
Proceedings of the Asia-Pacific Advanced Network 2011 v. 32, p. 45-52.

The Design and Implementation of the Defender Cloud on

TWAREN Backbone

Ming-Chang Liang, Hui-Min Tseng, Shin-Ruey Hsieh, Wei-Jie Liau, Jyun-Jie Chen, Te-

Lung Liu, Jee-Gong Chang

National Center for High-performance Computing / No. 28, Nan-Ke 3rd Rd., Hsin-Shi Dist.,

Tainan City, Taiwan, R.O.C. 74147

E-Mails: {liangmc,n00hmt00,hsiehsr,wjl,jjchen,tlliu,n00cjg00}@nchc.narl.org.tw

Tel.: +886-6-5050940#724; Fax: +886-6-5055909
http://dx.doi.org/10.7125/APAN.32.6 ISSN 2227-3026

Abstract: Defender Cloud is a cloud based backbone network defending system

having full scope over the whole backbone network. Rather than detecting suspicious

network activities on a local area network, it collects and integrates the flow data from

all connecting members and all entrances of a backbone network. After analyzing by a

proposed cloud based distributed processing model, the corresponding defensive

reaction can be carried out in a global basis. Thus its protection can cover the whole

network, even including member institutions without their own firewall. This paper

illustrates the design, verification and future perspective of the Defender Cloud, with

an emphasis on the distributed processing of the flow data.

Keywords: cloud computing; distributed processing; information security; backbone

defending; TWAREN.

1. Introduction

As the TWAREN [1] network operating center, we have done various researches and

developed network management solutions to increase the availability of the backbone network [2,

3]. Meanwhile, we started to realize the unique value of network security solutions in the

backbone network perspective.

TWAREN is a national research and education network. Through its points of presence

(POPs) and connecting members, TWAREN reaches most places throughout the country. The

widespread of TWAREN enables the opportunity to provide network security solutions in a

cde
Typewritten Text
45

cde
Typewritten Text

global and cost effective way. Before the network backbone takes part in the security, most

schools and connecting institutions have to buy their own firewalls and intrusion detection

systems, which are usually expensive, especially for those models capable of handling very high

network bandwidth. Even with such equipment, there is no mechanism to integrate them thus all

schools still defend alone. Although the Information and Communication Security Technology

Center of Taiwan provides incident alert service, it is operated manually and lacks systemic

integration.

In contrast, our cloud based backbone joint defense, the Defender Cloud, collects flow data

from all POP’s equipment and collaborating schools. Once an intrusion or attack is detected in

one place, it will be presented and all related flows will be identified and analyzed globally. All

other victims around the whole network will be located and notified. In cases of denial of service

(DOS) attacks, since the source IP may be faked, only a backbone level defense mechanism like

Defender Cloud can trace back to and block it from the real entrance point. Therefore this is the

most significant advantage of the Defender Cloud because all in campus firewalls don't have the

global view of the flow. If properly authorized, the Defender Cloud can also actively block those

suspicious victims to prevent endangering the whole network by those cracker controlled victim

computers. Therefore schools with or without network security equipment all benefit from the

backbone based defense mechanism. The Defender Cloud alleviate the security pressure of all

connecting members, thus it becomes the most efficient way to increase the security of the whole

research and education network.

Figure 1. The backbone view of the Defender Cloud.

2. The encountered issues

The first issue is the huge volume of flow data. While collecting flow data from all POPs

ensures the completeness of information, the data volume is extremely huge. Even the second

largest VPN on TWAREN, the research network, could generate 6.22 million flows in 5 minutes

cde
Typewritten Text
46

on June 30, 2010, which means 20,000 to 30,000 flows per second. It was in the summer

vacation; therefore the volume can be significantly larger during semesters. Furthermore, the

largest VPN, the TANet, can be still several times larger. The processing of this kind of data

volume significantly exceeds the capacity of a single computer, thus a distributed computing

model is definitely necessary.

The second issue is the insufficient engineering capacity to deduce the characteristics and

traits of malicious activities out from the huge flow data pool and convert them into feasible

filter rules. Although the commercial products have already done a good job on detecting

malicious activities, using their output as sources needs extensive programming to accommodate

the different interfaces and formats of different equipment. Another alternative is to train the

7x24 full time operators of the TWAREN NOC to manually write filter rules out from the

network security equipment outputs. Although not fully automatic, the participation of human

intelligence yields higher quality of results.

To overcome all these issues, the Defender Cloud must be designed as a distributed system

and capable of loading all modules on the fly therefore the analyzing modules can be

independently developed and come into effective at any time when loaded.

