
Proceedings of the APAN – Research Workshop 2019
ISBN 978-4-9905448-9-8

Abstract—A wide area distributed application is affected by
network failure due to natural disasters because the servers on
which the application operates are distributed geographically in
a wide area. Failure Injection Testing (FIT) is a method for
verifying fault tolerance of widely distributed applications. In
this paper, by limiting network failures to the connection line,
whole FIT scenarios are generated and exhaustive evaluation of
fault tolerance is performed. Authors evaluate the visualization
method of performance data obtained from this evaluation and
the reduction of the fault tolerance evaluation cost by the
proposed method.

Index Terms—Distributed Systems, Failure Injection testing,
Resilience

I. INTRODUCTION

NFORMATION and communication services are
essential to people's lives. There are various services using
information communication technology (ICT) such as
e-mail, map services. One of the reasons for the wide
spreading of ICT services is the rapid spread of electronic
devices such as smartphones. Cloud computing is one of the
typical information communication services. Cloud
computing is a form of provision of computers that can use
computers without being aware of the location and number
via the Internet.
Cloud computing is a concept advocated by Eric Schmidt,

who was then CEO of Google in 2006 and has since advanced
rapidly into research and development and commercial
deployment. At present, Amazon Web Services (AWS)
provided by Amazon, Microsoft Azure provided by
Microsoft, Google Cloud Platform (GCP) provided by
Google, and IBM Cloud provided by IBM, etc. are

This work was supported in part by JSPS KAKENHI Grant Number
19K20256.

Hiroki Kashiwazaki, Shinnosuke Miura and Shinji Shimojo are with the
Osaka University, Japan (e-mail: reo, shinnosuke.miura, shimojo @
cmc.osaka-u.ac.jp, respectively).

Hiroki Kashiwazaki and Hiroki Takakura are with National Institute of
Informatics, Japan (e-mail: reo_kashiwazaki, takakura@nii.ac.jp,
respectively)

representative. Known as a cloud computing service. Cloud
computing services are still rapidly spreading and the market
is expanding. In fact, according to the domestic public cloud
service market forecast announced by IDC Japan in October
2018, the domestic public cloud service market in 2018 is
expected to increase 27.4% over the previous year to 666.3
billion yen.

In addition, the market size in 2022 is estimated to be
1.46.5 trillion yen, which is 2.8 times that in 2017. Cloud
computing services are classified into Software as a Service
(SaaS), Platform as a Service (PaaS), Infrastructure as a
Service (IaaS), etc. according to the service level. SaaS is a
form of cloud computing that provides the software. PaaS
provides language processing systems, libraries, middleware,
etc. as a basis for operating software. IaaS provides
computing infrastructure such as CPU, memory, disk, and
network. Furthermore, in recent years, a wide variety of cloud
computing services such as Machine Learning as a Service
(MLaaS), which provides machine learning services, and
Desktop as a Service (DaaS), which provides personal
desktop environments, are becoming widespread. is there.

The ICT services are built on a wide area distributed
system composed of computer resources of multiple
geographically dispersed sites for the purpose of load
distribution and improvement of fault tolerance. By
distributing geographically, robustness can be secured against
failure at a single site. However, the ICT service constructed
as a wide area distributed system can be vulnerable to the
simultaneous multiple failures of the network lines. Various
factors can cause network failure. For example, packet loss
can be caused by network device failure, disconnection of a
network cable and human error caused by incorrect operation.
Also, especially in Japan where natural disasters occur
frequently, network failures due to disasters are also
conceivable. In fact, in the case of large-scale disasters
represented by the Great Hanshin-Awaji Earthquake (1995)
and the Great East Japan Earthquake (2011), communication
path interruption was a threat.

From the viewpoint of ICT, considering the necessity of ICT
services today, it is necessary to be able to always provide
services with the same level of performance as in normal

Evaluation of wide-area distributed services by
SDN-FIT system

Hiroki Kashiwazaki, Shinnosuke Miura, Hiroki Takakura and Shinji Shimojo

I

2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceedings of the Asia-Pacific Advanced Network

https://core.ac.uk/display/229876248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

conditions. However, it is difficult to maintain the same level
of performance under the condition of failure. The ICT
service providers have become to be required to show users
the service level agreement of their own services. As to
network service providers, it is also important to show the
fault tolerance performance of the provider network. In other
words, it is necessary for the ICT service provider to find how
their own ICT service can provide the performance not only
under the normal conditions but also under the non-steady
conditions due to various failures.

II. RELATED WORKS
Failure Injection Testing (FIT) is widely known as a

method to evaluate the fault tolerance of a service. This
method is an evaluation method that measures the quality of
service when a failure occurs by intentionally injecting
failures into the system that constitutes the service.
Depending on the implementation environment, FIT can be
roughly classified into two approaches, one is implemented in
a production environment and the other is implemented in a
test environment. A representative example of the former is
Chaos Engineering proposed by Netflix. In Chaos
Engineering, first authors define the steady-state behavior of
the system using externally observable performance indexes.
Then, the behavior under non-steady condition is
implemented by injecting the failures that assumed the stop of
the server, the abnormal state of the hard disks, the
disconnection of the network cable, etc. The fault tolerance of
the system is evaluated by comparing the steady-state
behavior to the non-steady one. One of the advantages of
Chaos Engineering is that it is possible to implement traffic
patterns and load patterns of actual services by performing
fault tolerance evaluation in a production environment. On
the other hand, since the failure is injected into the production
environment, it is necessary to minimize the influence of the
failure injection not to degrade the level of the service.

