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Abstract: End-to-end data transfer has long been a fundamental service of Internet. With the trend 

of multi-interface communication terminals and redundant paths between them both in cellular 

networks and in the Internet, efficient protocols of multipath transfer are needed to gain the 
benefits of multi-interfaces. In this paper, we propose SAR-RMTP, a Self-adapted Rescheduling 

Reliable Multipath Transfer Protocol for end-to-end file transfer, which can adaptively reschedule 
data to different paths according to the current average bandwidth to achieve nearly the same 

transferring finish time between different paths, and thus results in effective use of overall 

bandwidth. We implement the prototype of SAR-RMTP in Linux and compare its performance 

with existing scheduling algorithms in experimental environment. The results show that SAR-

RMTP can notably decrease the difference of transfer finish time of different paths and thus 

shorten the overall file transfer time and increase the overall bandwidth. The results also show that 

compared with other scheduling algorithms SAR-RMTP can achieve much better performance 

when bandwidth changes more dramatically. 
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1. Introduction  

Multipath transfer applies in both Wired Internet and Heterogeneous Wireless Networks. In wired networks, 

Multi-homing and multipath routing have been widely adopted for stub networks. With the rapid advance of 

wireless technology, most off-the-shelf wireless mobile devices are equipped with multi-radio capability 

(GPRS, Wi-Fi, 3G, Bluetooth, etc.). The devices are assigned with several IP addresses to enable multipath. 

It has been acknowledged that multipath can be utilized to aggregate bandwidth, improve reliability, 

enhance security and boost quality of service [1]. Since different paths may have different characteristics in 

terms of bandwidth, loss rate and delay, it is challenging to effectively aggregate bandwidth of different paths.  

A main branch of multipath transfer research, including CMT (Concurrent Multipath Transfer) [2,3], 

Multipath TCP [4,5] proposed by IETF MPTCP working group, focuses on the solution at transport layer, 

which aims to provide the same service as TCP, i.e. in-order, reliable, and byte-oriented delivery. That means 

application layer data are all treated as a streaming regardless of its real type, and all the data are delivered in 

the order of how it comes. However, for file transfer, data transferred on different paths don’t have order 

relevance, which means that disjoint portions of file could be simultaneously sent to the peer on multiple paths 
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regardless of their order. Consequently, schemes of transport layer multipath transfer protocol like Multipath 

TCP are usually unnecessary complex for applications of file transfer.   

In this paper, we propose an efficient Self-adapted Rescheduling Reliable Multipath Transfer Protocol 

(SAR-RMTP) which acts as a middleware between transport layer and application layer, and aims at provide 

service to applications that are based on end-to-end file transfer. Meanwhile, SAR-RMTP is lightweight and 

efficient for using standard TCP to ensure reliable transfer on each path.  

The most important mechanism of SAR-RMTP is how to dynamically and reasonably schedule data among 

multiple paths according to the behavior of path bandwidth, and make different paths finish transferring at 

nearly the same time, for the goal of minimizing the overall file transfer time, i.e. maximizing the overall 

bandwidth of the selected paths. In this paper, we propose a self-adapted rescheduling algorithm whose main 

thought is to reschedule assigned data from slower paths to faster ones according to average path bandwidth 

from last assignment to now, which could shorten the idle time that faster paths spend waiting for slower ones 

to finish data transfer.  

We implement the prototype of SAR-RMTP and compare its performance with existing scheduling 

algorithms in experimental environment. The results show that SAR-RMTP could notably reduce the 

difference of transfer finish time of different paths and decrease the overall file transfer time, moreover, SAR-

RMTP could have more remarkable efficacy improvement than existing scheduling algorithms when path 

bandwidth suffers severe fluctuation.  

The remainder of this paper is organized as follows. Related works of multipath scheduling algorithm are 

described in section 2. The SAR-RMTP architecture, data scheduling algorithm and protocol prototype 

implementation are presented in section 3. The experiments and analyses are described in Section 4. Finally, 

section 5 concludes with future enhancements. 

2. Related Works of Multipath Scheduling Algorithm 

As mentioned above, the opportunity to obtain higher bandwidth between endpoints is provided by multiple 

interfaces of communication terminals and multiple reachable paths between them, thus we could establish 

multiple TCP connections via these paths and transfer data simultaneously. In a similar way, parallel file 

transfer methods in Data Grids transfer a file to a client from different replica servers, each of which 

corresponds to a TCP connection and has the complete duplicate of the requested file. The difference is that the 

multiple TCP connections a client used to receiving file portions from different peers might be established on 

the same interface. Nonetheless, the data scheduling algorithms on multiple connections of SAR-RMTP and 

co-allocation algorithms of parallel transfer in Data Grids have similarity and are comparable. A few co-

allocation algorithms of parallel file transfer in Data Grids are described below. 

