

Proceedings of the APAN – Research Workshop 2019
ISBN 978-4-9905448-9-8

Abstract— Diversified Internet of Things (IoT) -related

services typically require networking to the cloud/edge-cloud
resources to process and store data from distributed IoT device
boxes. In addition, various IoT-related services encourage
leveraging different access networking, so IoT device boxes
having multiple interfaces are becoming typical configuration. In
order to efficiently provide IoT-cloud connectivity via multiple
interfaces, multi-access networking is becoming a popular
research keyword. And supporting reliable data transmission of
IoT data to the cloud is an important feature of multi-access
networking. In this paper, to cope with the emerging multi-access
networking, we propose SmartX miniBox and SDN-based
coordination functionality. SmartX miniBox is a physical box
designed to support multi-access networking with SDN-enabled
wired interface and OVS-integrated WiFi interfaces. And
SDN-based Coordination functionality coordinates SmartX
miniBox and IoT device boxes in order to enhance reliability in
data transmission. The coordination includes alternating access
interfaces in IoT devices boxes and changing networking paths in
multi-path wired topology when networking failures occur.

Index Terms— Internet of things (IoT), software defined

networking (SDN), multi-access, multi-path control, SmartX
miniBox

I. INTRODUCTION

With the growing popularity of IoT (Internet of things), the
types of IoT device boxes and their network interfaces are
diversified. Gartner estimates that up to 20 billion devices will
be deployed by 2020 [1]. In addition, the overall amount of

This work was supported by Institute of Information & communications

Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (No. 2015-0-00575, Global SDN/NFV OpenSource
Software Core Module/Function Development). This work is also partially
supported by the Data-centric IoT-cloud service platform for smart
communities (IoTcloudServe@TEIN) project under the WP4 Future Internet
of Asi@Connect.
Juseong Kim, Jun-Sik Shin and JongWon Kim are with the school of

Electrical Engineering and Computer Science, Gwangju Institute of Science
and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005,
Republic of Korea (e-mail: {jskim, jsshin, jongwon}@nm.gist.ac.kr).

data from IoT device boxes is also rapidly growing as the
number of IoT device boxes increases, so various IoT services
demand computing and storage resources for processing such
huge IoT data. Therefore, reliable data transfer from IoT
device boxes to cloud/edge-clouds as well as supporting
diversified networking is a very interesting research topic in
the IoT domain.

Under the emerging multi-access networking, we attempt to
prepare an edge-cloud testbed for supporting IoT-cloud service
realization. As a preliminary step, we implement SmartX
miniBox which can support Ethernet-based wired and
WiFi-based wireless networking for IoT device boxes to be
able to transfer data to edge-cloud. However, realizing the
SmartX miniBox with these interfaces is difficult. For this
reason, Software-Defined Networking (SDN) is used to
control data transmission and access networking [2]. By using
SDN, it can choose the interface to transmit data within various
interfaces of the IoT device box. It can also provide reliable
networking to recover to network failures during data
transmission.

In this paper, we introduce SmartX miniBox, which is
supporting wired/WiFi controlled by ONOS (Open
Networking Operating System) SDN controller. SmartX
miniBox is a prototype version for a single box supporting
multi-access networking [3]. In addition, we introduce the
SDN-based coordination functionality that controls the
transmission of data in a multi-access and multi-path
networking environment using SmartX miniBox. The
SDN-based coordination functionality helps to reliable and
persistent data collection from the IoT device box to the
SmartX miniBox. This work is based on a flow steering
supporting SDN-based flow control research [4]. The flow
steering functionality is extended to support WiFi access.