 Netflix has developed a number of automation tools and
released it as open source software in order to realize the
above Chaos Engineering. Chaos Monkey is a tool to
implement server failures by stopping virtual machines
running on AWS at random. In addition, Chaos Gorilla is a
tool to stop all virtual machines running on a specific
availability zone in AWS. Furthermore, Chaos Kong is a tool
to stop all virtual machines in a specific region. By
implementing FIT using these tools usually, Netflix has built
a wide-area distributed system with excellent fault tolerance
and guarantees high service level agreement. Meanwhile,
wide area distributed systems have various network
topologies depending on the arrangement of computer
resources that compose them. In addition, when the number
of locations that compose the wide area distributed system
increases, the combination of failures occurring on each
network connection lines increases exponentially. When the
fault tolerance evaluation is performed manually, it takes a lot
of time and effort. So fault tolerance evaluation should be
executed automatically.

 DESTCloud is a platform for verifying and evaluating

disaster tolerance and fault tolerance of wide-area distributed
systems. DESTCloud uses Software Defined Disaster
Emulation (SDDE) to inject network failure and collect logs
generated during faults based on a disaster scenario described
by the administrators who want to perform verification and
evaluation of the system. In advance, the administrators
describe the disaster scenario where kinds of failures are
indicated in chronological order. Then the SDDE
automatically injects the failure based on the disaster scenario
into the network device using the Software-Defined
Networking (SDN) approach. In addition, SDDE assigns a
disaster scenario specific ID to the log generated during
failure occurrence. As a result, it is easy for administrators to
analyze the log without any manual operations. However, a
disaster scenario can be only described as a simple
combination of failures, and it is not suitable for applications
that try whole combinations of network failures. Also, it can
not reduce the time and effort of analyzing logs for each
combination.

 The service quality of the ICT service cannot be found
only by performing the benchmark once. It is necessary to
acquire data comprehensively by changing multiple
parameters that become indexes. Because of this kind of data
acquisition, fault tolerance cannot be evaluated just by listing
the data. Therefore, it makes sense to visualize the
consolidated data. This study aims to propose a tool that
automatically performs fault tolerance evaluation from data
acquisition to visualization.

III. PROPOSED APPROACH
In this paper, an ICT service provided by a geographically

separated group of computers connected via a network is
defined as a wide-area distributed service. The sites are
connected by a route control device (router), and by operating
this route control device, it is possible to generate intentional
failures between the sites. Routers include not only appliance
products with physical enclosures, but also software routers
installed on computers using x86 processors, and virtual
routers that can be installed as virtual machines (VMs).

 Connect to the console of the Network Operation System
(NOS) that operates the router, and execute the NOS
command using the Command Line Interface (CLI) to
connect the routers among the sites. However, NOS
commands may require interactive input. This interactive
input requirement can be a barrier when trying to implement
programmatic automation.

 With the spread of cloud computing, NOS also
implemented cloud-like function sets when the cloud
computing environments become possible to manipulate VM
deployment and configuration changes using an application
programming interface (API). In 2008, Cisco Systems in the
United States released the API of its integrated router, Cisco
ISR series, in 2008. For example, Vyatta, implemented as a
software router, has implemented API operations since Ver.
6.2 in 2011. In this study, the authors evaluate the fault
tolerance and automate this evaluation by generating
intentional failures in the network connecting the sites using

3

the API provided by NOS.

A. Classification of network failures
In a FIT, it is assumed that network failure caused by a

natural disaster can be implemented. There are various factors
in the network failure caused by a natural disaster, those are,
failures directly caused by natural disaster and the in-direct
failure caused by equipment failure, etc. In addition, it is also
necessary to examine the influence range of the failure
pattern, the presence or absence of spatial change, and the
temporal transition. The network failures that are caused by a
natural disaster can be classified according to reports of the
Ministry of Internal Affairs and Communications “Study
Group on the Ways to Secure Communications in Large-scale
Disasters and Other Emergency Situations” and “Information
Network Safety and Reliability Standards”. The reports show
faults for communication equipment etc. and classify control
applied to network equipment for each event (Table 1).

From the aspect of “cause of disorder” causation can be

assumed in control operation or software, network equipment,
communication line. From the aspect of ``disorder factor'',
causation on control operation or software can be caused by
disorders of communication restriction control and illegal
route advertisement. Disorders on network equipment can be
caused by entire/partial equipment and overload of
equipment. Disorders on communication lines can be caused
by cable disconnection, a disorder of repeaters or switches
and concentrate on traffic. Finally, disorders on the facility
can be caused by the destruction of office, lost of power
supply and disorder of cooler. These factors can be presented
by the phenomenon of congestion, loop or flapping of routes,
communication lost, packet loss and rise of latency time. This
classification can result in the network function required to be
implemented in enough evaluation of fault tolerance. The
requirement is shown below.

