

Proceedings of the APAN – Research Workshop 2016
ISBN 978-4-9905448-6-7

Abstract—Damages caused by spoofed e-mails as sent from a

bank, a public organization and so on become serious social
problems. In such e-mails attackers forge the sender address to
defraud receivers of their personal and/or secret information. As
a countermeasure against spoofed e-mails, sender domain
authentication methods such as SPF and DKIM are frequently
utilized. However, since most spoofed e-mails do not include
DKIM signature in their e-mail header, those e-mails cannot be
authenticated by the conventional system. Additionally DKIM
has a problem that cannot determine whether the attached
signature is legitimate. In this paper, we propose a method to
detect spoofed e-mails and alert the user without DKIM
signature by utilizing DMARC and implement a system that
sends DMARC verification results to receivers. By utilizing this
system, the users can obtain alerts for spoofed e-mails that the
existing systems cannot warn.

Index Terms—Anti spam, DKIM, DMARC, Sender Domain
Authentication, SPF, Spoofed E-mail

I. INTRODUCTION
-mail communication is one of the most widely used
service on the Internet. However, various malicious

usages of e-mail have been becoming a serious social
problem over the years. For instance, MITM (Man In The
Middle) attack and DDoS (Distributed Denial of Service)
attack are typical abuse examples of e-mail communication.
In addition, phishing mails, that aim to defraud receivers of
their personal and/or secret information under the guise of a

Submitted Date: 27th May 2016.
Naoya Kitagawa is with Division of Advanced Information Technology &

Computer Science, Department of Institute of Engineering, Tokyo University
of Agriculture and Technology, Koganei, Tokyo 184-0026 Japan (e-mail:
nakit@cc.tuat.ac.jp).

Toshiki Tanaka is with Department of Computer and Information
Sciences, Faculty of Engineering, Tokyo University of Agriculture and
Technology, Koganei, Tokyo 184-0026 Japan (e-mail:
t-tanaka@net.cs.tuat.ac.jp).

Masami Fukuyama is with Department of Computer and Information
Sciences, Graduate School of Engineering, Tokyo University of Agriculture
and Technology, Koganei, Tokyo 184-0026 Japan (e-mail:
mfuk@net.cs.tuat.ac.jp).

Nariyoshi Yamai is with Division of Advanced Information Technology
& Computer Science, Department of Institute of Engineering, Tokyo
University of Agriculture and Technology, Koganei, Tokyo 184-0026 Japan
(email: nyamai@cc.tuat.ac.jp).

bank or a public organization and so on, are frequently in
circulation. Such e-mails are called spoofed e-mails since the
most senders spoof their addresses or display names.
Moreover, the damages have been growing by fraud caused
by spoofed e-mails, therefore many police agencies around
the world such as the FBI have been alerting [1].

Sender domain authentication methods have been proposed
as countermeasure mechanisms against spoofed e-mails. As
typical sender domain authentication method, SPF (Sender
Policy Framework) [2] and DKIM (DomainKeys Identified
Mail) [3] are widely utilized. SPF examines the validity of the
sending mail server using the IP address. DKIM examines
whether the message has not been tampered and whether the
message has sent from proper sender using the digital
signature. However, since most spoofed e-mails are
considered to be sent without DKIM signature in the mail
header, they cannot be verified by DKIM.

In this paper, we propose a method to distinguish spoofed
e-mails without DKIM signature by using DMARC
(Domain-based Message Authentication, Reporting, and
Conformance) [4]. Although DMARC is utilized for the
administrator of sender's domain to obtain the aggregate
report or authentication failure report in general, our system
notifies the receivers of spoofed e-mail by utilizing DMARC.
To realize this method, we implemented a system that
performs sender domain authentication using DMARC, and
notifies the receiver of the authentication result according to
the contents of DMARC policy to each receivers.

The rest of the paper is organized as follows. In Section II,
we present existing methods. In Section III, we describe the
design of our spoofed e-mail alert system. Then, Section IV
shows an implementation method of the system. Section V
shows notification examples of DMARC verification results
and an alert example of an actual received spoofed e-mail.
Finally, we present concluding remarks and suggestions for
future study.