II. SMARTX MINIBOX WITH WIRED/WIRELESS

MULTI-ACCESS

SmartX Box is a hyper-converged box that can provide
compute, networking and storage resources together [5]. In
addition, the SmartX box is implemented as commodity
hardware with Linux-based open source software to efficiently

SDN-based Coordination for IoT-Cloud
Connectivity employing Wired/Wireless

Multi-Access SmartX Boxes

Juseong Kim, Jun-Sik Shin and JongWon Kim

12

utilize the hyper-converged resources. Based on the SmartX
box concept, we attempt to prototyping SmartX miniBox that
can partially provide SDN-based multi-access networking to
IoT device boxes in order to support IoT-cloud service
realization. We design a basic concept and hardware
specification for a preliminary prototype of SmartX miniBox
as shown in Fig. We select the SDN-enabled wired interface
and the OVS-integrated WiFi interface for the preliminary
prototype’s interface options since these interfaces are widely
used in many use cases.

Fig. 1. SmartX miniBox Interface Options & Hardware

Configuration

The first interface is an SDN-enabled wired interface that is
directly connected to SDN-enabled multi-path topology. The
multi-path topology consists of several SDN-enabled wired
switches. The wired interface of the SmartX miniBox
connected to the multi-path topology is connected to the
internal SDN-enabled Open vSwitch(OVS)-bridge so that the
wired interface can be controlled by the SDN controller. So it
can provide multiple available paths between IoT device boxes
and the SmartX miniBox under the control of the SDN
controller. Open vSwitch is a production quality, multilayer
virtual switch licensed under the open source Apache 2.0
license [6]. OVS can directly support OpenFlow. This
interface provides networking stability by providing an
alternate path for dynamically transmitting IoT data in the
event of a networking failure under the control of the SDN
controller. We utilize an open-source SDN controller named
ONOS (Open Networking Operating System) [7]. To
configure the multi-path topology for a wired interface, we use
four SDN-enabled switches that are two types of MikroTik
switches (CRS109-8G-1s-2HnD-IN [8], and RB750R2 [9])
supporting OpenFlow 1.0. They can be easily configured using
a GUI tool named WinBox [10].

The second interface is an OVS-integrated WiFi interface
that can support wireless data transmission controlled by an
SDN controller. WiFi networking is one of the most popular
wireless networking technology, so we decide to put the WiFi
interface into the first prototype of SmartX miniBox. The

internal network configuration for the OVS-integrated WiFi
interface is shown in Fig. 2. But, the WiFi interface itself is
hard to be controlled by an SDN controller. So we connect the
WiFi interface to the SDN-enabled OVS-bridge used to
configure the SDN-enabled wired interface. So, this
configuration allows the WiFi network can be controlled by an
SDN controller. To provide AP functionality, we used an open
source AP daemon hostapd [11] and used a dnsmasq for the
DHCP server [12].

Fig. 2. OVS-integrated WiFi interface internal Network

Configuration

III. SDN-BASED COORDINATION FUNCTIONALITY FOR IOT

DEVICES

We define SDN-based coordination as a software solution
that can support reliable data transfer from IoT device boxes to
SmartX miniBox by using the SDN controller. Fig. 3 shows
the proposed coordination concept and a testbed configuration
where we apply the coordination. IoT device boxes (left side in
Fig. 3) can reach SmartX miniBox (right side in Fig. 3)
through a multi-path wired network and WiFi-based wireless
network. All networking interfaces in the IoT device box are
directly attached to SDN-enabled OVS-bridge. The
configuration makes IoT device boxes act as a single
SDN-enabled switch. At the top in Fig. 3, the coordination
software with the SDN controller can monitor/control
networking interfaces in IoT device boxes and SmartX
miniBox.

Fig. 3. A concept of SDN-based Coordination for IoT

connectivity

For feature verification, we attach Docker containers [13] on
the configured OVS-bridge in SmartX miniBox and IoT
device boxes. In order to simplify coordination scenarios, we
assume all containers are working on the same network, thus
we did not consider L3 routing in this paper. So, all the

13

containers have IP addresses in the same subnet, and the
SDN-based coordination functionality controls
communication between containers.

