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Abstract—The Software-Defined Networking (SDN) is 

considered to be an improved solution for applying flexible 

control and operation recently in the network. Its characteristics 

include centralized management, global view, as well as fast 

adjustment and adaptation. Many experimental and research 

networks have already migrated to the SDN-enabled architecture. 

As the global network continues to grow in a fast pace, how to use 

SDN to improve the networking fields becomes a popular topic in 

research. One of the interesting topics is to enable routing 

exchanges among the SDN-enabled network and production 

networks. However, considering that many production networks 

are still operated on legacy architecture, the enabled SDN routing 

functionalities have to support hybrid mode in operation. In this 

paper, we propose a routing exchange mechanism by enabling 

reactive BGP peering actions among the SDN and legacy network 

components. The results of experiments show that our SDN 

controller is able to mask as an Autonomous System (AS) to 

exchange routing information with other BGP routers.  

 
Index Terms—Software-Defined Networking, OpenFlow, BGP, 

Software-Defined Routing. 

 

I. INTRODUCTION 

S the evolution of the network, there are more and more 

requirements for new protocol testing or devices update 

in all network environments. However, under current network 

architecture, it takes both huge time and financial cost to carry 

out these tasks. For example, routers play an indispensable role 

in the environment such as data centers or backbone networks 

in which even shutdown a little while for update will result in 

an unpredictable loss. Besides, network management and 

performance tuning is quite challenging because that network 

devices are usually vertically-integrated black boxes [1]. The 

development of devices is mastered by the vendors, whereas 

customers can only passively wait for the expensive and 

inflexible products provided by them. 

The above-mentioned example shows the limit of the legacy 
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network. Eventually, networks with this closed architecture 

become ossified [2] and lead to a bottleneck for the progress of 

the real world. Yet the emergence of Software-Defined 

Networking (SDN) [3] provides a solution to this problem. 

SDN brought the concept that separating the data plane and the 

control plane of a network. Allowing network operators to 

directly operate networks in a centralized manner with an 

independent controller in the control plane. In addition, the 

devices in the data plane such as switches, just simply perform 

the forwarding of packets according to the policies set by the 

SDN controller. There are already some ongoing researches 

and implements of SDN [4], and Figure 1 shows the most 

popular referred SDN architecture [5].  

In this SDN architecture, developers can easily deploy their 

innovations just by programming applications in the 

application layer. The core network services in the control 

layer interact with the applications through the Northbound 

Interface such as a RESTful Application Programming 

Interface (API) [6], and dynamically modify the forwarding 

behavior of the network devices in the infrastructure layer 

through the Southbound Interface, that is, the OpenFlow 

protocol [2]. A device in the infrastructure layer maintains 

flow tables which are composed of several flow rules. A flow 

rule contains a match field and an instruction field. The match 

field defines a series of characteristics of a packet, and the 

instruction field defines several actions to manipulate a 

matched packet. When a packet comes into a data plane device, 

a pipeline procedure starts to compare the incoming packet 

through the match field of these flow rules, and finally figure 

out the output port or other operations to this packet. 
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Fig. 1. The logical view of a SDN architecture [5]. 
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Through centralizing the control intelligence and modifying 

the flow tables, SDN breaks the monopoly of the 

vender-dependent network appliances by using commodity 

hardware with a free, open source Network Operating System 

(NOS) [7]. Network hardware and software can then evolve 

independently, and the function developers turn to just focus 

on the exploitation of their new ideas without concerning about 

the difficulty in the subsequent deployment. SDN augments 

the programmability and virtualization while simultaneously 

simplifies the configuration and troubleshooting of networks. 

Though many challenges still in processing, SDN has been 

considered as the revolution to the current networking. Besides 

the newly deployment of SDN in wide-area networks [8], the 

conversion from legacy IP networks to the SDN or hybrid 

networks is also an ongoing research issue now [4]. The 

challenge is, as Sezer et al. [9] has pointed out, it requires a 

hybrid infrastructure in which the legacy and SDN-enabled 

network nodes can operate in harmony. Such interoperability 

needs SDN communication interfaces to provide backward 

compatibility with the existing IP routing to retain the 

connection between the SDN network and other legacy IP 

networks. To solve this challenge, Lin et al. [10], Rothenberg 

et al. [12], and Thai et al. [13] have mentioned the utilization of 

BGP [14]. Due to its stable and widely deployed in current IP 

networks, keeping using BGP during the gradual update is 

more practical.  

In this paper, we design a virtual BGP entity that combines a 

reactive BGP peering mechanism to the SDN control logic. 

With this design, the SDN domain is able to act as a transit AS 

which can reactively build BGP sessions with external legacy 

networks and propagate the routing information as well as the 

inter-domain IP flows from one external network to the others. 