Design and Implementation of a DMARC
Verification Result Notification System

Naoya Kitagawa, Toshiki Tanaka, Masami Fukuyama and Nariyoshi Yamai

E

8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceedings of the Asia-Pacific Advanced Network

https://core.ac.uk/display/229876258?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. EXISTING METHODS

A. Sender Domain Authentication
Currently, SPF and DKIM have been widely utilized as

sender domain authentication methods.
SPF is an authentication method using the IP address of the

sender's SMTP (Simple Mail Transfer Protocol) server and
the domain of Envelope-From address. In order to use the
verification method, a sender domain publishes an SPF record
at its own DNS (Domain Name System) server in advance.
The SPF record indicates the servers that may send messages
with the sender address of the domain. Then, a receiver
obtains the sender's SPF record and investigates whether the
IP address of the sender's SMTP server is included in the SPF
record. However, SPF has a problem that is not able to
authenticate forwarded messages properly. This is because
the IP address of the SMTP server becomes the IP address of
the relay server rather than that of the original server is used
for authentication, which does not match the SPF record.

Secondly, DKIM is a method using digital signature. In
order to use this method, a sender domain prepares a pair of a
private key and a public key in advance. Then, the sender
domain publishes the public key at their DNS server. At the
time of mail sending, the sender domain creates a digital
signature from the mail header and the body using the secret
key, and adds it to the mail header as the DKIM signature. In
Fig.1, the value of “b=” tag shows the DKIM signature.
Then, a receiver queries the public key to the authoritative
DNS server of sender's domain that obtained from the “d=”
tag of DKIM signature header. Subsequently the receiver
compares the hash value obtained from the digital signature
by using the public key with the hash value, that is the value
of “bh=” tag. As a result, DKIM verification will be success
when these values are the same. With such a mechanism,
unlike SPF, DKIM can verify forwarded messages properly.

However, DKIM permits even a “d=” tag domain
(example.net in Fig.1) different from the domain of
Envelope-From address (example.com in Fig.1). Thus, if a

spammer sends spoofed e-mails from the address of his/her
own domain with the DKIM signature, the DKIM verification
will be success.

B. DKIM Verification System Using POP Proxy
Our research group has proposed a system to perform a

sender domain authentication by DKIM using a POP proxy
[5]. Although DKIM verification is usually performed by
mail service provider's server, this system verifies messages
by using a POP proxy installed by each organization. In
addition the system reports the verification results to each
user. Even if the receiving mail server that is operated by
universities, companies, ISPs, and so on does not support
DKIM verification, the verification gets available
independently by introducing this system at each organization.
In this system, when the proxy receives a retrieval request
from a mail client, the proxy gets messages from the mail
server and performs DKIM verification. Then, the proxy puts
the verification result into the mail header. Based on the
verification result, proxy or MUA (Mail User Agent), such as
Outlook, notifies the result to each user. Of course, since this
system notifies based on DKIM verification result, the system
cannot perform the verification for the messages without
DKIM signature.

C. DMARC
DMARC is a framework of reporting and declaration of

policy control using two sender domain authentication
mechanisms, SPF and DKIM, and that has been spreading
recently. The reporting function notifies the authentication
failure reports and the aggregate reports to the administrator
of the sender's domain. The administrator is able to know
whether the authentication has been performed as intended by
this report. On the other hand, in the policy declaration
function, a sender can specify the e-mails handling method in
case of sender domain authentication failure.

In addition, DMARC has the concept of “alignment”. This
concept means that DMARC verification gets failed even if
the domain for verification (SPF and DKIM) is different from
the sender's Header-From domain. SPF and DKIM
verification need not be the same the Header-From domain
and Envelope-From domain for SPF or the domain for
signature for DKIM. Moreover, attackers can spoof the
Header-From address easily. By taking advantage of
alignment, a receiver can confirm the validity of the
Header-From domain. A sender domain can specify the
strictness of relationships between these domains using
DMARC record. If a sender specifies “strict” as the alignment,
DMARC verification will fail unless the domain of the
Header-From address and the domain for SPF or DKIM
verification match completely. On the other hand, if a sender
specifies “relaxed” as the alignment, DMARC verification
will succeed if the subdomains of the domain are identical.

