
Proceedings of the Asia-Pacific Advanced Network 2012 v. 34, p. 1-10.
http://dx.doi.org/10.7125/APAN.34.1
ISSN 2227-3026

Evaluation of OpenFlow’s Enhancements

Othman Othman M.M. 1, and Koji OKAMURA 2

1 Department of Advanced Information Technology, Graduate school of Information Science
and Electrical Engineering, Kyushu University / 6-10-1 Hakozaki, Higashi-ku,
Fukuoka 812-8581, Japan. +81-92-802-2722
2 Research Institute for Information Technology, Kyushu University / 6-10-1 Hakozaki,
Higashi-ku, Fukuoka 812-8581, Japan. +81-92-642-4030

E-Mails: omo_5@ale.csce.kyushu-u.ac.jp; oka@ec.kyushu-u.ac.jp

Abstract: This paper shows our proposed design and discusses in more details about
the evaluation of our two enhancements to the current OpenFlow technology [11].
OpenFlow is a promising future internet enabling technology that has a great potential
to improve the current Internet by providing new functionalities and a new control
scheme, and thus, enabling new smarter applications to be created. Our study aims to
provide OpenFlow with two new features; network equipment to equipment flow
installation (Ne-Ne FI), and a new type of proactive flows. Through which we aim to
extend OpenFlow’s usability, by making it more self-aware and traffic-aware, by
relieving some of the load off the OpenFlow controller, and by providing OpenFlow
controller with a relaxed method to support flows with strict timing requirements.

Keywords: OpenFlow; Flow-Based Networks; Network Control.

1. Introduction

The Internet; is one of the greatest means of communication over the current and past
centuries. The Internet plays an important role in our lives as it delivers information through the
World Wide Web, and helps people to communicate using E-mail. More over the Internet plays
an important complementary role to the traditional communication methods like telephone by
providing an alternative audio and video calling service. Not to mention the wide variety of
contents that it provides. All of those capabilities of the Internet promoted its use as a promising
ground for many trends of commerce like the e-trade, and many other types of businesses that
depends on the Internet for making profit. And for the previously mentioned reason and many
other reasons, the Internet has become an indispensable part of our daily lives. And due to the

cde
Typewritten Text
1

importance of the Internet, researchers have been studying ways to improve the Internet and to
provide new services and capabilities to it.

One of the concepts studied by researchers is the flow concept, where a flow is a sequence of
packets from a source computer to a destination; which may be another host, a multicast group,
or a b roadcast domain, and could consist of all packets in a specific transport connection.
Grouping sequence of packets into flows is very reasonable, since that different services
(applications) on the Internet have different characteristics and require different levels of support
by the network, and thus flows can be used to group communications according to the type of
service they belong to and then apply some rules for each group. As an example flows are used
in [9] to assure different levels of Quality of Service (QoS) for different types of applications
depending on the application’s needs, while in [10] flows are used as a mean to apply security
policies.

In 2008, OpenFlow [1] was first introduced. OpenFlow is a part of Stanford University’s
clean slate project. OpenFlow provides a specially designed way to control flows on the network
equipment by the OpenFlow controller (which is a dedicated entity for managing flows) through
using the OpenFlow Protocol. Also, it enables more freedom and flexibility in by splitting the
decision making or routing from packet forwarding. According to OpenFlow; decision making
can be done and modified freely by the OpenFlow controller according to layer 2, 3 and VLAN
headers while the forwarding or routing is still done by routers or switches, in addition to, their
original functionality. Moreover, OpenFlow defines actions to be performed on flows that can be
either collection of statistics, forwarding packets, dropping packets, or manipulating packet’s
headers. This freedom, flexibility, and the wide range of actions performed on packets enable it
to play a crucial role in developing the future Internet along with its main target which is running
researchers’ experiments on pr oduction networks. Despite this great flexibility of OpenFlow,
there have been many concerns about the scalability of OpenFlow due to the way that the
OpenFlow controller controls the OpenFlow network equipment, which forces a tight coupling
between the controller and the network equipment. This would mean that the controller can be
one of the bottlenecks in the system. This can be inferred by the number of flows that can be
installed by the NOX controller as shown in [5] that are 30K flows per second, while,
maintaining a sub-10ms install time, and the flow arrival rate in [6] that is 100K flow per second.
This was also confirmed by, Michael Jarschel et al. who concluded in [12] that “When using
OpenFlow in high speed networks with 10 Gbps links, today’s controller implementations are
not able to handle the huge number of new flows”.