The remainder of this paper is organized as follows. Section II 

gives a brief introduction to the related works. Section III 

demonstrates the comprehensive design of our system. Section 

IV brings an experiment to verify the functionality of our 

implementation. Section V gives the discussion over the 

experimental results and indicates the potential improvements. 

Finally, a conclusion of this paper is provided in Section VI. 

II. RELATED WORK 

There are already some researches and implementations 

about designing a BGP-enabled SDN framework or a hybrid 

system that associating SDN with IP routing. These works 

bring about many great ideas, and this section gives a brief 

introduction to them. 

2.1 RouteFlow [15] uses virtual machines (VMs) to control 

the behavior of OpenFlow switches by mapping each 

active ports of switches to a virtual network interface on 

VMs one by one. These VMs run open source routing 

protocols such as BGP and Open Shortest Path First 

(OSPF) [16], and form a virtual topology by connecting 

with each other. Therefore, VMs can exchange the 

routing information and control the behavior of the 

switches as if they are running a distributed control plane. 

2.2 Open Source Hybrid IP/SDN networking (OSHI) [17] 

combines the regular IP routing with SDN-based 

forwarding and provides a hybrid IP/SDN network node 

on Linux. This hybrid node uses Quagga software [18] for 

OSPF routing and Open vSwitch software [19] for 

OpenFlow-based switching. Packets can be routed in 

regular IP method or SDN-based paths (SBPs) 

alternatively by considering the headers at different 

protocol levels. Evaluations are also presented to display 

the performance of SBPs. 

2.3 Hong et al. [20] propose a hybrid system consisting of 

both legacy forwarding devices and programmable SDN 

switches. They study how to satisfy a variety of traffic 

engineering goals such as load balancing or fast failure 

recovery during the incremental deployment of SDN. An 

evaluation on real ISP and enterprise topology is also 

presented with discussion. 

2.4 SDN-IP [10] and BTSDN [11] both propose a peering 

manner between SDN and IP networks. In their SDN 

context, several legacy BGP routers are attached to the 

OpenFlow switches. These BGP routers are responsible 

for peering with the external IP networks. The routing 

information received by these routers in the data plane 

should be synchronized to the SDN-IP application in the 

SDN controller via an out-of-band control link as Figure 2 

shows. This approach utilizes legacy BGP routers as a 

BGP proxy for the SDN domain. However, considering 

the spirit of SDN, that is, centralizing all configuration 

and control of the network, we think removing the proxy 

BGP routers and just integrating the BGP control 

mechanism into the SDN/OpenFlow architecture is more 

intuitive. This idea then turns out to be our motive. 

III. SYSTEM DESIGN 

Since the biggest difference between SDN-IP and our 

system is that we combine the BGP capacity to the SDN 

control logic rather than using a legacy BGP router in the data 

plane as a proxy, the BGP messages from neighbors are 

actually encapsulated as OpenFlow packet-in messages and 

sent to the controller by switches. Similarly, the replies from 

the controller are also encapsulated as OpenFlow packet-out 

messages and sent to the corresponding switch which will 

forward it to the corresponding neighbor afterward. The details 

of the operation will be described in the following article. In 

this chapter, part A gives an overall view of the scenario. Part 

 
 

Fig. 2. The architecture of SDN-IP network peering [9]. 



 

B describes how to achieve the peering mechanism by the 

cooperation of modules designed by us. Part C shows the 

receipt, handling and advertisement of the routing information 

as well as the subsequent update of Routing Information Base 

(RIB). Finally, part D describes how we fulfill the requirement 

of software-defined routing for IP traffics over the SDN 

network.  

A. Overview 

Our approach simplifies the peering mechanism from 

SDN-IP by removing the legacy BGP routers in the SDN data 

plane. Figure 3 describes the scenario that two legacy networks 

with AS number 65001 and 65002 connect to a SDN network 

with AS number 65000. Each external network has an edge 

BGP router (named r1 or r2) which are used to peer with the 

SDN domain. In the SDN domain, s1 and s2 are 

OpenFlow-enabled switches that connect to r1 and r2 

respectively, and the remaining OpenFlow-enabled switches in 

the SDN domain are named as intermediate switches. All of 

these switches are controlled by a SDN controller. 

In the controller, we leverage virtual network interfaces and 

several programming modules to constitute a virtual BGP 

entity to handle the procedure of the External BGP (eBGP) 

sessions. Figure 4 shows all of the modules used by the virtual 

BGP entity with their organization. After an initialization by 

Main module, every BGP control message from the neighbors 

(i.e., r1 and r2) will match a proactively installed table-miss 

flow rule in the data plane and then be encapsulated as an 

OpenFlow packet-in message to the controller. Protocol 

Handler module is responsible for parsing the BGP packets in 

these packet-in messages and deciding the next step, such as 

replying a BGP open message or a BGP keep-alive message to 

start or maintain an eBGP session. In this manner, our virtual 

BGP entity can properly interoperate with the neighbors. 