In order to use this mechanism, a sender domain needs to
support SPF and/or DKIM. Additionally, the sender domain
must publish the DMARC record at its DNS contents server.
DMARC record shows the recipient e-mail address for

Return-Path: <sender@example.com>
(snip)
DKIM-Signature:v=1; a=rsa-sha256;
 c=relaxed/relaxed;
 d=example.net;
 s=20120113;
 h=mime-version:date:message-id:subject:from:to:
 content-type;
 bh=YzODIQzFL5CIwg3H6lYD6ZafgsQR/7HxA6gRkSc7Vvg=;
 b=Jd6cf0fJGsMyekr7dUL6jjxVywqRXhkKeBcdFYdk/KzuHKZisyg/3
 iJMNlQq7wtDT6wU9uijAoEnPQirUwCHLFCJHqkliiDBva56Ec5nuGX
 AxsjLCU3XwwMQ1ABcGSepSl+e5kozZFBG7ItOZ5eXBXEyAAvChoLgu
 jjnUHJtS6uYOuSC6pVlHpyg1uzm+bVk97/w0dxc64Z8xaWMneN6KBL
 od28r7KORNgU8K6GKkwjfcYi1lkm1KBuW3X9YR8nVmhXjsRIyEhz25
 6a3WLYqKbC7cPHaK8lxFVHzE1AoZwhsgMRCswRCR9026OkWSvpuVvk
 +qN5CsarxWxmA==
(snip)
From: <sender@example.com>
To: receiver@example.org

Fig. 1. A sample of E-mail Header

9

verification result reports and indicates the e-mails handling
method in case of sender domain authentication failure. A
receiver domain performs sender domain authentication of
both SPF and DKIM, and applies the policy when the both of
verifications are failed.

As mentioned above, a sender domain specifies the
handling method for the verification-failed messages at the
“p=” tag of DMARC record as the DNS contents server.
TABLE I shows the values of “p=” tag and processing details
corresponding to the each policy.

For example, let us consider the case where a sender
domain (example.com) is supporting DMARC. Then, we
assume that the sender domain is publishing the DMARC
record as a TXT record of “_dmarc.example.com” in the
following manner.

v=DMARC1\; p=none\; rua=mailto:reports@example.com

In this example, since the value of “p=” tag is “none”, the

administrator of example.com requests not to perform the
isolation or reception rejection of the e-mails even if the
DMARC verification is failed. Additionally, the administrator
requests to send the reports to “reports@example.com” as
shown in the “rua=” tag.

Fig.2 shows the flow of DMARC verification.

1) A sender domain supports own domain to the SPF

and/or DKIM.
2) The sender domain also publishes the DMARC record

as a TXT record of its DNS contents server.
3) SPF and DKIM verifier on receiver mail server sends a

query to the DNS contents server and gets the SPF
record and the public key for DKIM. Then it performs
the SPF and the DKIM verification.

4) SPF and DKIM verifier sends the verification results to
the DMARC verifier.

5) DMARC verifier sends a query for DMARC record to
the DNS contents server of the Header-From domain.

6) If DMARC verifier obtains the DMARC record, it
applies the DMARC policy based on the verification
results of SPF and DKIM, and whether the sender
domain matches the “alignment”.

7) DMARC verifier creates an aggregate report containing
the verification results and the applied policy, and sends
it to the e-mail address as shown in the “rua=” tag.

TABLE II shows the percentage of each DMARC policy

based on the number of domains that we have observed. As
shown in table, since the most of domains' DMARC policies

are published as “none”, the receiver will accept the
verification-failed messages without rejection or quarantine.
We can consider from this survey that many DMARC
compliant sender domains hope receiver domains to accept
spoofed messages as are and only to send aggregate reports.
Hence the isolation or rejection effect of DMARC against
spoofed e-mails is currently limited.

III. DESIGN OF DMARC VERIFICATION RESULT
NOTIFICATION SYSTEM

A. Summary of the System
As described in Section II-A and Section II-B, DKIM

cannot perform the verification for the e-mails that do not
attach the digital signature. In other words, even if a received
e-mail is from a domain that should have with a DKIM
signature, DKIM cannot determine the e-mail that does not
exist a DKIM signature as spoofed e-mail. To solve the
problem, we propose a system to warn of such e-mails by
utilizing DMARC. This system does not focus on creating
and sending the reports explained in Section II-C.