3. The cloud based architecture design

The architecture of the Defender Cloud is shown in figure 2. Of which the cloud represents

the distributed processing platform of the defense system. The system has two inputs. One for

flow data, as shown on the upper side of the cloud, and another for target searching filter, as

shown on the lower side of the cloud.

Figure 2. The Defender Cloud Architecture.

cde
Typewritten Text
47

The flow data, composed of flow datagrams from all routers, enter the system through a

virtual entrance, the dispatcher, as shown in the figure 2. The dispatcher may consist of multiple

load balancers and a DNS to split the incoming flow data to multiple filter machines behind the

load balancers. The key role of the dispatcher is to split the load as quickly as possible to avoid

becoming a bottleneck in the whole system.

Typically routers send flow data in UDP datagrams. Each UDP datagram contains several

flow records. Since routers don't include their IP or any other information capable of identifying

themselves in the datagram header of flow version 5, the dispatcher is designed to modify the

source IP of the UDP packets as the incoming router IP to indicate its real source.

After receiving the flow datagram, the filter will firstly record the aforementioned router IP

from the source IP. Then the srcaddr and dstaddr records of each flow records will be sent into

the blacklist comparison tree, respectively. If the srcaddr or dstaddr matches any records in the

blacklist, the corresponding flow record will be packaged into an independent UDP datagram

and then sent to the designated IP and port (the analyzer) according to the matching blacklist

comparison tree. Multiple analyzer programs run simultaneously to analyze the filtered flow

record datagram, with each type of analyzer having its own rules and targeting at a certain type

of flow record. The results of analyzing will be reported to the controller.

The fundamental idea of the Defender Cloud is to take advantage of the distributed processing

model to accommodate the huge volume of the flow records. All the dispatcher, filter and

analyzer layers can be constructed by numerous machines to boost the performance. Furthermore,

although the analyzing task is usually very complicated, the three layers design ensures that most

irrelevant flow data have been filtered by the filter layer, thus only a very small fraction of the

flow reach the analyzer, which minimize the possible performance issue.

Table 1. Example of the blacklist.

IP Port Type Analyzer Analyzer Port ……

A.A.A.A 1234 botnet 1 3333

B.B.B.B 4321 Fake-IP 2 4444

C.C.C.C 1122 Cracker 3 5555

Another key design of the Defender Cloud is to transmit all data with UDP datagram. Without

the TCP ACK mechanism, the transmission performance is not affected by the distance and the

network delay. Thus the infrastructure of the cloud can then be easily separated into different

locations to strengthen the system flexibility without performance loss. In addition, UDP

datagram transmission does not need the TCP three way handshaking, which makes the

cde
Typewritten Text
48

modification to the source IP of the UDP datagram possible. It brings the source router

information all the way to the analyzer.

To establish the filter rules, the output of network security equipment from collaborating

schools is used and processed by the controller to establish the blacklists. A simplified example

of the blacklist is shown in the table 1. The controller categorizes those malicious activities into

types like Botnet, DOS fake source IP or cracker, and then assigns each type to a specific

analyzer port and respective analyzer program. Even the same category of threat (for example,

the Botnet C&C) may be categorized as different types according to their different behaviors..

As the example in table 1, the controller asks the analyzer machine #1 to run the analyzer

program #4 on port 3333, to analyze the flow records related to the IP A.A.A.A of Botnet C&C

type, to find out the possible infected IPs, and analyzer machine #2 to run analyzer program #12

on port 4444 to process the B.B.B.B related flow records, to back trace the DOS attack to its

entrance.

The controller updates the blacklist to the filters such that the filters can build a new blacklist

comparison tree accordingly. The structure of the blacklist comparison tree is shown in figure 3.

The tree comprises 6 layers of nodes to represent IP and port.

Figure 3. The diagram of the black list comparison index tree.

While filtering, the IP and port of the flow data are compared against the corresponding layers

of the tree. This implementation ensures that the time complexity of the blacklist comparison

will be constant regardless the size of the blacklist comparison tree. The drawback is the higher

demand of the computer memory to hold the complete tree, which is usually not a problem. Once

a flow can match to the end node of the tree, it will be repackaged and sent to the analyzer port

specified in the end node of the tree.

The analyzer program listening on that specific port is specialized in analyzing that specific

type of flow. As controlled by the controller, the analyzer machine can run any type of analyzer

program on specific port to serve each type of flow respectively, and then reports the results back

to the blacklist assigned port of the controller. Finally the results are visualized on the

controller's graphical user interface (GUI) as shown in figure 4.

cde
Typewritten Text
49

4. Current implementation

We set up an experimental environment consisting of one dispatcher, two filters, two

analyzers and one controller. Since the commercial load balancer is fully competent to be a

dispatcher, we used a load balancer instead to focus more on developing the real time filter

engine.