1. Increased delay
2. n% packet loss (0 <n ≤ 100)
3. Deactivate network interface card (NIC)
4. Change of routing control table

Therefore, the authors implement the four types of network

failures in this research.

B. Proposed system
Figure 1. shows a schematic diagram of the proposed

system for implementing fault tolerance verification by
intentional failure occurrence and its automation. The system
consists of a failure pattern generator, FIT controller,
benchmark controller, and visualizer. The failure pattern
generator generates whole failure patterns based on the
topology of the wide-area distributed system. The FIT
controller inputs the failure pattern and implements the
failures to SDN routers. The controller also always collect
SDN router information and maintain topology information of
the wide-area distributed system. The benchmark controller
performs the benchmark program on the wide area distributed
system cooperated with the FIT controller. After that, the
benchmark controller sends the benchmark result to the
visualizer. The visualizer receives and put the measurement
results in order, then visualizes the data. The following
sections describe each component.

1) Failure pattern generator
The fault pattern generator generates fault patterns according
to the number of circuits in the topology from the topology
information of the wide area distributed service. The sites
supporting wide-area distributed services to be subjected to
fault tolerance verification are connected by a routing
controller that can be operated by API. The identifiers are
given to each base, and the NICs at both ends of the circuit
connecting the sites are given identifiers in the NOS of each
router. From the above information, the topology of the site
supporting wide-area distributed service can be expressed by
the nesting of hash and array. Yet Another Markup Language
(YAML) is a format that represents structured data, and the
topology can be described using YAML. For example, a
network consisting of three sites in Figure 1. can be expressed
as shown in Listing 1. In this topology data, site A is
connected to B by eth0 and to C by eth1; site B is connected
to A by eth0 and A by eth1; and site C is connected to A by
eth0 and B by eth1. Listing 1 is an example of YAML file to
indicate it.

At the same time, this topology data shows the circuit
between sites. In the example of Listing 1., the line a
connecting eth0 of site A to eth0 of site B, the line b
connecting eth1 of site A to eth0 of site C, and the line

Table. 1. Classification of network failures

Figure 1 A diagram of proposed SDN-FIT system

- A:
 - [[eth0, B], [eth1, C]]
- B:
 - [[eth0, A], [eth1, C]]
- C:
 - [[eth0, A], [eth1, B]]

Listing 1.

4

connecting eth1 of site B to eth1 of site C Indicates that there
are 3 lines of c. When the number of lines is m, the fault
pattern generator searches for combinations of fault patterns
that generate all n (0 < n ≤ m) double faults in each line. One
failure pattern is represented by an array composed of the
failure type identifier, the identifier of the router that
generates the failure, and the identifiers of one or more NICs
that cause the failure in the router. Listing 2. shows the case
where the line a and the line b are interrupted due to the
deactivation of the NIC.

2) FIT controller
The FIT controller uses the fault patterns created by the fault
pattern generator to update probabilistic data in accordance
with each fault. The implementer of fault tolerance
verification provides the FIT controller with router
information of the site supporting the wide area distributed
service to be verified. The FIT controller uses the API for the
router to obtain NIC information of each router and the IP
address assigned to that NIC. It is determined that NICs in the
same IP address range at different sites are connected, and
topology data is created.
The FIT controller provides the created topology data to the
fault pattern generator, and the fault pattern generator returns
all fault patterns to the FIT controller. The FIT controller
sequentially processes the obtained fault pattern data. As
described in Section III-B1, a failure pattern consists of an
identifier of the failure type, an identifier of the router that
causes the failure, and an identifier of one or more NICs that
cause the failure in that router. The FIT controller reads this
array and uses the API to control the NIC specified as the
router and the instruction corresponding to the identifier of
the failure type.
After the control that implements the fault condition ends
normally, the FIT controller applies to process to the
benchmark to measure the performance in the event of a fault.
When the execution of the benchmark ends normally, the FIT
controller controls the specified NIC of the router using the
API and cancels the failure status. When the release of the
fault condition ends normally, the FIT controller applies to
process to the visualizer to visualize the performance
measurement results obtained by the benchmark controller.
Execute these processes for all failure patterns, and repeat
them until finished.
3) Benchmark controller
Benchmark controller performs object storage benchmarking.
The benchmark controller then sends the benchmark results to
the visualizer. In benchmark controller, benchmark software
is implemented according to the wide area distributed service
to be verified. According to an instruction from the FIT
controller, benchmark controller executes the specified
benchmark software based on the specified arguments.
Those who perform fault tolerance verification install
benchmark software according to the items they want to
investigate. For example, if the wide area distributed service
is a Web service and you want to verify its response

performance, the fault tolerant verifier uses Apache Bench. If
wide area distributed services are POSIX compliant storage,
fio or IOZONE may be used as benchmark software.
4) Visualizer
The visualizer receives measurement results from the
benchmark controller and visualizes the result data. The
measurement results obtained by the benchmark controller are
placed in a local storage area in the computer where the
visualizer is deployed, or placed in a place that can be
obtained by remote access. When the visualizer receives an
instruction from the FIT controller, it reads the specified file
and visualizes the data according to the specified drawing
method. The visualizer shows the location of the visualized
file. This enables the verifier to view the visualized data.