Our proposed system performs sender domain
authentication and notification of DMARC perform on users'
terminals. By performing on users' terminals, PC users can
easily adopt the sender domain authentication mechanisms
and/or DMARC verification even if the user's mail receiving
server does not support these mechanisms. The system
obtains the mail receiving server information required for
SPF from “Received” field of the mail header. After that, the
system determines the boundary of the internal and external
organization, and the system uses IP address of the nearest

TABLE I
VALUES OF “P=” TAG AND CORRESPONDING HANDLING METHODS

“p=” tag How to Handle failed-messages

None Inaction even if the authentication failed.
Quarantine Quarantine the authentication failure mails.

Reject Do not receive the authentication failure mails.

Fig. 2. Flow of DMARC Verification

Mail Server(sender)

Name Server

(1)Publish the SPF record, public key for DKIM
(2)Publish the DMARC record

Mail Server(receiver)

SPF and DKIM
Verifier

DMARC Verifier

(4)Send the results
of the verification

(5)Response the DMARC Record

(7)Publish Aggregate report
or Failure report

Information for Sender
Domain Authentication

Result of Sender Domain
Authentication

Query the DMARC record

(3)Verify the mail by SPF or DKIM

(6)Verify the mail by DMARCSender

Query the SPF record or the public key

Response the SPF record or public key

TABLE II
SURVEY OF DMARC POLICY

Polocy 2016/2

2016/3

2016/4

none 1,473 (81.65%) 1,261 (82.31%) 1,821 (77.79%)
quarantine 123 (6.82%) 93 (6.07%) 209 (8.93%)

reject 192 (10.64%) 170 (11.10%) 305 (13.03%)
error 16 (0.89%) 8 (0.52%) 6 (0.26%)
Total 1,804 (100%) 1,532 (100%) 2,341 (100%)

10

external organization to the boundary and the e-mail address
indicated by “Return-Path” for SPF verification.

SPF and DKIM verification are performed by the
verification module shown in Fig.3. DMARC verification
module receives the results of sender domain authentication
and determines whether to apply the DMARC policy.
DMARC verification module judges “pass” or “fail” as the
verification result. Subsequently the system notifies the
verification result to MUAs.

B. Summary of the System
Fig.3 shows the behavior of the POP proxy and a client in

this system.

1) When the POP proxy received a message acquisition
command from a MUA, the proxy relays the command
to the POP server.

2) The proxy retrieves the information required for
authentication from the header of the acquired e-mail,
and inputs the information to the SPF and DKIM
verification module.

3) SPF and DKIM verification module performs sender
domain authentications based on the information
obtained from the header.

4) DMARC verification module queries to the sender's
DNS contents server, and acquires the DMARC record.

5) DMARC verification module applies the DMARC
policy based on the result of the sender domain
authentications.

6) The proxy adds the DMARC verification result to the
mail header, and delivers the e-mail to the MUA.

7) The MUA notifies the user the DMARC verification
result.

IV. IMPLEMENTATION OF THE DMARC VERIFICATION
RESULT NOTIFICATION SYSTEM

Based on the design described in Section II-C, we have
developed the system using Perl. In order to perform
DMARC verification, this system is configured by using
Mail::DMARC and Mail::DMARC::PurePerl [6] that are
modules published on CPAN. We used MIME::Parser [7] and
Net::Server::POP3proxySSL, that was created based on
Net::Server::POP3proxy, to obtain the information required
for the verification from the mail header. In addition, by
implementing them all on Cygwin, our proposed system
works on a user's terminal.

First, we describe an implementation method of the part to
obtain the information required for verification from a mail
header. The parts necessary for verification are Return-Path,
DKIM signature, From:, and To: in a mail header shown in
Fig.1.