A. Static Allocation Algorithm 

The Brute-Force Co-allocation scheme in [6] divides file sizes equally among available flows; it does not 

address bandwidth differences among various client server links. Actually, this primal method could gain more 

efficiency by a little modification. The modified algorithm is called Static allocation Algorithm, which divides 

file sizes among paths proportional to initial path bandwidth and doesn’t do any adjustment while file 

transferring. Each path finishes when the assigned portion of file is entirely transferred. 

B. Adjustable Single Block Load Balancing Algorithm 

The Conservative Load Balancing scheme in [6] divides requested datasets into k disjoint blocks of equal 

size. Available servers are allocated single blocks to deliver in parallel. Servers work in sequential order until 

all requested files are downloaded. Loadings on the co-allocated flows are automatically adjusted because 

faster servers deliver file portions more quickly. Efficiency of this method depends on the size of disjoint 

blocks. It could make load balancing very approximate to actual bandwidth fluctuation by taking small enough 
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block size, which, however, would considerably increase the amount of additional information such as block 

header and the cost of synchronization among paths because the target file would be accessed more frequently 

by different paths. To make the block size adjustable and reasonable, we modified the Conservative Load 

Balancing scheme referring to the Recursively-Adjusting Co-Allocation scheme in [7,8]. The modified scheme 

is called Adjustable Single Block Load Balancing algorithm, which is described as follows. 

First let BlockSize equals to FileSize/j, where FileSize is the size of file to be transferred and j is a certain 

constant, e.g. 20. Initially, each path was assigned a single block to transfer. After path i  (1≦i≦n, n is the 

number of flows) finished transferring the assigned size of data, the scheduling algorithm would calculate a 

new block size for this path to transfer as follows, where the new block size might equals to the previous one: 

( )1 1

n n

k i k kk k
ParticalSize LeftBlkSize LeftFileSize BW BW LeftBlkSize

= =
= + ⋅ −∑ ∑  (1)  

where LeftBlkSizek is the currently unfinished data size of path k, LeftFileSize is size of the entire 

unassigned file, BWi/k is the average bandwidth of path i/k during its last block. 

� if ParticalSize≦LeftFileSize, new block size for path i equals to min[ParticalSize, BlockSize]; 

� if ParticalSize > LeftFileSize, new block size for path i equals to min[LeftFileSize, BlockSize]. 

For the modified algorithm, if calculated ParticalSize for a certain path is less than both LeftFileSize and 

BlockSize, the path will take the smallest ParticalSize as block size which is more reasonble to avoid being 

awaited by other paths. However, when the calculated particle size is larger than LeftFileSize, and bandwidth 

of this path would not decline in the future, this path would be one of the earlier finished paths and would be 

idle awaiting the last finished path. 

Performances of algorithm B should be of notable promotion compared with algorithm A. However, all the 

algorithms mentioned above including that in [7,8] have a common shortage, data that has been assigned to 

certain paths could not be rescheduled to other paths in the next assignment or adjustment. If after an 

assignment the bandwidth of one path declines to a certain value that even if all the unallocated file portions 

such as LeftFileSize in algorithm B was assigned to other paths, the declined path would still last for an amount 

of time transferring data after all the other paths has finished, the overall performance of file transfer would 

degrade. 

In the experiments section, we will compare performance of scheduling algorithm of SAR-RMTP with 

algorithm A and B. 

3. Self-adapted Rescheduling Reliable Multipath Transfer Protocol (SAR-RMTP) 

3.1. Protocol Architecture  
The architecture of SAR-RMTP is illustrated in figurer 1. At the sender side data of a certain file are 

simultaneously transferred on multiple paths, meanwhile, the receiver simultaneously receives them from 

corresponding paths. To ensure reliable transfer, each path uses standard TCP to transfer its data between the 

two end points. 

The most important part of the architecture is the Data Scheduling Model, which determines the outgoing 

path of each file portion and reschedules data among paths to adapt to path bandwidth variation and fluctuation. 

In order to know the initial values of path bandwidth, there is an initial path bandwidth estimation phase 

before the scheduling algorithm takes over data scheduling. The protocol first enters this phase after file 

transferring starts, during which each path is assigned single blocks of certain size after it has finished its last 

block. The initial path bandwidth estimation phase ends when a threshold of assigned data size is reached, and 

then assignment and adjustment of data among paths is taken over by the data scheduling algorithm. We use 

FileSizeα ⋅  (0 1α< < , e.g. 0.1) as the threshold, where FileSize is size of the requested file and use average 
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bandwidth of each path, which is denoted as 
iBWS  ( )1,...,i n= , as initial values of path bandwidth for data 

scheduling algorithm, where n is the number of paths used to transfer data. 
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Figure 1. SAR-RMTP architecture 

3.2. Data Scheduling Algorithm of SAR-RMTP 
As mentioned above, when the threshold of assigned data is reached in initial path bandwidth estimation 

phase, the data scheduling algorithm is triggered to assign data to all paths for the first time and it will do this 

job till overall file transfer is finished. We call the data set one path gets from the scheduling algorithm a task. 