We consider the functional requirements of SDN-based
coordination functionality in order to support reliable data
transfer. First, the coordination functionality may change
currently used interface to another (e.g., from OVS-integrated
WiFi interface to SDN-enabled wired interface) for data
transfer, if the current interface becomes unavailable due to,
for example, link failure. When IoT device box use wired
network for data transfer, the coordination functionality should
dynamically select an available path from multiple possible
paths even if the current path occurs failures. For reliable WiFi
networking, the coordination software can change the WiFi
channel if the networking speed becomes slow due to
networking congestion. In addition, SDN-based coordination
functionality may support reliable data transfer between the
IoT device box and SmartX miniBox. For example, if an IoT
device box sends 100 packets, the coordination functionality
may ensure all these packets have successfully arrived at
SmartX miniBox.

To satisfy the requirements, we design SDN-based
coordination functionality as shown in Fig. 4.

 Status Check: Check the status of interface and switch by

comparing the data received from IoT box's multi-access
agent with the information received from ONOS RESTful
API. And stores data from ONOS RESTful API data to the
Device Status DB.

 Device Status DB: Database that stores the result of the
check of Status Check. It stores 5 types of data. WiFi status
indicates the WiFi interface status of IoT device boxes.
Wires Status indicates wired interfaces status of IoT device
boxes. Device Info indicates all the SDN-enabled Switch’s
status (SDN-enabled switch on the multi-path topology and
SDN-enabled OVS-bridge in the IoT device boxes and the
SmartX miniBox.), Link Info indicates all the network link
on the multi-path topology. And Path Info indicates the
datapath which is chosen to send data through on the
multi-path topology.

 Interface Selection: Choose the interface to transmit data
of the IoT device box based on the data in Device Status

DB. The selected interface information is stored in the
Selected Interface Info table and the others are stored in the
Candidate interface Info table.

 Intent Installation: Find the datapath on the multi-path
topology on the help of the SDN controller. And then,
specify flow rules to enable transfer data through the
selected interface and path on the multi-path topology. Use
the ONOS intent framework to specify the flow rule.

 Topology Change Handle: Detects network failures.
When the interface of IoT device boxes, Interface Selection
is performed to find another interface to transmit data.
When datapath is disconnected, the Intent Installation
process is performed to choose the alternative path from
IoT device boxes to SmartX miniBox and specify the new
flow rule.

Notice that IoT device boxes have a multi-access agent that

collects and sends the status of networking interfaces to the
SDN-based coordination functionality, however, the agent is
not included in the prototype implementation. Thus we create a
JSON file that contains interfaces list and the SDN-based
coordination functionality may collect the JSON files in IoT
device boxes to obtain interfaces list and status.

In order for the SDN-based coordination functionality to
work, the SDN controller must be able to check the connection
status of all of the IoT device boxes and SmartX miniBox. The
SDN-based coordination functionality calls the RESTful API
from the SDN controller to check the connection status. The
checklist is the status and connection structure of the switches
in the multi-path topology, the interface list and the connection
status of the IoT device box. Base on checklist information, the
SDN-based coordination functionality performs path and
interface control through three steps: Initialization, Interface &
Path Selection, and Interface & Path Transfer.

The Initialization step is performed when the SDN-based
coordination functionality is started. It is designed to receive
the information of the MAC address and state of the interface
from the multi-access agent operating in the IoT device box.
This MAC address is compared with the device information
(SDN-enabled Switch information) from the RESTful API of
the ONOS SDN controller. When the comparison is complete,
SDN-based coordination functionality can classify which

Fig. 4. Software design of Multi-Access Coordination functionality

14

device is OVS-bridge in the IoT device box. After the
comparison, the wired/wireless interface state of the IoT
device box, the MAC address of each interface, and switch
information on the multi-path are stored in the Device Status
DB. Also, the link information existing on the multi-path is
stored in the Device Status DB. The Link information will be
used in the Interface & Path selection step.