IV. IMPLEMENTATION
Authors deployed a wide area distributed service in a real
environment and implement SDN-FIT system to verify the
fault tolerance of this wide area distributed service.

A. Implementation of the evaluation environment
1) Distcloud
Distcloud is a wide-area distributed virtualization platform
under Regional InterCloud Subcommittee (RICC) of the
Internet Technology 16th Committee (ITRC) of the Japan
Society for the Promotion of Science and Technology. It is
constructed by connecting computers distributed by
geographically dispersed universities, research organizations,
and cloud computing providers by broadband networks
(Figure 2). Wide-area distributed virtualization infrastructure
is implemented by deploying scale-out distributed storage.
Focusing on live migration as a disaster recovery method,
authors implement storage technology with little degradation
of I/O performance before and after wide-area live migration.
Distcloud's sites are connected by SINET, an academic
information network provided by the National Institute of

Informatics. It uses L2VPN / VPLS service that allows
Ethernet frames to be exchanged between LANs at remote
sites.
Virtual Private LAN Service (VPLS) is a technology that can
transfer Ethernet frames using Multi-Protocol Label
Switching (MPLS) defined in RFC3031. Because a virtual
Ethernet LAN can be constructed for each network created in
each network, a protocol to be used does not depend on IP,
and a network with L2 connectivity can be constructed
(Figure 3).

- [shutdown, A, eth0, eth1]
Listing 2.

Figure 2. Schematic Diagram of Distcloud (2018)

5

Distcloud uses SINET VPLS and prepares L2 networks called
distcloud-core and distcloud-mgmt respectively. A
distcloud-core is a network used for communication of
services and applications, and a distcloud-mgmt is a network
for management of devices constituting the sites. In addition,
an L3VPN network called distcloud-L3 is prepared
separately. As for distcloud-L3, / 24 IPv4 addresses are
assigned in advance for each site.
A site connected to Distcloud needs to prepare a VLAN to
connect with the distcloud-core, distcloud-mgmt and
distcloud-L3 in the LAN of the site. A site connected to
Distcloud prepares computer resources and connects this with
the above-mentioned VPLS. Two L2VPN / VPLS
connectivity by VPLS provided by SINET, one IPv4 network
by L3VPN, three VLANs in the site, and computer resources
connected to it is the environment provided by Distcloud.
2) VyOS
VyOS is a network OS developed by open source. It is
developed based on Debian GNU / Linux. Originally from
Vyatta mentioned in section III, it was forked from version
6.6 R1 of Vyatta Core, which is the free version of Vyatta. In
addition to being installed on a physical computer and used as
a software router, it may also be installed as a VM in a virtual
environment and used as a virtual router. Like a general NOS,
it has a unified CLI like a hardware router.
 In order to cause communication failure due to FIT
proposed in this research among sites, it is necessary to
configure an independent network at each site that configures
Distcloud, and it is necessary to perform routing control with
the deployed router at the site. The NICs connecting between
the sites are independent of the networks owned by each site,
and the two connected sites need to belong to the same
network. In Distcloud, only the aforementioned network with
distcloud-core is provided as a service network.
 Although it is conceivable to newly secure an independent
VLAN for connection between sites as L2VPN / VPLS, it is
necessary to apply for the number of lines connecting
between sites and to apply L2VPN / VPLS. This method
becomes impractical if the number of connected lines
increases. Therefore, by using IEEE802.1ad (Q-in-Q) in a
router deployed at each site, networks of different VLANs
can be configured across different sites on the distcloud-core
network.
VyOS is a network OS that can communicate with Q-in-Q
and can realize all the failure implementations described in
Section III-A on its own. As VyOS is developed based on
Debian GNU / Linux as mentioned above, it can be used by
specifying the tc command of Linux as traffic-policy of
VyOS. For these reasons, it is used for verification
experiments of this study.

