eventually, after a

packet matches this flow rule, the packet’s TTL value will

be subtracted by 1 and the destination MAC address will be

changed to the MAC address of another neighbor just as

how a router routes a IP packet.

3) Flow Path Elimination

Besides installation, we still need a mechanism to

eliminate the useless flow rules to avoid the excessive

entries on the switches. OpenFlow provides an idle timeout

control for the removal of a flow rule. We use this feature

and set a proper timeout period for flows in different

priority levels. Then the flow rule will be automatically

eliminated from the flow table if no packets match it before

the timer expires. Finally, combining the flow path

installation with elimination mechanism, we can

dynamically insert and remove flow paths in the SDN

domain.

IV. EXPERIMENT RESULTS

At current stage, we devoted to the architecture design and

implement the first prototype. The following experiments are

designed to verify the feasibility of our idea, including the

handling of the BGP sessions as well as the software-defined

routing mechanism for the inter-domain IP flows.

We adopt Mininet [23] as the network emulator for this

experiment. Researchers can use Mininet to design a

customized virtual network testbed on a single Linux kernel

simply with its virtualization capability. We run the

experimental topology shown in Figure 5 on Mininet. This

topology shows three legacy IP networks with AS number

65001, 65002, and 65003 respectively. They all connect to a

SDN domain with AS number 65000. There is a BGP routers

in each legacy IP network (i.e., r1, r2, and r3) and each BGP

router individually connects to a host in their domain (i.e., h1,

h2, and h3). In the data plane of the SDN domain are three

inter-connected OpenFlow switches (i.e., s1, s2, and s3) which

link to a legacy network respectively. These OpenFlow

switches are all controlled by single SDN controller in the

SDN control plane.

For r1, r2, and r3, we adopt Quagga routing suite version

0.99.22.4 as the BGP software. Quagga is a network routing

software suite that can provide a Unix-like system with

multiple routing mechanisms. In the SDN domain, we adopt

Open vSwitch version 2.0.2 implemented in Mininet as the

switch software for s1, s2, and s3, and Ryu [24] version 4.10 as

the SDN controller software. Ryu is a SDN framework based

on Python module components. Ryu provides many well

defined APIs that simplify the development of the

Fig. 5. Experimental topology.

Fig. 6. Routing tables of each external router.

Fig. 7. The successful Ping test between hosts.

management and control in the SDN environment. Both

Mininet and Ryu software are running on the same VM which

is equipped with 2 processors, 4GB RAM, and runs

Ubuntu-14.04-desktop-amd64 as the OS. This VM is managed

by the VirtualBox software [25] running on a PC with 12GB

RAM, intel core i7-4770 CPU, and Microsoft windows 10 as

the OS.

To validate feasibility of our design, we start Ryu with our

approach as an application to control this topology. After a

little while for building BGP sessions and exchanging routing

information, we check the routing table of the three external

BGP routers. As the routing tables shown in Figure 6, every

BGP router records the IP prefix of other ASes. Thus we

confirm that our SDN domain can properly receive the BGP

update messages from an external IP network and advertise

these routes to the others. Then we do the Ping tests between

the hosts in different legacy networks (i.e., h1, h2, and h3) to

make sure the software-defined routing of IP traffics over the

SDN domain. As Figure 7 that shows the successful Ping

requests and replies, the software-defined routing mechanism

of our approach is proved.

V. DISCUSSION

The above experimental result illustrates that SDN domain

with our approach is able to exchange routing information with

neighbors. IP flows are also allowed to traverse the SDN

domain with the software-defined routing mechanism. For the

external BGP routers, the SDN domain performs just as same

as a legacy BGP router. We have achieved the basic stitching

between these two type of network paradigms. However, to

become more practical, the BGP routing mechanism should

still satisfy several requirements such as high capacity of RIB,

fast IP lookup, high reliability and so on. We have not tested

our system with the BGP routers in real internet environment.

Scalability issues are predictable due to the restriction of the

size of flow tables in the switches and the performance of

single controller. Furthermore, there are still many topics

worth studying by considering the advantages of SDN based

on this approach. For example, now the flow paths are selected

by only considering shortest path of the switches, we can

design a best flow path selection algorithm by thinking of more

conditions like switches’ load or flow priority, and even design

a flow migration mechanism to prevent a switch failure or link

break. These are all potential issues which we have planned to

implement in the future.