At the Interface & Path selection step, select the interface of
the IoT device box that supports wired/wireless interfaces at
the same time. When the wire is selected, SDN-based
coordination functionality chooses the path to transmit data on
the multi-path topology. When selecting the interface, the
software takes the interface information from Device Status
DB and selects the interface. The selected interface
information is stored in the Selected Interface Info table in the
Interface Selection, and the unselected interface is stored in the
Candidate Interface Info table in the Interface Selection. The
datapath between the IoT Device boxes and SmartX miniBox
is calculated by the SDN controller. At this time, the SDN
controller calculates the shortest path including the Selected
Interface Info. After selecting the path, the flow rule is
specified by using the Point-to-Point Intent of the ONOS Intent
framework for the path found. Then, the path information that
specified the flow rule is stored in the Device Status DB as a
Path Info. When installing a Point-to-Point Intent, we record
the MAC address of source and destination. By recording the
MAC address, we can specify multiple flow rules on a single
port.

 The last step is the Interface & Path transfer step.
SDN-based coordination functionality checks the network
failure once every 30 seconds. The SDN-based coordination
functionality uses the RESTful API of the SDN controller to
retrieve the link information of the current state at the time of
determining the failure. Check whether the Selected Interface
Info information is stored in this link information. If there is no
corresponding information, it is determined that the
connection of the interface is disconnected. And the Interface
& Path Selection process is performed again using the
Candidate Interface Info to transfer interface. In the case of
path transfer, the link information of the current point is
compared with the Path Info in the Device Status DB. If the
path of the Path Info is not in the Link information, it
recognizes that the datapath is disconnected. Then, a flow rule
is specified to the new path through the interface & path
selection process.

IV. SDN-BASED COORDINATION FUNCTIONALITY

VERIFICATION

In this section, we discuss the verification of the SDN-based
coordination functionality. We verify the functionality using
some scenarios in the environment for validation. We prepare
two IoT device boxes. One supports both wired/wireless
interface at the same time. The other one supports only the
wired interface. And we connect additional networks to IoT
device boxes to receive control signals from the SDN
controller. The testbed is configured like Fig. 5. On the bottom,
the blue boxed Raspberry Pi uses both wired/wireless

interfaces to transmit data. The Raspberry Pi covered by the
red box is an IoT device box that uses only the wired interface.
The switch on the far right is the SmartX miniBox.

Four experiments are conducted in this environment. First,
we experiment to see if the coordination functionality selects
the appropriate interface and path in the initial state to specify
the flow rule. Second, we experiment to see the interface
transfer when the interface being is to transmit data is
disconnected. Third, we verify whether SDN-based
coordination functionality can find an alternative path and
specify new flow rules when the data path is disconnected.
Finally, we send the actual packet and see how quickly the
SDN-based coordination functionality can handle network
failures.

Fig. 5. Testbed for verification

First, we look at the results of specifying the initial flow rule

with the help of the SDN-based coordination functionality.
The results are shown in Fig. 6. In the case of the IoT device
box connected to both wired/wireless interfaces, it can be
confirmed that the wireless interface is selected. In the case of
an IoT device box using only a wire interface, the result of
selecting a path for transmitting data in the multi-path topology
can be confirmed.

Fig. 6. Result of Interface & Path Selection

The second is an experiment that verifies the interface

transfer by disconnecting the WiFi interface of the IoT device
box supporting multiple interfaces. The result of the
experiment is shown in the right side of Fig. 7. When the

15

wireless connection is disconnected, the SDN-based
coordination functionality recognizes it and specify the new
flow rules to another interface. In addition, it confirmed that
find a new datapath on the multi-path topology to
communicate using wired interface.

Fig. 7. Result of Interface transfer

Third, we verify that finding an alternative path when the

datapath is disconnected. The result is shown in Fig. 8. When
the connection of the datapath is disconnected, SDN-based
coordination functionality notices the change of the link and
finds the alternative path. And then specify new flow rules for
that path to communicate through that path.