B. Peering Mechanism 

To achieve the BGP peering, what we need to handle is the 

entire control of the communication. So our Protocol Handler 

module must be able to respond correctly for different kinds of 

requests including ARP, TCP handshake and BGP queries. In 

the initialization, Main module acquires neighbors’ 

information by reading a configuration file set in advance. 

Then the system gets ready to parse the incoming packets and 

starts waiting for the requests from the external BGP routers. 

To respond to the layered design of TCP/IP suite, our Protocol 

Handler is also designed in a layered manner. For an incoming 

packet from a neighbor, Protocol Handler judges and calls 

submodules, including ARP Handler, ETH Handler, IPv4 

Handler, TCP Handler and BGP Handler, to handle packet 

headers at different protocol level, and generates the 

appropriate reply. Afterward, Main module assigns the 

corresponding switch to send out this reply back to the 

neighbor. This is how a control packet from neighbors be 

handled. 

C. RIB Update 

We need to update the RIB of the virtual BGP entity once a 

BGP update message is recognized by Protocol Handler. An 

RIB update event will be triggered and inform BGP Handler to 

take out the information, including Network Layer 

Reachability Information (NLRI), path attributes and 

withdrawn routes (if any) from the packet, then RIB Handler 

uses this information to insert or delete prefixes in the local 

RIB. Finally, after the RIB update, our BGP entity should also 

advertise this update information to the other neighbors to 

continue the information propagation. 

D. Software-defined Routing Mechanism 

Our virtual BGP entity has learned and propagated the 

routing information among neighbors after RIB updates. Each 

external BGP router regards our virtual BGP entity as the next 

hop to the others. For the external IP flows from one external 

BGP router to another, that is, the inter-domain IP flows, we 

design a software-defined routing mechanism to arranges a 

path inside the SDN data plane. This path, called flow path, is 

composed of a series of switches that can forward the IP 

traffics one switch by one switch over the SDN domain. 

However, OpenFlow switches can do nothing before flow 

rules have been installed to them. Also, the destination MAC 

address of the IP flows is still the MAC address of our virtual 

BGP entity. Some of above functionalities are based on our 

previous works [21][22]. The following descriptions will 

introduce how Path Handler module dynamically install and 

remove flow rules to achieve the routing of the external IP 

flows. 

1) Flow Path Installation 

To prepare a path between two corresponding neighbors 

for a new inter-domain IP flow. In current prototype we 

select the shortest path among the switches. The first 

packet of this IP flow causes a packet-in event to the 

controller and triggers Path Handler to install a series of 

flow rules to the switches along the selected flow path. 

Switches with these flow rules match the input port as well 

 
 

Fig. 3. The scenario of our approach. 

 
 

Fig. 4. The organization of our modules. 



 

as the destination IP prefix of the packets, and send out the 

matched packets to an output port. Traffics of the IP flows 

can be routed along this path by continuously matching 

these rules from one switch to the next switch and finally 

reach the corresponding neighbor. 

2) Layer 2 and Layer 3 Routing Mechanism 

Even though we have arranged a path for the 

inter-domain traffics from one neighbor to another 

neighbor, the question is that the destination MAC address 

of these traffics are still the MAC address of the virtual 

interface because the sender regards our virtual BGP entity 

as the next hop. If switches just forward them, packets will 

be dropped due to the wrong destination MAC address. So 

in order to satisfy layer 2 connection, we add a destination 

MAC rewriting action to the flow rule. As for satisfying 

layer 3 routing, we also add a Time To Live (TTL) value 

decreasing action to this flow rule. Eventually, after a 

packet matches this flow rule, the packet’s TTL value will 

be subtracted by 1 and the destination MAC address will be 

changed to the MAC address of another neighbor just as 

how a router routes a IP packet. 

3) Flow Path Elimination 

Besides installation, we still need a mechanism to 

eliminate the useless flow rules to avoid the excessive 

entries on the switches. OpenFlow provides an idle timeout 

control for the removal of a flow rule. We use this feature 

and set a proper timeout period for flows in different 

priority levels. Then the flow rule will be automatically 

eliminated from the flow table if no packets match it before 

the timer expires. Finally, combining the flow path 

installation with elimination mechanism, we can 

dynamically insert and remove flow paths in the SDN 

domain. 

IV. EXPERIMENT RESULTS 

At current stage, we devoted to the architecture design and 

implement the first prototype. The following experiments are 

designed to verify the feasibility of our idea, including the 

handling of the BGP sessions as well as the software-defined 

routing mechanism for the inter-domain IP flows. 