POP proxy

POP Server

MUA

(1)Send a command
to receive a mailReceive a mail (2)Retrieve the information for sender domain

authentication from the mail

SPF and DKIM
verification module

(3)Verify the mail by SPF and/or DKIM

DMARC
verification module

(5)Verify the mail by DMARC (6)Add the result to
the mail header

(7)Notify the user the
result of DMARC

Sender’s
Name Server

(4) Response the DMARC record

Query the DMARC record

Information for Sender
Domain Authentication

Result of Sender
Domain Authentication

Result of DMARC Relay the command from the MUA

User’s terminal

Fig. 3. Flow of DMARC Verification by Our System

POP proxy
Verify the mail and add the results to the mail header

Net::Server::POP3proxySSL
Get a mail from the mail server and

verify the mail in the subroutine

Mail::SPF
Verify the mail by SPF

Mail::DKIM::Verifier
Verify the mail by DKIM

MIME::Parser
Retrieve information

for verification

Notify the
information
for SPF

Notify the information
for DMARC verification

Add the result of DMARC
to the mail headerReceive the FQDN of

receiving mail server

Mail::DMARC

Mail::DMARC::PurePerl
Verify the mail by DMARC

Mail::DMARC::Result
Output the result of DMARC

POP Server(receiver)

Receiving server’s
data file

MUA

Notify the result
in the mail header

Receive a mail

Fig. 4. Structure of Our System

11

Fig.4 shows the structure of our proposed system. The
operation of POP proxy in this system can be divided into
five of 1) obtaining a message from the POP server, 2)
analysis of the mail header, 3) execution of the sender domain
authentication, 4) execution of DMARC verification, 5)
addition of the verification result. We describe about the
implementation method for each of these steps.

1) In order to implement the POP proxy and obtain a

message, we used Net::Server::POP3proxySSL that was
created based on Net::Server::POP3proxy. This module
receives a message from the POP server and stores it in
“$[0]”. By passing the variable to “flterAction” that is a
subroutine function, this module can perform processing
on the message.

2) We used the MIME::Parser for the header of the
analysis. This module isolates the mail header and the
body, and extracts the necessary information using
regular expression. Additionally, the module retrieves
the sender information to be used for SPF verification
from the “Received” field. The sender's information
used for SPF verification is indicated on “Received”
field the server located in the boundary of the internal
and external organization is added to the header. Then,
the system reads the receiving server's data file that
retains the information of own organization's receiving
server, and scans “Received” field. By preparing the
external file, each organization is able to specify the
receiving server without modifying the program code.
When the appropriate “Received” field is specified and
the source IP address is obtained, the module
terminates.

3) The system performs SPF verification by using the
information that was extracted with 2). We utilized Perl
module Mail::SPF [8] for SPF verification. The system
performs SPF verification by passing the sender IP
address and Envelope-From address to this module. On
the other hand, DKIM need to use the entire message
for the verification. By passing “$_[0]”, that contains
the entire message, to Perl module
Mail::DKIM::Verifier [9], the system performs DKIM
verification.

4) By using the information extracted in 2) and the result

of authentication performing in 3), the system performs
DMARC verification by Mail::DMARC::PurePerl
which is a method of Perl module Mail::DMARC. The
system performs the verification by passing the sender
IP address, Envelope-From address, Header-From
address, and verification results of SPF and DKIM to
Mail::DMARC::PurePerl.

5) The system appends the DMARC verification result
obtained in 4) to the mail header, and delivers to the
MUA. The system receives DMARC verification result
from DMARC::Mail::Result method. TABLE III shows
the fields about verification results that are possible to
obtain by this method. The system adds the verification
result and Header-From domain regardless of the
verification result to the mail header. Moreover, when
the verification result is “fail”, this method can obtain
the failure reason from “reason” field. Therefore even
though the verification result was “fail”, this system can
obtain “no_policy” as the failure reason from the
“reason” field when the sender domain was not
supported DMARC. In addition, as described in Section
II-C, DMARC is different from DKIM, the verification
will be failed when the domain indicated by the “d=”
tag and the domain indicated by the Envelope-From
address are different.
The “spf_align” and “dkim_align” field indicates “strict”
when the header from domain and the domain for each
verification are completely consistent, and when each of
these domains is the relationship of the subdomains, the
field indicates “relaxed”. On the other hand, these fields
do not have information when DMARC verification
failed due to these domains are different.
The system appends the domain of the receiver's e-mail
address, SPF verification result and Envelope-From,
DKIM verification result and its signed domain,
DMARC verification result, and Header-From domain
to the mail header. Additionally, when the verification
fails, the system appends the reason. Therefore
RFC7601[10] allows the freely description in the
parentheses, the system adds the DMARC policy and
the reason of verification failure as shown in Fig.5.