Fig. 8. Result of Path transfer

Next, we discuss the sending actual packet. This experiment

confirms transmission. We used the python “scapy” library to
generate the packets for verification. It generates and sends 30
packets numbered from 1 to 30 [14]. And it sends the next
packet when the echo arrives from the destination. This
program only creates and sends packets under the control of
SDN-based coordination functionality. When a network
failure occurs, the coordination functionality sends a multicast
signal to the IoT diversity boxes after recovering the failure.
When IoT device boxes receive the signal, IoT device boxes
resend packets that they did not receive echo. The result of the
sending packets is shown in Fig. 9. The graph is the time for
sending each packet and receiving an echo. The network
failure occurred during the processing of packets No.10 and
No.19. However, the time to recover from a network failure is
different. The reason is that multi-access coordination
functionality judge network failure in once every 30 seconds.
In the case of the No.19 packet, it was time to start the
transmission and judge the network failure soon. Because of
this reason, the No. 19 packet case was recovered faster than
the No. 10 packet case.

Fig. 9. Packet send/receive time

V. CONCLUSION

In this paper, we have discussed SmartX miniBox, a single
box that supports multiple interfaces: SDN-supported wired
interface, and OVS-integrated WiFi interface. We also
discussed SDN-based coordination functionality that enables
SmartX miniBox to collect IoT data persistently from the IoT
device box. In addition, we verified the main functionality on a
small testbed which is built to verify the SDN-based
functionality. Finally, we verified the reliable data
transmission on the control of SDN-based coordination
functionality by sending actual packets.

REFERENCES
[1] Gartner. (2017, February). Gartner says 8.4 billion connected “Things”

will be in use in 2017, up 31 percent from 2016. [Online]. Available: htt
ps://www.gartner.com/newsroom/id/3598917.

[2] C. S. Li and W. Liao, "Software defined networks," IEEE Communicati
ons Magazine, Vol. 51, No. 2, pp. 113-113, Feb. 2013.

[3] J. Kim, et al. “Preparing SDN-based Path Diversity Coordination for Mu
lti-Access Edge Cloud,” in Proc. KICS 2017 Fall Conference, Daegu, R
epublic of Korea, Nov. 2017.

[4] H. Yun, et al., “Design and Verification of SmartX IoT-Cloud Hub empl
oying SDN-assisted Flow Steering,” KIISE Transactions on Computing
Practices, Vol. 24, No. 10, pp. 493-504, Oct. 2018.

[5] S. Lee, et al., “Reconfiguration of OF@KOREN Playground Infrastruct
ure for Converged SmartX Playground,” in Proc. KICS 2018 Fall Confe
rence, Seoul, Republic of Korea, Nov. 2018.

[6] OpenvSwitch. [Online]. Available: https://www.openvswitch.org/
[7] P. Berde, et al., “ONOS: towards an open, distributed SDN OS,” in Proc.

HotSDN 14, Aug. 2014.
[8] MikroTik Cloud Router Switch Official data sheet. [Online]. Available:

https://i.mt.lv/cdn/rb_files/CRS109-8G-1S-2HnD-IN-150714082814.pd
f

[9] MikroTik RouterBOARD 750/GL official data sheet. [Online].
Available: https://i.mt.lv/cdn/rb_files/rb750gl-ug.pdf

[10] MikroTik Winbox manual. [Online]. Available:
https://wiki.mikrotik.com/wiki/Manual:Winbox

[11] J. Malinen. (2013, Jan.). Hostapd: IEEE 802.11 AP, IEEE 802.1X/WPA
/WPA2/EAP/RADIUS Authenticator. [Online]. Available: https://w1.fi/
hostapd/

[12] S. Kelley. (2008). Dnsmasq. [Online]. Available: http://www.thekelleys.
org.uk/dnsmasq/doc.html

[13] Using OVS bridge for docker networking. [Online]. Available: https://d
eveloper.ibm.com/recipes/tutorials/using-ovs-bridge-for-docker-networ
king/

[14] thePacketGeek (2013). Sending and Receiving with Scapy. [Online]. Av
ailable: https://thepacketgeek.com/scapy-p-06-sending-and-receiving-w
ith-scapy/

16