VI. CONCLUSION

In this paper, we design a suite of reactive BGP peering and

a software-defined routing mechanism that can mask a SDN

domain as a transit AS to propagate routing information and IP

flows among the adjacent external networks. This design can

increase the compatibility of SDN and legacy IP networks

during the incremental deployment. To integrate BGP control

into the SDN control logic, we design a virtual BGP entity in

the SDN controller. By utilizing OpenFlow packet-in and

packet-out messages, our system enables the SDN controller to

exchange BGP messages with neighbors through the

OpenFlow switches in the data plane. Besides, our approach

also provides the software-defined routing mechanism for the

inter-domain IP traffics. This mechanism arranges a flow path

and enables the IP flows to traverse a SDN domain with the

achievement of layer 3 IP routing by decreasing TTL value and

layer 2 Ethernet delivery by rewriting the destination MAC

address. In the end, the result of the experiment proves the

feasibility of our approach as an application in the Ryu

controller to be a transit AS that propagates the routing

information and inter-domain IP traffics among multiple

domains.

ACKNOWLEDGEMENT

This research was supported in part by the Ministry of Science

and Technology of Taiwan, under contracts

No.104-2221-E-492-002-MY2 and 105-2218-E-001-001.

Authors are grateful to the National Center for

High-Performance Computing, TWAREN NOC, and

OF@TEIN+ community for their support.

REFERENCES

[1] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka and T.
Turletti, "A survey of software-defined networking: Past, present, and

future of programmable networks," IEEE Communications Surveys &
Tutorials, vol. 16, no. 3, pp. 1617-1634, 2014.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.

Rexford, S. Shenker and J. Turner, "OpenFlow: enabling innovation in
campus networks," ACM SIGCOMM Computer Communication

Review, vol. 38, no. 2, pp. 69-74, 2008.

[3] N. McKeown, "Software-defined networking," INFOCOM keynote talk,
vol. 17, no. 2, pp. 30-32, 2009.

[4] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg, S.

Azodolmolky and S. Uhlig, "Software-defined networking: A
comprehensive survey," Proceedings of the IEEE, vol. 103, no. 1, pp.

14-76, 2015.

[5] Open Networking Foundation (ONF). (2012, April 13) Software-defined
networking: The new norm for networks. [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/sdn-resourc

es/white-papers/wp-sdn-newnorm.pdf
[6] R. T. Fielding and R. N. Taylor, "Principled design of the modern Web

architecture," ACM Transactions on Internet Technology (TOIT), vol. 2,

no. 2, pp. 115-150, 2002.
[7] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B.

Lantz, B. O'Connor, P. Radoslavov and W. Snow, "ONOS: towards an

open, distributed SDN OS," in Proceedings of the third workshop on Hot
topics in software defined networking. ACM, 2014, pp. 1-6.

[8] O. Michel and E. Keller, "SDN in wide-area networks: A survey," in

Proceedings of the IEEE Fourth International Conference on Software
Defined Systems (SDS), 2017, pp. 37-42.

[9] S. Sezer, S. Scott-Hayward, P. K. Chouhan, B. Fraser, D. Lake, J.

Finnegan, N. Viljoen, M. Miller and N. Rao, "Are we ready for SDN?
Implementation challenges for software-defined networks," IEEE

Communications Magazine, vol. 51, no. 7, pp. 36-43, 2013.

[10] P. Lin, J. Hart, U. Krishnaswamy, T. Murakami, M. Kobayashi, A.
Al-Shabibi, K.-C. Wang and J. Bi, "Seamless interworking of SDN and

IP," ACM SIGCOMM computer communication review, Vol. 43, No. 4,

pp. 475-476, 2013.
[11] P. Lin, J. Bi and H. Hu, "Internetworking with SDN using existing BGP,"

in Proceedings of the Ninth International Conference on Future Internet

Technologies. ACM, 2014, p. 21.
[12] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador, C. N. A. Corrêa, S.

C. de Lucena and R. Raszuk, "Revisiting routing control platforms with

the eyes and muscles of software-defined networking," in Proceedings of
the first workshop on Hot topics in software defined networks. ACM,

2012, pp. 13-18.

[13] P. W. Thai, and J. C. De Oliveira, "Decoupling BGP policy from routing
with programmable reactive policy control," in Proceedings of the ACM

conference on CoNEXT student workshop. ACM, 2012, pp. 47-48.

[14] Rekhter, Yakov, T. Li, and S. Hares, "A border gateway protocol 4
(BGP-4)," No. RFC 4271, 2005.

[15] M. R. Nascimento, C. E. Rothenberg, M. R. Salvador, C. N. A. Corrêa, S.