3) CLOUDIAN HYPERSTORE
CLOUDIAN HYPERSTORE is an object storage product that
is fully compatible with the Amazon S3 API marketed by
CLOUDIAN.
Object storage is a computer data storage that manages data
as an object as opposed to filesystems that manage data as a
file hierarchy and other storage architectures such as block
storage that manages data as blocks specified by sectors and
tracks Refers to the architecture. Each object contains data,
metadata, and a unique identifier. Object storage can be
implemented at multiple levels, including object storage
device level, system level, and interface level, in which case
object storage is an interface directly programmable by the
application, multiple instances of physical hardware It
provides data management functions including namespaces
that can span and replication of data.
CLOUDIAN HYPERSTORE has a function to manage data
at the bucket level, and control parameters can be defined at
the bucket level. The bucket policy is a parameter that
determines the number of copies of data. In this evaluation
experiment, when the client uploads a file (PUT operation)
when three copies are created at all sites. The policy is to
return an acknowledgment (ACK). CLOUDIAN
HYPERSTORE is a wide area distributed service that is also
used in the back end of the video sharing site “Nico Nico
Douga” of Dwango Co., Ltd.
4) COSBench
COSBench is an object storage benchmark tool developed by
Qing Zheng et al. Object storage has different indexes
(workloads) to keep the performance of the access system in a
proper state for each service that utilizes it. However, in 2013,
when the use of object storage started to increase worldwide,
there was no workload for object storage. COSBench was
designed and implemented to address this problem.
The development of COSBench, which has been developed
by Intel, aims at preparing both object storage system
performance comparison and system optimization and is a
scalable implementation to cope with the scale of the system.
At COSBench, there are two types of drivers: a driver that
loads object storage, and a controller that instructs to load the
driver. If the load details such as read / write (R: W) ratio are
described in the XML file that describes the workload and
registered in the controller by the web console or the
command for CLI, it will be queued on the controller. The
load test is performed sequentially.

Figure 3. Inter-communication among sites with VPLS

Figure 4. diagram of the wide-area distributed system

6

B. Construction of wide-area distributed system environment
In this study, CLOUDIAN HYPERSTORE and its
environment for verification are constructed using three
Distcloud sites (Osaka University, Tohoku University,
Ryukyu University) (Figure 4). The x86 server installed at
Osaka University has a CPU of 28 physical cores, a main
memory of 256GB, a 3.6TB SSD array is connected, and an
exclusive 10 Gbps leased line is connected to the campus
network. Tohoku University has 28 physical cores of CPU,
128GB of main memory and 2.2TB of disk array connected
and is connected to the campus network via a shared 10 Gbps
line. SINET 5 connects Osaka University and Tohoku
University at 100 Gbps, and Osaka University and Ryukyu
University, and Tohoku University and Ryukyu University at
40 Gbps.
Install Ubuntu 18.04 LTS, an operating system based on
Debian GNU/Linux, on the x86 server at each site. In order to
run VM on this Linux, authors build the environment of
KVM which is a virtualization module that makes Linux
kernel function as a virtual hypervisor.
Then the authors created the following four VMs on Linux
installed on the x86 server at each site.

� CLOUDIAN HYPERSTORE 2VMs
� CentOS7 for COSBench 1VM
� VyOS 1VM

The VMs performance of CLOUDIAN HYPERSTORE,
COSBench, and VyOS are shown in Table 2.

The VM belongs to an independent network for each
location and assigns an IPv4 address that does not overlap
with the networks of other locations. A unique VLAN is
assigned to this network in the site, and VMs for CLOUDIAN
HYPERSTORE at each site, VMs for COSBench, and one
NIC of VyOS are connected to the bridge interface of this
VLAN.

The VyOS at each site has a NIC for configuring a
backbone network connected to the VyOS at the other two
sites. As described in Section 3.1.2, NICs connected to each
backbone network need to belong to independent VLANs, so
select VLANs that do not overlap with VLANs at all sites.
The two NICs connected to the backbone network are
connected via a unique L2 network created on the L2 network
of distcloud-core by Q-in-Q.

In VyOS at each site, OSPF is operated as an Interior
Gateway Protocol, the cost with the adjacent site is set to 10,

dead-interval to 40 seconds, hello-interval to 10 seconds, and
retransmit-interval to 5 seconds. In this way, VMs belonging
to the networks at each site can communicate with each other.
Also, by setting disabled for the interconnected NICs, that
NIC can be deactivated and communication disconnection
can occur. When the NIC becomes inactive and
communication interruption occurs, OSPF recalculates the
path in the topology where communication interruption
occurred, and the path is changed by sending Link State
Update packet. The inactive state of the NIC can be released
by the delete command.

C. Implementation of SDN-FIT system
In this research, five programs were created to implement the
FIT controller, the benchmark controller, and the visualizer
among the proposed systems described in Section III. In the
FIT controller, in this paper, in order to simplify the
evaluation of CLOUDIAN HYPERSTORE, authors
implemented the deactivation of the network interface among
the four faults shown in Section III-A. The outline of each
script is as follows.

1) network failure implementation script
The network failure implementation script is one of the
scripts that configure the FIT controller and causes a failure
in the network connecting among sites. In VyOS, it is
separated into operation mode and configuration mode, and it
connects to the VyOS console and switches to configuration
mode by entering configure at the prompt. Here, in order to
deactivate eth0, you need to input command as follows.

set interface ethernet eth0 disable

The network failure implementation script is an
implementation of this series of processing using VyOS
cli-shell-api. The network failure implementation script must
first initialize the environment. Use a command to acquire
environment variables required for initialization.

/bin/cli-shell-api getSessionEnv

The getSessionEnv command outputs a series of operations
specific to the session by giving a process identifier as an
argument. The initialization is completed by executing as
follows after initialization.