There have been many efforts to solve this problem. However, many of those solutions focus
on the controller side, as in [13], which aims provide a distributed event-based control plane for
OpenFlow. While our study tackles this problem from a different side. In this study; we make
use of; the network equipment, and a new type of flows, as methods aimed to participate in
solving the previously mentioned problem.

cde
Typewritten Text
2

The remainder of this paper is organized as follows. We first show and overview of the
motivation behind those two enhancements, and some design details; of the Network equipment
to equipment flow installation, and the proactive flows in Section 2, where the full design in
shown in detail in [11]. While, in Section 3, we discuss in some detail about the evaluation of
those two enhancements, and conclude in Section 4.

2. Design

2.1. Network Equipment to Network Equipment Flow Installation (Ne-Ne FI) .

According to the current OpenFlow design; flows must be installed by the controller. This
means that the controller is the only entity that is responsible for installing and maintaining flows
on the network equipment.

And so, we propose a new method for installing flows, that is, the “network equipment to
equipment flow installation” (Ne-Ne FI) method. Through using this method, the controller does
not have to program (install) flows to each one of network equipment one by one; instead it can
ask the equipment to spread this flow to other equipment on behalf of the controller, this can be
useful in cases where the controller needs to program non critical-start up time flows. And thus
relieving some load off the controller. Also, the network equipment to equipment flow
installation method can be used to make the OpenFlow network more self-aware by having the
network equipment cooperate and carry loads for each other upon the need and traffic situation
by having the overloaded equipment delegating some of its flows to another network equipment.

The main method used by the network equipment to
network equipment flow installation shown in Fig.1.

Where step 2 can be either; a r equest form the
controller to spread a flow, or network equipment is
overloaded and wants to delegate some of its flows to
another network equipment.

Step 3 will lead to finding the flows that the controller
requested to spread in case that the controller asked to
spread those flows, or can lead to find an aggregation flow
that aggregates other flows (it must aggregate one or more
flows that are currently handling a specific percentage of
the traffic according to the Traffic-Aware Flow
Aggregation Algorithm (TA-FAA)). Where the network
equipment that possesses those aggregated flows will
delegate them to another network equipment, which means

Figure 1. Main skeleton for the
network equipment to equipment

flow installation method.

cde
Typewritten Text
3

that the delegating network equipment will delegate a number of flows responsible for a
specified percentage of the traffic and replaces those flows with one delegation flow in order to
tunnel the traffic of the delegated flows to the delegated network equipment.

While step 4 can be easily carried out by identifying neighbor equipment, through using the
Link State Database or any other method.

Step 5 w ill be done using the newly proposed type of packets in the OpenFlow Protocol,
which we designed to enable the network equipment to equipment flow installation.

2. 2. Proactive Flows

On the original OpenFlow, whenever a flow is installed into a network equipment it will start
matching against this flow and carrying out its actions. This means that the flow is active and
used as soon as it is installed. However, according to this model, there will be difficulty in
dealing with cases that require precise timing, since the controller must install those flows on the
exact pre-specified time.

Having a centralized control would be of a greater advantage, if it can be coupled with the
capability to operate precisely timed actions or flows. And to be able to provide OpenFlow with
the combination of those capabilities we designed a new type of flows “The Proactive Flows”
that are installed into the network equipment as inactive flows, which means that those proactive
flows will not be used by the equipment that they are installed unless a certain condition
activates them and enables the network equipment to use them. By having flows pre-installed
into the network, and by using them in the right time; is the method used by proactive flows to
tackle the precision timing difficulty.

As explained before, that the initially inactive proactive flows have to be activated in order to
make use of them. We designed three conditions that can be used separately or as a combination
to activate proactive flows. First condition is to receive a dedicated activation packet that
contains a special activation token that can be sent by the controller, or a host, or another
network equipment. The second activation method is to have an activation flow, through which a
flow can be set as a condition to activate a proactive flow, and so whenever this activation flow
is matched then the associated proactive flow will be activated. The third activation method is a
specific time, through which a specific time is set upon which the flow will be activated.