C. de Lucena, and M. F. Magalhães, "Virtual routers as a service: the
routeflow approach leveraging software-defined networks," in

Proceedings of the 6th International Conference on Future Internet

Technologies. ACM, 2011, pp. 34-37.
[16] J. Moy, "OSPF specification," No. RFC 1131, 1989.

[17] S. Salsano, P. L. Ventre, L. Prete, G. Siracusano, M. Gerola, and E.

Salvadori, "OSHI-Open Source Hybrid IP/SDN networking (and its
emulation on Mininet and on distributed SDN testbeds)," in Proceedings

of the IEEE Third European Workshop on Software Defined Networks

(EWSDN), 2014, pp. 13-18.
[18] P. Jakma and D. Lamparter, "Introduction to the Quagga Routing Suite, "

IEEE Network, vol.28, no 2, pp. 42-48, 2014.

[19] "Open vSwitch, An Open Virtual Switch," 2014. [Online]. Available:
http://openvswitch.org/

[20] D. K. Hong, Y. Ma, S. Banerjee, and Z. M. Mao, "Incremental

deployment of SDN in hybrid enterprise and ISP networks," in
Proceedings of the Symposium on SDN Research. ACM, 2016, p. 1.

[21] P.-W. Tsai, P.-W. Cheng, H.-Y. Chou, M.-Y. Luo, and C.-S. Yang,

"Toward inter-connection on OpenFlow research networks," in
Proceedings of Asia-Pacific Advanced Network, vol. 36, 2013, pp. 9-16.

[22] P.-W. Tsai, P.-M. Wu, C.-T. Chen, M.-Y. Luo, and C.-S. Yang, "On the

implementation of path switching over SDN-enabled network: A
prototype," in Proceedings of the IEEE International Conference on

Consumer Electronics-Taiwan, 2015, pp. 90-91.

[23] "Mininet: An instant virtual network on your laptop (or other PC)," 2012.
[Online]. Available: http://mininet.org/

[24] "Ryu SDN Framework," 2013. [Online]. Available:
https://osrg.github.io/ryu/

[25] "Oracle VM VirtualBox," 2008. [Online]. Avaliable:

https://www.virtualbox.org

Hao-Ping Liu received the Bachelor's degree in the

Department of Electrical Engineering from National Cheng

Kung University and now is pursuing his Master’s degree in

the Institute of Computer and Communication Engineering at

National Cheng Kung University. His research interest focuses

on software-defined networking.

Pang-Wei Tsai received the Bachelor's degree in the

Department of Electrical Engineering and the Master's degree

in the Institute of Computer and Communication Engineering

from National Cheng Kung University. His research interest is

on software-defined networking, cloud computing,

virtualization and network management. He is also

experienced in designing the large-scale network testbed. His

current research is focus on developing the future Internet

testbed on TaiWan Advanced Research and Education

Network.

Wu-Hsien Chang received the Bachelor's degree from the

Department of Computer Science and Information

Engineering, National Chung Cheng University, Chiayi,

Taiwan, in 2016. He is currently pursuing the Master's degree

in the Institute of Computer and Communication Engineering,

National Cheng Kung University, Tainan, Taiwan. His

research topic focuses on software-defined networking.

Chu-Sing Yang is a Professor of Electrical Engineering in the

Institute of Computer and Communication Engineering at

National Cheng Kung University, Tainan, Taiwan. He

received the B.Sc. degree in Engineering Science from

National Cheng Kung University in 1976 and the M.Sc. and

Ph.D. degrees in Electrical Engineering from National Cheng

Kung University in 1984 and 1987, respectively. He joined the

faculty of the Department of Electrical Engineering, National

Sun Yat-sen University, Kaohsiung, Taiwan, as an Associate

Professor in 1988. Since 1993, he has been a Professor in the

Department of Computer Science and Engineering, National

Sun Yat-sen University. He was the chair of the Department of

Computer Science and Engineering, National Sun Yat-sen

University from August 1995 to July 1999, and the director of

the Computer Center, National Sun Yat-sen University from

August 1998 to October 2002. He joined the faculty of the

Department of Electrical Engineering, National Cheng Kung

University, Tainan, Taiwan, as a Professor in 2006. He

participated in the design and deployment of Taiwan

Advanced Research and Education Network and served as the

deputy director of National Center for High-performance

Computing, Taiwan from January 2007 to December 2008.

His research interests include future classroom/meeting room,

intelligent computing, network virtualization.