/bin/cli-shell-api setupSession

After initialization is complete, the following command can
deactivate the NIC with the identifier specified by the NIC
identifier.

/opt/vyatta/sbin/my_set ethernet [NIC identifier] disable

The program that executes this series of processing receives
the identifier of NIC as an argument. When multiple NIC
identifiers are specified, the specified NICs are sequentially
deactivated.

 OS/Version RAM
[MiB]

number of
vCPUs

CLOUDIAN
HYPERSTORE

CentOS Linux
release 7.4.1708

32768 8

COSBench CentOS Linux
release 7.6.1810

4096 2

VyOS VyOS 1.1.8 512 1

Table 2. Performance of VM for Cloudian Hyperstore, COSBench and VyOS

7

2) network failure deactivation script
The network failure deactivation script is one of the programs
that configure the FIT controller and is a script that
deactivates the failure that has occurred in the network
connecting the sites. As described in Section 3.3.1 Network
Failure Implementation Script, after using cli-shell-api of
VyOS and initializing by executing getSessionEnv command
and /bin/cli-shell-api/setupSession, it is used as an argument.
Execute the following command for the specified NIC
identifier to release the inactive status.

/opt/vyatta/sbin/my_delete ethernet [NIC identifier] disable

The network failure deactivation script can receive multiple
arguments in the same way as the network failure
implementation script, and when multiple NIC identifiers are
specified, the inactive state of the specified NIC is released
sequentially.
3) Benchmark execution script
The benchmark execution script is a program that configures
the benchmark controller and is a program for performing
comprehensive benchmarks that is specialized for COSBench.
The benchmark execution script uses the program cli.sh that
executes the load test installed on the controller of
COSBench. Benchmark can be performed by giving an XML
file name that contains information necessary for the
workload as an argument when executing this program. Since
benchmarking is performed repeatedly changing the
workload, the benchmark execution script generates an XML
file describing all the workloads in advance.
Workloads executed with cli.sh are given a workload
identifier, and the benchmark output of different workloads
can be distinguished by this identifier. The program of the
visualizer described in Section III-B2 also has a function to
save this identifier as data in order to align the data using this
identifier.
4) Data formatting script
The data shaping script is one of the programs that make up
the visualizer and is a program that organizes the data output
by the benchmark execution script. The bandwidth
information to be evaluated is extracted from the data of
multiple workloads output by the benchmark execution script,
sorted, and compared with the steady-state benchmark result
performed before the fault tolerance evaluation is performed,
Normalize the implemented daily steady-state benchmark and
output it. The output data is shaped as a format that can be
read by gnuplot used in the visualization script in a next
Section.

5) Visualization script
The visualization script is one of the programs that compose
the visualizer, and the data output from the data shaping script
is output using gnuplot. gnuplot is graph utility software
based on command line operation that runs on various
operating systems such as various UNIX operating systems
and Windows. The visualization script can change the width
of the x-axis and the y-axis according to the arguments given
and is an implementation that enables adaptive visualization
according to the range of the benchmark.

V. EVALUATIONS
Authors evaluate the disaster tolerance of CLOUDIAN
HYPERSTORE quantitatively using CLOUDIAN
HYPERSTORE which is constructed in Section IV-A3 and
the SDN-FIT system implemented in Section IV-C. Then the
authors visualize the results of evaluations. The network
consisting of three sites constructed in Section IV-B is
connected by three independent connection lines, and the
failure pattern of a single failure on the network is the
following three patterns.

1. Osaka-Tohoku
2. Ryukyu-Osaka
3. Tohoku-Ryukyu

 When a double failure occurs, the connectivity of the two
sites is maintained but the split-brain state is isolated from the
other one. As described in Section IV-A-3, the CLOUDIAN
HYPERSTORE bucket used in this evaluation has the policy
to return an ACK when all 4 sites have been replicated in all 3
sites. Unable to complete the PUT process, all COSBench
workloads fail. Because triple failure also causes all
workloads to fail for the same reason, this evaluation does not
evaluate double failure and triple failure.
In this evaluation, the minimum value of the file size is set to
64 KB by using benchmark_exec command, and the
evaluation is performed with nine file sizes up to 16 MB by
doubling each time. Also, the workload read:write (RW) ratio
is increased by 10 % from 0 % to 100 %. After each failure
pattern is implemented, this workload is executed, and the
non-steady-state benchmark results are normalized using the
previously measured steady-state benchmark results (Figure
5). The horizontal axis is the logarithm axis of the file size,
and the vertical axis is the RW ratio, which is visualized as a
three-dimensional color map. This can be visualized as a

Figure 5. Calculation diagram of normalized performance.