We adopt Mininet [23] as the network emulator for this 

experiment. Researchers can use Mininet to design a 

customized virtual network testbed on a single Linux kernel 

simply with its virtualization capability. We run the 

experimental topology shown in Figure 5 on Mininet. This 

topology shows three legacy IP networks with AS number 

65001, 65002, and 65003 respectively. They all connect to a 

SDN domain with AS number 65000. There is a BGP routers 

in each legacy IP network (i.e., r1, r2, and r3) and each BGP 

router individually connects to a host in their domain (i.e., h1, 

h2, and h3).  In the data plane of the SDN domain are three 

inter-connected OpenFlow switches (i.e., s1, s2, and s3) which 

link to a legacy network respectively. These OpenFlow 

switches are all controlled by single SDN controller in the 

SDN control plane. 

For r1, r2, and r3, we adopt Quagga routing suite version 

0.99.22.4 as the BGP software. Quagga is a network routing 

software suite that can provide a Unix-like system with 

multiple routing mechanisms. In the SDN domain, we adopt 

Open vSwitch version 2.0.2 implemented in Mininet as the 

switch software for s1, s2, and s3, and Ryu [24] version 4.10 as 

the SDN controller software. Ryu is a SDN framework based 

on Python module components. Ryu provides many well 

defined APIs that simplify the development of the 

 
Fig. 5. Experimental topology. 

 
Fig. 6. Routing tables of each external router. 

Fig. 7. The successful Ping test between hosts. 



 

management and control in the SDN environment. Both 

Mininet and Ryu software are running on the same VM which 

is equipped with 2 processors, 4GB RAM, and runs 

Ubuntu-14.04-desktop-amd64 as the OS. This VM is managed 

by the VirtualBox software [25] running on a PC with 12GB 

RAM, intel core i7-4770 CPU, and Microsoft windows 10 as 

the OS. 

To validate feasibility of our design, we start Ryu with our 

approach as an application to control this topology. After a 

little while for building BGP sessions and exchanging routing 

information, we check the routing table of the three external 

BGP routers. As the routing tables shown in Figure 6, every 

BGP router records the IP prefix of other ASes. Thus we 

confirm that our SDN domain can properly receive the BGP 

update messages from an external IP network and advertise 

these routes to the others. Then we do the Ping tests between 

the hosts in different legacy networks (i.e., h1, h2, and h3) to 

make sure the software-defined routing of IP traffics over the 

SDN domain. As Figure 7 that shows the successful Ping 

requests and replies, the software-defined routing mechanism 

of our approach is proved. 

V. DISCUSSION 

The above experimental result illustrates that SDN domain 

with our approach is able to exchange routing information with 

neighbors. IP flows are also allowed to traverse the SDN 

domain with the software-defined routing mechanism. For the 

external BGP routers, the SDN domain performs just as same 

as a legacy BGP router. We have achieved the basic stitching 

between these two type of network paradigms. However, to 

become more practical, the BGP routing mechanism should 

still satisfy several requirements such as high capacity of RIB, 

fast IP lookup, high reliability and so on. We have not tested 

our system with the BGP routers in real internet environment. 

Scalability issues are predictable due to the restriction of the 

size of flow tables in the switches and the performance of 

single controller. Furthermore, there are still many topics 

worth studying by considering the advantages of SDN based 

on this approach. For example, now the flow paths are selected 

by only considering shortest path of the switches, we can 

design a best flow path selection algorithm by thinking of more 

conditions like switches’ load or flow priority, and even design 

a flow migration mechanism to prevent a switch failure or link 

break. These are all potential issues which we have planned to 

implement in the future.  

VI. CONCLUSION 

In this paper, we design a suite of reactive BGP peering and 

a software-defined routing mechanism that can mask a SDN 

domain as a transit AS to propagate routing information and IP 

flows among the adjacent external networks. This design can 

increase the compatibility of SDN and legacy IP networks 

during the incremental deployment. To integrate BGP control 

into the SDN control logic, we design a virtual BGP entity in 

the SDN controller. By utilizing OpenFlow packet-in and 

packet-out messages, our system enables the SDN controller to 

exchange BGP messages with neighbors through the 

OpenFlow switches in the data plane. Besides, our approach 

also provides the software-defined routing mechanism for the 

inter-domain IP traffics. This mechanism arranges a flow path 

and enables the IP flows to traverse a SDN domain with the 

achievement of layer 3 IP routing by decreasing TTL value and 

layer 2 Ethernet delivery by rewriting the destination MAC 

address. In the end, the result of the experiment proves the 

feasibility of our approach as an application in the Ryu 

controller to be a transit AS that propagates the routing 

information and inter-domain IP traffics among multiple 

domains. 
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