V. NOTIFICATION OF DMARC VERIFICATION RESULT
We implemented the notification function of DMARC

verification results by using the label of Microsoft Outlook
2013 as a user's MUA. The system notifies the four types
shown in the lower part of the Fig.6 based on DMARC

TABLE III
THE FIELDS THAT CAN BE OBTAINED BY MAIL::DMARC::RESULT

Field Contents

result DMARC verification result. (pass. fail)
disposition DMARC policy when the result field is “fail”.

reason The reason of the verification failure when the result
field is “fail”.

dkim The result of DKIM verification.
dkim_align The degree of coincidence with the DKIM signature

domain and the Header-From domain.
spf The result of SPF verification.

spf_align The degree of coincidence with the envelope-From
domain and the Header-From domain.

Authentication-Results: user.example.com;
 spf=pass smtp.mailfrom=sender@example.net;
 dkim=pass header.d=example.net;
 dmarc=fail (p=reject comment=no match)
 header.from=sender@example.com

Fig. 5. Addition of the Verification Result to the Mail Header

12

verification result.
Moreover, Fig.7-10 show the actual label additional

examples in the MUA. The system appends a blue label when
succeeding in the verification (Fig.7), and the system adds a
yellow label when the verification failed and the sender
domain indicated “none” or “quarantine” as the DMARC
policy (Fig.8). Furthermore, the system appends an orange
label when the sender does not correspond to DMARC
(Fig.9), and the system adds a red label when the verification
failed and the sender domain indicated “reject” as the
DMARC policy (Fig.10).

Additionally, when the applied policy was “reject”, that
represents such e-mails did not attach the DKIM signature
even though all of the legitimate transmissions that send from
the domain are supposed to be attached the signature.
Otherwise, such e-mails mean that failed to the verification.
In any case such mails are extremely high possibility of
spoofing or falsification, therefore the system alerts by
pop-up window in addition to the red label notification as
shown in Fig.11.

VI. DISCUSSION
In general usage of DMARC, a receiver does not handle

spoofed e-mails unless the sender's DMARC policy is “reject”
or “quarantine”. However, as shown in TABLE II, about 80%
of the DMARC compliant domains publish “none” as the
policy. Therefore, the existing systems cannot isolate or reject
the e-mails even if those are very high probability of being
spam mails. On the other hand, by giving various warnings
according to each policy, our system enables alerting to
spoofed e-mails that the conventional systems cannot warn.

Moreover, since DMARC can be expected to spread more
widely in the future, the effectiveness of this system will be
increased.

VII. CONCLUSION
In this paper, we proposed a system that distinguishes

spoofed e-mails utilizing DMARC. Our proposed system can
alert spoofed e-mails that do not attach the DKIM signature
even though all of the legitimate transmissions that send from
the domain are supposed to be attached the signature. A

This mail cannot be verified
by DMARC verification

The domain of header
from and for DMARC

verification are different.

The sender's domain
failed in DMARC

verification.(Policy:(policy))
DMARC Verification:Pass

yes

no

Did fail in DMARC
verification?

Could be verified
by DMARC?

Did pass in either
SPF or DKIM?

yes

yes
no

no

Fig. 8. Addition of “none” Label

Fig. 10. Addition of “reject” Label

Fig. 11. Pop-up Alert Window

Fig. 7. Addition of “pass” Label

Fig. 6. Flow of the Label Addition

Fig. 9. Addition of “Non-DMARC-compliant” Label

13

remarkable point of the system is to implement the all
functions of sender domain authentication, DMARC
verification, and the result notification on a user's PC. By
implementing on each user's PC, users can install a spoofed
e-mail alert system even if their receiving server does not
support DMARC verification. Generally DMARC is used for
administrators of sender domain receives the report of sender
domain authentication. However, this system is able to alert
the spoofed e-mails by visually notifying DMARC
verification result to each recipient. Moreover, even when the
sender domain was publishing “none” as the DMARC policy,
our system can prevent a recipient overlooking the spoofed
e-mails by the notification.