8

two-dimensional heat map by displaying it in the gaze
direction of a vector parallel to the Z axis. With this heat map,
it is possible to grasp the relative quality deterioration in the
unsteady state for each failure pattern.
 As described in Section IV-C, when you deactivate the
VyOS interface connected to the backbone network
connecting each location, OSPF detects it and re-routes the
routing table in the topology where one of the backbone
networks is lost. Calculate and send Link State Update
packets to VyOS at other sites, and the routing control tables
of VyOS at all sites are updated. In the steady state, all
locations can reach all other locations with one hop.
 Among them, the one with the largest increase rate of the
delay time is at the time of failure occurrence between Osaka
University and Tohoku University of failure pattern 1, and the
delay time is 14.81 ms at steady state, and it is 56.71ms which
is 3.8 times. The average transfer rate of normalized Read and
Write at the failure pattern is shown on the left side of Figure
6. The average transfer rate of Read is 8MB/s, and the RW
ratio shows the worst value of 0.42 at 60 %, which indicates
that only 42 % performance can be obtained compared to the
average transfer rate at steady state. Moreover, the average
transfer rate of Write is less than 0.83 in the whole area, and
the worst value is 0.56 in 10% of RW ratio of 4 MB.
The normalized average transfer rate of Read and Write at
failure pattern 2 (Osaka-Ryukyu) is shown in the center part
of Fig. 2. In case of the failure pattern, the delay time of
Ryukyu University-Osaka University is 23.56 ms at steady
state, which is 2.0 times that of 48.55 ms. It is clear that the
tendency of performance degradation at failure 2 is different
from the tendency of performance degradation at failure 1 and
both Read and Write, and the file size is large, and the smaller
the RW ratio, the lower the performance deterioration. This
means that if the file size tends to be large and the RW ratio
tends to be small in the use of wide area distributed services,
CLOUDIAN HYPERSTORE in this verification environment
can be said to have high fault tolerance, but conversely, the

use of small files is large, and authors show that fault
tolerance is low when the RW ratio tends to be high.
The normalized average transfer rate of Read and Write at
failure pattern 3 (Ryukyu-Tohoku) is shown on the left side
of Fig. 3. In case of the failure pattern, the delay time of
Tohoku University-Ryukyu University, which is 35.11 ms at
steady state time, is 37.33 ms which is 1.1 times. The
tendency of performance degradation at failure 3 differs from
the tendency of performance degradation at failures 1 and 2
and both Read and Write, and it can be seen that the larger the
file size and the smaller the RW ratio, the larger the
performance degradation.
These results are the non-stationary average transfer rates
obtained by changing the file size and the read: write ratio
normalized with the steady-state values. In addition to the fact
that the read: write ratio differs for each wide-area distributed
service, the ratio changes with the time zone even for the
same wide-area service. Similarly, the same is true for file
size. Therefore, the service provider can quantitatively grasp
the deterioration of the service quality at the time of
non-station according to the state of provision of the own
service.
Looking at failure pattern 1, the proportion of colors close to
1, ie, yellowish colors, is smaller than the average transfer
rate at the time of failure occurrence of the other two patterns.
As can be seen from Table 1, the rate of change of RTT is 1.9
to 3.6 times that of the other patterns in case of the failure
occurrence pattern of 1 compared to the steady state. It can be
said that the output heat map represents the effect.

A. Evaluation of time and accuracy required for failure
injection
As described in Chapter 1, the total number of failure patterns
increases exponentially as the number of networks connecting
each site number increases. When FIT is performed manually,
the time required to implement a fault on a router is
sufficiently small time for fault tolerance verification as a
whole, but due to the increase in the number of sites and the

Figure 6. Normalized averaged R/W performance

9

number of networks, the time required for manual input is
also possible. It also increases exponentially. In addition, it is
possible to make an incorrect input by manual input.
In this section, authors measure the time required for manual
input, determine whether the NOS command of the input
router is correct, and calculate the wrong answer rate. The
network used for evaluation prepared the topology connected
in mesh form with 4 nodes and 6 networks (Figure 7).
This topology diagram describes the identifiers of the NICs at
both ends of the network connected to other sites at each site
and provides the subject with an example of command input
in the case of causing single failure or double failure as a
manual. An example of command input for single failure and
double failure is shown below.

$ ssh kyusan
$ configure
$ set interface ethernet eth8 disable
$ commit
$ save
$ exit

$ ssh ryukyu
$ configure
$ set interface ethernet eth5 disable
$ set interface ethernet eth8 disable
$ commit
$ save
$ exit

The subjects were four persons aged 22 to 42 with the
background information system. The subjects were asked to
display 22 types of failure patterns from single failure to
triple failure, and each failure pattern was input in an
environment simulating the console of NOS. The time
required for the input was measured, and the correctness of
the input result was judged.
 Figure 9 shows a graph comparing the time taken to
implement the fault by the proposed method and manually.
Since the FIT controller implements the fault in the router