 3. Evaluation

This section describes the scenarios, parameters, results that we are working on, in order to
assess those two enhancements. For this purpose we are using; OMNet++ [8] simulator, in
addition to using Java programming language for our evaluation.

3.1. Network Equipment to Network Equipment Flow Installation

3.1.1. Traffic Aware Flow Aggregation Algorithm

cde
Typewritten Text
4

We have implemented the Traffic-
Aware Flow Aggregation Algorithm (TA-
FAA). That is a key element for using the
network equipment to network equipment
flow installation by overloaded equipment,
in order to test its effectiveness. We
implemented TA-FAA using Java
programming language, we also randomly
generated a flow table to resemble
OpenFlow’s flow table of equipment
(router / switch). Then in order to assess
the effectiveness of the TA-FAA, we used
TA-FAA to aggregate the randomly generated flow table, and calculated its success rate in
aggregating flows responsible for a specified portion of the input traffic of that equipment
holding this flow table. Figure 2 shows the success rate of the TA-FAA. Our experiment showed
that the average success rate of the TA-FAA was 79.7%.

3.1.2. Ne-Ne FI for distributing flows on behalf of the controller.

As described in Section 2.1, that Ne-Ne FI can be used to make equipment install identical
flows on other equipment on behalf of the controller, as shown in Figure 3, in addition to, the
regular OpenFlow’s flow installation. According to this scenario we assume that the number of
equipment that flows need to be installed to is (N), this means that in the regular OpenFlow
method the controller needs to send (N) flow installation messages, each is destined for one
equipment, while in the case of Ne-Ne FI method the
controller needs to send only (one) flow installation
message.

Furthermore, to be able to judge the effectiveness of the
Ne-Ne FI method and its messaging scheme for installing
flows in behalf of the controller, we aim to measure the total
time needed for the flows to be installed on the whole set of
required equipment as shown in equation (1) as
“ timeinstallNeNeFITotal ___ ”. Assuming that letter E
represents the set of targeted equipment that the new flows
needs to be installed on. While, T(e) represents the time at which the flow installation reaches
equipment e w here eϵE , and T(0) is the time at which the controller initiated the Ne-Ne FI
method.

{ }EeTeTtimeinstallNeNeFITotal ∈∀−=),0()(max___ (1)

Figure 2. Success Rate of the TA-FAA.

(a)

(b)

Figure 3. (a) Regular flow
installation. (b) The flow

installation using Ne-Ne FI.

cde
Typewritten Text
5

Another factor that need to be assessed in order to judge the effectiveness of this method is
the total number and size of packets exchanged in order to enable the Ne-Ne FI installation on
behalf of the controller as shown in equation (2) as “ messagesNeNeFIofnumberTotal ____ ”
and equation (3) as “ messagesNeNeFIofsizeTotal ____ ”. Where MNe-Ne FI(e) is the
number of all messages belonging to the Ne-Ne FI sent by equipment e where eϵE. And SNe-Ne
FI (e) is the size of all messages belonging to the Ne-Ne FI sent by equipment e, where eϵE.

{ }∑ ∈∀= EeemessagesNeNeFIofnumberTotal),(M ____ FI Ne-Ne

{ }∑ ∈∀= EeemessagesNeNeFIofsizeTotal),(S ____ FI Ne-Ne

(2)

(3)

For purpose of comparison to regular OpenFlow flow installation method, we will evaluate
similar parameters that are the “ timeinstallregularTotal ___ ” as shown in equation (4),
“ messagesregularofnumberTotal ____ ” in equation (5), and
“ messagesregularofsizeTotal ____ ” in equation (6). Where Mregular(e), and Sregular(e)
represents the number of all messages required by regular OpenFlow to install a the designated
flows into equipment e by the controller, and the size required by those messages respectively.