This system performs sender domain authentication and
DMARC verification in POP proxy, thus the system is only
compatible with POP. Therefore e-mail receiving via IMAP
has been widely utilized in recent years, support of the
mechanism described in this paper to the IMAP environment
is a future subject.

ACKNOWLEDGMENT
We would like to thank Mr. Ayachika Kitazaki, who is

the vice chairman of anti spam committee of The
Internet Association Japan, for providing us data of
DMARC policy statistics.

REFERENCES
[1] FBI (Federal Bureau of Investigation): Public Service Announcement,

E-mail Account Compromise. [Online]. Available:
http://www.ic3.gov/media/2015/150827-2.aspx

[2] M. Wong and W. Schlitt. (2006, Apr.). Sender Policy Framework (SPF)
for Authorizing Use of Domains in E-Mail, RFC4408, IETF

[3] D. Crocker, T.Hansen, M. Kucherawy. (2011, Sep.). DomainKeys
Identified Mail (DKIM) Signatures, STD76, IETF

[4] M. Kucherawy, E. Zwicky. (2015, Mar.). Domain-based Message
Authentication, Reporting, and Conformance (DMARC), RFC7489,
IETF

[5] M. Fukuyama, M. Oiwa, N. Yamai, N. Kitagawa, “Implementation of
DKIM Verification System Using POP Proxy,” IPSJ Technical Report,
2015-IOT-28, No.2, 2015, pp.1-6 (in Japanese).

[6] CPAN:MAIL::DMARC.pm. [Online]. Available:
http://search.cpan.org/~msimerson/Mail-DMARC-1.20150527/lib/Mail/
DMARC.pm

[7] CPAN:MIME::Parser.pm. [Online]. Available:
http://search.cpan.org/~dskoll/MIME-tools-5.506/lib/MIME/Parser.pm

[8] CPAN:Mail::SPF.pm. [Online]. Available:
http://search.cpan.org/~jmehnle/Mail-SPF-v2.9.0/lib/Mail/SPF.pm

[9] CPAN:Mail::DKIM::Verier.pm. [Online]. Available:
http://search.cpan.org/~jaslong/Mail-DKIM/lib/Mail/DKIM/Verifier.p
m

[10] M. Kucherawy. (2015, Aug.). Message Header Field for Indicating
Message Authentication Status, RFC7601, IETF

Naoya Kitagawa received his B.Sc. and M.Sc. degree in
information science from Chukyo University, Toyota, Japan,
in 2009 and 2011 respectively, and his Ph.D. degree in
information science from Nagoya University, Nagoya, Japan,
in 2014.
In April 2014, he joined Information Technology Center,
Nagoya University as a postdoctoral fellow. Since October
2014, he has been an assistant professor in the Institute of
Engineering, Tokyo University of Agriculture and
Technology. His research interests include the Internet,
network security, and distributed system. He is a member of
IPSJ.

Toshiki Tanaka received B.E. in computer and information
science from Tokyo University of Agriculture and
Technology, in 2016.

Masami Fukuyama received B.E. in computer and
information science from Tokyo University of Agriculture
and Technology, in 2016. Since April 2016, he has been a
graduate student in the Graduate School of Engineering,
Tokyo University of Agriculture and Technology.

Nariyoshi Yamai received his B.E. and M.E. degrees in
electronic engineering and his Ph.D. degree in information
and computer science from Osaka University, Osaka, Japan,
in 1984, 1986 and 1993, respectively.
In April 1988, he joined the Department of Information
Engineering, Nara National College of Technology, as a
research associate. From April 1990 to March 1994, he was
an Assistant Professor in the same department. In April 1994,
he joined the Education Center for Information Processing,
Osaka University, as a research associate. In April 1995, he
joined the Computation Center, Osaka University, as an
assistant professor. From November 1997 to March 2006, he
joined the Computer Center, Okayama University, as an
associate professor. From April 2006 to March 2014, he was
a professor in the Information Technology Center (at present,
the Center for Information Technology and Management),
Okayama University. Since April 2014, he has been a
professor in the Institute of Engineering, Tokyo University of
Agriculture and Technology. His research interests include
distributed system, network architecture and Internet. He is a
member of IEICE，IPSJ and IEEE

14