The brief process of data scheduling is that before or when one path finishes its task, the scheduling algorithm 

is triggered to calculate new task size for each path according to path average bandwidth from last task was 

assigned to now, and reschedules data among paths if the current unfinished size of a path does not equal to the 

new task size calculated for it. We call an execution of the scheduling algorithm an adjustment; the continuous 

adjustments will stop when the expected finish time of all paths reaches a certain threshold. 

The exact scheduling algorithm is as follows: 

1) The first task of each path after the threshold of assigned data is reached in initial path bandwidth phase is 

calculated as below: 

( )
1

0 (1 ) , 1,...,i
i n

ii

BWS
TSK FileSize i n

BWS
α

=

= ⋅ − ⋅ =
∑

 
(2)  

where TSKi(0) is the first task of path i in adjust phase. Record the current time as tstart(0). 

2) When one certain path, e.g. path i, first finished transferring ( )i
TSK kβ ⋅ size data after the kth (k≧0) 

adjustment, where TSKi(k) is the task size assigned to path i in the kth adjustment and 0.5 1β≤ ≤ , the 
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(k+1)th adjustment is triggered. Record current time as tend(k). Some parameters are first calculated as 

follows: 

( ) ( ) ( )( )( ) , 1,...,i iBW k TRA�S k tend k tstart k i n= − =  (3)  

where tend(k) is the time the kth adjustment finished, BWi(k) is the average path bandwidth of path i from 

tstart(k) to tend(k), TRA�Si(k) is transferred data size of path i from tstart(k) to tend(k). 

( ) ( ) ( ), 1,...,i i iLTSK k TSK k TRA�S k i n= − =  (4)  

( ) ( ) ( ) , 1,...,i i iLT k LTSK k BW k i n= =  (5)  

where LTSKi(k) is the unfinished size of path i at tend(k), LTi(k) is the expected remaining time of path i. 

Then, the condition below is judged: 

( ) ( ) [ ]
11

max min min ,i i
i ni n

LT k LT k TransTimeFor�ow LeftTimeThresholdδ
≤ ≤≤ ≤

− ≤ ⋅        (6)  

where TransTimeFor�ow is time that the overall file transfer process has lasted for since it began with start 

phase, 0 5%δ< ≤ , e.g. 1%, and LeftTimeThreshold is a threshold that could be assigned manually, such as 

2000 microsecond.  

� If (6) is satisfied, there would be no adjustments from now on till the overall file transfer is finished. 

� If (6) is unsatisfied, it means that the (k+1)th adjustment should be executed and the new task size of 

each path is calculated as follows, 

( ) ( )( ) ( ) ( )
1 1

1 , 1,...,
n n

i i i ii i
TSK k LTSK k BW k BW k i n

= =
+ = ⋅ =∑ ∑  (7)  

where TSKi(k+1) denotes the task size assigned to path i in the (k+1)th adjustment. It doesn’t mean 

additional TSKi(k+1) size data should be assigned to path i. The three possible cases of data 

reschedule are described as follows: 

� If TSKi(k+1) == LTSKi(k), it means that the unfinished data of path i at tend(k) should not be 

touched in the (k+1)th adjustment; 

� If TSKi(k+1) < LTSKi(k), it means that LTSKi(k) - TSKi(k+1) size of the unfinished data of path i 

at tend(k) should be rescheduled to other paths in the (k+1)th adjustment. 

� If TSKi(k+1) > LTSKi(k), it means that TSKi(k+1)- LTSKi(k) size of unfinished data form other 

paths at tend(k) should be rescheduled to path i in the (k+1)th adjustment. 

After data were rescheduled among paths according to TSKi(k+1) and LTSKi(k), record current time as 

tstart(k+1), go to step 2). 

The data scheduling algorithm is as the two steps above. Relying on reschedule operations in adjustment, 

faster paths could get new data from unfinished data of other paths when their tasks is about to finished, 

consequently they would not be idle awaiting slower paths to finish. This is supposed to be a method of high 

efficiency and the exhaustive method to decrease transfer time differences among different paths. We would 

validate the performance of it in the experimental section. 