{ }EeTeTtimeinstallregularTotal ∈∀−=),0()(max___ (4)

{ }∑ ∈∀= EeemessagesregularofnumberTotal),(M ____ regular

{ }∑ ∈∀= EeemessagesregularofsizeTotal),(S ____ regular

(5)

(6)

Based on t he previously
mentioned two factors, we will
run different sets of simulation
where each set differs by the total
number of equipment to be
installed: E , ranging from 3 up to
100. Where each set of
simulation will contain two
simulations, one for the regular
OpenFlow method and the other
is for the Ne-Ne FI method. After
that we will compare the
parameters of the regular
OpenFlow method with that of
the Ne-Ne FI method in order to
judge its effectiveness.

(a)

(b)

(c)

Figure 4. (a) Equipment overloaded, due to many flows to
carry out. (b) Overloaded equipment delegates some flows to

other equipment. (c) Reduced load off the overloaded
i t

cde
Typewritten Text
6

3.1.3. Delegating Flows off the Overloaded Equipment using Ne-Ne FI.

Ne-Ne FI can be used for a different purpose than that described in the previous Section
(3.1.2). That is to use the Ne-Ne FI to delegate flows from an overloaded network equipment to
other network equipment without requiring the interference of the controller. In order to assess
the use of Ne-Ne FI for delegating flows off the overloaded equipment, we will use the scenario
shown in Figure 4, in which an edge equipment being overloaded (due to the fact that all
incoming packets to the network and outgoing packets from the network will pass through the
edge, and so it might be the preferred choice to install many flows compared to other equipment).

For the purpose of this evaluation we will measure the following parameters, assuming that
letter P represents the set of equipment in the network other than the overloaded edge equipment,
the letter N represents the set of all network equipment in the network, and the letters pe
represents the overloaded edge equipment. First parameter will be the ratio of load of the edge
equipment over the average load of the other network equipment as shown in
“ pegoverloadinofRatio ___ ” in equation (7). Where Lavg(e) represents the average load of
equipment e , where eϵN.

()
()(){ }PeeLAverage
peL

pegoverloadinofRatio
avg

avg

∈∀
=

,
___ (7)

The second parameter will be the time needed to reduce load off the overloaded equipment as
shown in “ loadeqreducetoTime ____ ” in equation (8). Where Te(load value) represents the
instance of time at which equipment e, where eϵN, has reached the specified load value.

() ()11 ______

≤≥ −= pegoverloadinofRatioTpegoverloadinofRatioT
loadeqreducetoTime

eqeq
 (8)

Based on the previously mentioned two factors, we will run different simulations where each
set differs by the total number of equipment: N , ranging from 3 up t o 100. A fter that we will
assess the parameters, specially the Time_to_reduce_eq_load to check if their values are suitable
for real realistic usage.

3.2. Proactive Flows

In order to assess the effectiveness of proactive flows, we aim to run the scenario shown in
Figure 5, which shows a server migrating from one host machine to another, and an OpenFlow
controller that installs a redirection flow on the OpenFlow equipment in order to redirect packets
to the server using its old IP address to the new location of the new host machine, without having
to wait to for routing table updates. In this scenario we will evaluate Tredir which represents the
time at which the controller installs the redirection flows, and compare it with that Treq, which is
the time at which the first request will arrive to the server after it completes the migration. After

cde
Typewritten Text
7

that we will count the number of ignored requests under different initial loads of the controller
using the OpenFlow model described in [12].

After that we will run the same scenario while using proactive flows for the redirection flows.
During this scenario we will measure also Treq, and Tproactive while also counting the number
of unanswered request. And finally we will compare the number of unanswered requests in the
cases of regular OpenFlow and the proactive flows.

4. Conclusions

Providing future Internet with technologies that enable it to play its role is extremely
important. Because of that, many researchers are studying technologies to be the future Internet
enabling technologies. OpenFlow is one of the future Internet enabling technologies, as it
provides compelling functionalities that enable smarter applications to be built. However, there
have been many concerns regarding the scalability of OpenFlow especially due to its dependence
on a central controller.