Figure 4. The screenshot of TWAREN network management system.

Since the main goal of the Defender Cloud is to capture the malicious activities as real-time as

possible, the filter must continuously process the flow data as soon as possible. If the clearance

rate is lower than the flow data incoming rate, the flow data will accumulate and eventually

overflow. Therefore the overall processing capacity of the filters must be greater than the total

flow data volume. To evaluate the capacity of the experimental system, a series of experiments

have been conducted.

First of all, the memory demands of the blacklist comparison trees against the blacklist sizes

are tested. Since the memory consumption of the tree is proportional to the blacklist rule

numbers, we constructed the trees with randomly generated IP numbers. Because random

numbers have very low similarity between each other, it creates the largest possible tree with

given blacklist size. From this test we concluded that every 10,000 blacklist rules take roughly

40 Mbytes. So a machine with 1 Giga Bytes memory can do filtering with a blacklist of up to

250,000 rules. This demand should be easily satisfied by the RAM size of typical computers.

The next experiment is to evaluate the performance of the experimental filter system. The

experiment was conducted with HP ProLiant DL380 G3 server with Intel Xeon CPU 3.06 GHz

and two DIMM DDR 266 MHz (3.8 ns) 512 Mbytes RAM modules (totally 1 Giga Bytes).

Various sizes of randomly generated flow data were filtered against a random number

constructed blacklist tree of 5000 rules. The result is shown in figure 5.

cde
Typewritten Text
50

Figure 5. Time consumption of filtering one million to one billion flows.

The results suggested that the filter time consumption increased proportionally to the increase

of the flow numbers. When under the same condition, our HP DL380 G3 server is capable of

handling 4.77 million flows per second. The flow was randomly generated during runtime in

order to approximate the overhead induced by the handling of real flow. Thus we concluded that

an ordinary server of the same level will be able to handle several million flows per second.

The last experiment is to evaluate the filter time consumption of 100 million flows over

different sizes of blacklist trees. The result is shown in figure 6.

Theoretically the tree size has no significant influence over the comparison performance. The

results revealed that the addition of every 10,000 rules increased the processing time by roughly

4 seconds. Since our previous experiment showed that every additional 10,000 rules increase the

tree size by 40 Mbytes, the processing time increase may attribute to the additional system

loading of memory page operations. In average, the filter spent 170 nanoseconds on each flow.

The CPU cycles used on the processing of one flow are not significantly higher than the memory

operation time involved. Although the tree size still has some effect on the overall filtering

performance, we concluded that the tree size penalty to the performance is negligible before the

tree grows to more than one million rules.

Figure 6. Time consumption of filtering against 10 rules to 30,000 rules.

cde
Typewritten Text
51

5. Future perspective

In our current implementation, there are still some missing parts yet to be developed in the

future. The first one is the automatic module to convert the inputs from existing network security

equipment into filter rules. The possible sources include the Botnet C&C or DOS reports from

the IDS/IDP equipment and syslog. The latter will be easier to implement because the format is

uniform and well known. However the information retrieval from network security equipment is

much harder due to the variation of interfaces and data formats. Solutions will be investigated in

the future. The second part is the development of more analyzer. Although it only receives

classified inputs from filters, the algorithms to automatically analyze the flow are quite

challenging to develop.

The biggest issue restricting the possibility of the Defender Cloud is the limited scope of the

flow data because some malicious activities can hardly be detected solely from the flow

information.

Due to the distributed and modular design, the analyzers of the Defender Cloud can be written

and executed independently. Once conforming to the protocol standard, they can be developed

with different programming languages, which provide the best flexibility to the development

team. This is the best development model for amateur programmers of the NOC team.

Acknowledgements

We thank the anonymous reviews for their detailed suggestions and comments. This study is

supported by the grant from the National Science Council of the Executive Yuan of Taiwan

(Project number: NSC99-2218-E492-006).

References

1. TaiWan Advanced Research and Education Network. (http://www.twaren.net/).

2. Ming-Chang Liang; Li-Chi Ku. Design and Implementation of TWAREN Hybrid Network

Management System. APAN2008 Fall Meeting at Queens Town, New Zealand, 2008.

3. Ming-Chang Liang; Sheng-I Chang; Meng-Chang Lin; Chen-Tsai Chiang. The advanced

implementation of network management system with fault detection in TWAREN hybrid

network. APAN2009 Fall Meeting at Kuala Lumpur, Malaysia, 2009.

© 2011 by the authors; licensee Asia Pacific Advanced Network. This article is an open-access

article distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

cde
Typewritten Text
52