3.3. SAR-RMTP Prototype Implementation  
We have implemented the prototype of SAR-RMTP in Linux with C++, which runs on a sender and a 

receiver while transferring a file via multipath between them.  

At the sender side, simultaneously data transfer on multiple TCP connections is implemented by multiple 

threads, each of which corresponds to a connection. Each thread reads data at the designated position of file 
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and then writes what it has read to socket. When it’s time to calculate next task for the corresponding path, the 

thread will execute the data scheduling algorithm described in section 3.2, and then continuing data transfer on 

this path. Time spent on calculating of scheduling algorithm is short enough to be negligible, thus it wouldn’t 

block data transferring. Because the task structure of paths would be touched both when the corresponding 

path is transferring data and when other paths are executing the scheduling algorithm, we use a mutex for each 

path task structure to make protection and a global mutex for the scheduling algorithm execution to make sure 

when multiple paths want to execute the scheduling algorithm, they will execute it without overlap. 

Furthermore, to ensure accuracy, unit of time is microsecond. 

At the receiver side, the multiple thread architecture is taken as well. An independent thread is created for 

each path to receive data from the corresponding connection and then data received is directly written to file. 

As every block received includes a header that contains data position and data length, multiple threads could 

simultaneously write data to the same file without overlap. After all the paths finish receiving data, the 

receiving file is complete as well. 

4. Experimental Results 

To evaluate the performance of SAR-RMTP, we setup an experimental environment illustrated in figure 2, 

where we could expediently set bandwidth of each path with the switch between sender and receiver. There are 

two bandwidth fluctuation cases (case 1 and case 2) in the experiments. In each case, we analyze the 

performance of algorithm A, B in section 2 and SAR-RMTP by comparing the overall transfer time and the 

idle time which the fastest path spends waiting for the slowest path to finish at the sender side.  

 
Figure 2. Experimental environment 

We respectively set bandwidth of the three paths between sender and receiver to 8Mbps, 16Mbps and 24 

Mbps by setting rate limit to corresponding switch ports. In case 1, we change the bandwidth of path 3 from 

24Mbps to 8Mbps at time (0.9*FileSize/48Mbps), i.e. when 90% of the file has been transferred in the set rate 

condition. In case 2, we change the bandwidth of path 3 from 24Mbps to 2Mbps at the same time as case 1 to 

make bigger bandwidth fluctuation. 

In the two cases, we measured the performance of each algorithm by transferring files of size 101.5MB, 

304.3MB, 507.1MB, 710.1MB and 913.0MB.  

For case 1, figure 3 shows the overall file transfer time of each algorithm in histogram and the saved time 

ratio of SAR-RMTP compared with algorithm A and B in line chart, which is defined as the overall transfer 

time difference of SAR-RMTP and algorithm A(or B) divided by the overall time of A(or B) for the same file 

size. We can see that SAR-RMTP uses the least time to finish file transferring and averagely saves 11.4% and 

8.9% of overall transfer time compared with algorithm A and B.  

Figure 4 shows the idle time of each algorithm in case 1 in histogram. The idle time is defined as the 

maximal finish time difference between three paths. The idle ratio of each algorithm defined as idle time 

divided by overall transfer time which is shown in line chart in figure 4. We can see that SAR-RMTP could 

make different paths finish transferring at nearly the same time, while algorithm A and B are respectively 

16.2% and 12.4% idle during the overall file transferring. 
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Figure 3. Overall transfer time in case 1                         Figure 4. Idle time in case 1 

Performance of each algorithm in case 2 is shown in figure 5 and figure 6 in the same way as case 1. We 

can see that under bigger bandwidth fluctuation circumstance, SAR-RMTP still performs the best, with finish 

time of three paths nearly the same and averagely 45.6 % and 41.4% of transfer time saved compared with 

algorithm A and B.  

Comparing figure 6 with figure 4, we can see that when path bandwidth fluctuates more dramatically, idle 

ratio of algorithm A and B increases greatly; the first finished path are idle for about half of the overall transfer 

time ! However, SAR-RMTP could keep idle ratio always near zero, thus keep stable and high performance.  

  
Figure 5. Overall transfer time in case 2                         Figure 6. Idle time in case 2 

5. Conclusions 

With scheduling algorithm that could reschedule data among different paths according to path bandwidth, 

SAR-RMTP performs much better than existing scheduling algorithms. It could keep finish time of different 

paths nearly the same, thus shortens the overall transfer time and aggregates bandwidths of multiple paths. It 

also keeps high performance and efficiency under various bandwidth fluctuation circumstances, which shows 

higher adaptability.  As a middleware between application layer and transport layer, SAR-RMTP could 

provide an efficient solution to end-to-end multipath file transfer. We will make efforts to put it into practice 

on the Internet in the future. 
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