For those reasons, our main goal in this study is to have a deeper understanding and
evaluation of our efforts [11] to tackle those concerns in a different manner than others. In more
details, our study aimed to relieve some load off the controller, improve the usability of
OpenFlow, make it more self-aware and able to react to situations like overloading some of its
equipment in a manner that takes into account the current status of the traffic, and to aid
OpenFlow’s ability to perform accurately timed operations. And to be able to achieve our aims
we designed two enhancements to OpenFlow that are; the network equipment to equipment flow
installation, and a new type of flows that is the proactive flows. In this paper, we showed our
design of the protocols and algorithms needed by those enhancements to work, also showed
some cases where those enhancements can play a significant role.

 (a) (b)

Figure 5. (a) Migration and Redirection using regular OpenFlow. (b) Migration and Redirection
using OpenFlow and Proactive Flows.

cde
Typewritten Text
8

In order to assess the efficiency or our study; we are currently preparing simulations that we
will use to measure the amount of traffic our enhancements will generate, delays needed to
perform operations that are critically timed, the efficiency of our enhancements in reducing load
on the controller, and the efficacy of our enhancements in introducing self-reactiveness to cases
where equipment get overloaded. Our Preliminary evaluation of crucial part of the network
equipment to equipment flow installation, that is the TA-FAA shows that TA-FAA success rate
was 79.7%.

References

1. Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jennifer
Rexford, Scott Shenker, and Jonathan Turner. 2008. O penFlow: enabling innovation in
campus networks. SIGCOMM Comput. Commun. Rev. 38, 2 (March 2008), 69-74.
DOI=10.1145/1355734.1355746 http://doi.acm.org/10.1145/1355734.1355746 .

2. W. Kim, P. Sharma, J. Lee, S. Banerjee, J. Tourrilhes, S.-J. Lee, and P. Yalagandula.
Automated and Scalable QoS Control for Network Convergence. In Proc. INM/WREN, San
Jose, CA, Apr. 2010.

3. Othman Othman M.M., Koji Okamura 2010. “ Improvement of Content Server with
Contents Anycasting Using OpenFlow”. In Proceedings of the 30 APAN of Network
Research Workshop.

4. S. Kandula, S. Sengupta, A. Greenberg, and P. Patel. The Nature of Datacenter Traffic:
Measurements & Analysis. In Proc. IMC, 2009.

5. Tavakoli, A., Casado, M., Koponen, T., & Shenker, S. (n.d.). Applying NOX to the
Datacenter. Proc. HotNets (October 2009).

6. Kandula, S., Sengupta, S., Greenberg, A., Patel, P., & Chaiken, R. (2009). The nature of
data center traffic: measurements & analysis. Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference (p. 202–208). ACM.

7. Heller, B. (2009). Openflow switch specification, version 1.0.0. Wire. December.
8. OMNeT++ Network Simulation Framework. (n.d.). http://www.omnetpp.org/.
9. Song, J., Lee, S. S., Kang, K.-C., Park, N., Park, H., Yun, S., et al. (2008). Scalable Network

Architecture for Flow-Based Traffic Control. ETRI Journal, 30(2), 205-215. doi:
10.4218/etrij.08.1107.0035.

10. Hong, J. W. (2004). A flow-based method for abnormal network traffic detection. 2004
IEEE/IFIP Network Operations and Management Symposium (IEEE Cat. No.04CH37507)
(Vol. 1, pp. 599-612). Ieee. doi: 10.1109/NOMS.2004.1317747.

11. Othman Othman M.M., Koji Okamura 2010. “ Wider Adaptation and Enhancement of
OpenFlow”. In Proceedings of the 33 APAN of Network Research Workshop.

12. Michael Jarschel, Simon Oechsner, Daniel Schlosser, Rastin Pries, Sebastian Goll, and
Phuoc Tran-Gia. 2011. “Modeling and performance evaluation of an OpenFlow

cde
Typewritten Text
9

architecture”. In Proceedings of the 23rd International Teletraffic Congress (ITC’11). ITCP
1-7.

13. Amin Tootoonchian and Yashar Ganjali. 2010. “HyperFlow: a distributed control plane for
OpenFlow”. In Proceedings of the 2010 i nternet network management conference on
Research on enterprise networking (INM/WREN’10). USENIX Association, Berkeley, CA,
USA, 3-3.

© 2012 by the authors; licensee Asia Pacific Advanced Network. This article is an open-access
article distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/3.0/).

cde
Typewritten Text

cde
Typewritten Text
10