according to the fault pattern output by the fault pattern
generator, the time required for a single fault is 1.854 seconds
on average. Since the current FIT controller implementation
expands multiple faults into multiple single faults and
implements faults, the time required is linearly increased
while the number of double faults, triple faults, and fault
points increases. Yes. The time required to execute a commit
command and the save command required to complete a
session is dominant in the time required to implement a single
failure in a router. Therefore, it is thought that the time
required by the proposed method can be reduced by
implementing the implementation of the FIT controller in
case of causing failures in multiple NICs at one site in one
session.
On the other hand, it can be seen that the time required to
implement a manual failure is an average of 28.17 seconds for
a single failure, which is 15.2 times longer than that of the
proposed system. It takes an average of 38.48 seconds for
double failure, but 35.22 seconds for triple failure, which is
not a simple increase. This is considered to be due to the fact
that the failure pattern of the triple failure in the 22 types of
failure patterns listed can complete the execution of the
command with one router.
The error rate of manual fault implementation was 25% for
single fault, 5.6% for double fault and 6.3% for triple fault.
The reason for the high error rate in a single failure is thought
to be that the single failure was concentrated in the early
stages of 22 different failure patterns, and it took time to
establish the understanding of the provided manual. Although
triple failure is a failure pattern that can be completed by one
router command as described above, the error rate is higher in
triple failure than double failure. From this, it can be
considered that the error rate increases as the number of input
command increases.
One of the problems in manual fault implementation is that
the worker is forced to wait until the end of the benchmark
after the fault implementation. Although the constraint time
required to implement a fault is on the order of seconds, the
constraint time from fault implementation to fault release is
on the order of time, which makes manual fault tolerance
verification difficult as the scale increases. ing. The error rate

Figure 7. The assumed environment used to evaluate failure injection time

and accuracy

Figure 8. Required time for failure injection by the system and manually

10

of the implementation of the fault by the proposed method is
0% in all faults.

VI. CONCLUSION
In this paper, authors proposed a system that supports
automation of fault tolerance evaluation of wide area
distributed service for the purpose of quantifying fault
tolerance evaluation of information communication service
constructed as a wide-area distributed system and reducing
the cost required for evaluation. This system consists of a
fault pattern generator, FIT controller, benchmark controller
and visualizer.

In order to evaluate the effectiveness of this proposal, authors
constructed a wide area distributed service on the wide area
distributed platform "Distcloud" and performed fault
tolerance verification by implementing the proposed method
for this service. Perform comprehensive benchmarks based on
failure patterns that are automatically generated by providing
router information at multiple locations, and compare the
steady-state and non-steady-state performances to reduce the
performance against steady-state The heat map was output
and visualized.
In order to evaluate the cost reduction by automation of the
fault tolerance evaluation of this proposal, the time required
for failure occurrence was measured and compared between
the proposed method and the manual case. In single failure,
double failure, and triple failure, it was confirmed that the
proposed system finished processing in less than 20% of the
time required for manual failure implementation. It is also
found that the probability of performing incorrect fault
implementation for a given fault pattern occurs with a
probability of 5% or more in the manual case. From this, it is
shown that the proposed system reduces human restraint time
and realizes accurate fault implementation.

ACKNOWLEDGMENT
Part of this work was carried out under the Cooperative
Research Project Program of the Research Institute of
Electrical Communication, Tohoku University. The research
was supported by ROIS NII Open Collaborative Research

19FA08. Thanks for Cloudian Inc. They always provided
technical support of CLOUDIAN HYPERSTORE on the
Distcloud environment.

REFERENCES
[1] I. Nakagawa, K. Ichikawa, T. Kondo, Y. Kitaguchi, H.

Kashiwazaki, and S. Shimojo, “Transpacific live
migration with wide area distributed storage,” in 2014
IEEE 38th Annual Computer Software and Applications
Conference, July 2014, pp. 486–492.

[2] I. Nakagawa, H. Kashiwazaki, S. Shimojo, K. Ichikawa,
T. Kondo, Y. Kitaguchi, Y. Kikuchi, S. Yokoyama, and
S. Abe, “A design and implementation of global
distributed posix file system on the top of multiple
independent cloud services,” in 2016 5th IIAI
International Congress on Advanced Applied
Informatics (IIAI-AAI), July 2016, pp. 867–872.

[3] Y. Rekhter and K. Kompella, “Virtual Private LAN
Service (VPLS) Using BGP for Auto-Discovery and
Signaling,” RFC 4761, Jan. 2007. [Online]. Available:
https://rfc-editor.org/rfc/rfc4761.txt

[4] A. Viswanathan, E. C. Rosen, and R. Callon,
“Multiprotocol Label Switching Architecture,” RFC
3031, Jan. 2001. [Online]. Available:
https://rfc-editor.org/rfc/rfc3031.txt

[5] Q. Zheng, H. Chen, Y. Wang, J. Zhang, and J. Duan,
“Cosbench: Cloud object storage benchmark,” in
Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering, ser. ICPE ’13.
New York, NY, USA: ACM, 2013, pp. 199–210.
[Online]. Available:
http://doi.acm.org/10.1145/2479871.2479900

[6] D. Ferguson, A. Lindem, and J. Moy, “OSPF for IPv6,”
RFC 5340, Jul. 2008. [Online]. Available:
https://rfc-editor.org/rfc/rfc5340.txt

[7] F. L. Faucheur, P. Merckx, T. Telkamp, R. Uppili, and
A. Vedrenne, “Use of Interior Gateway Protocol (IGP)
Metric as a second MPLS Traffic Engineering (TE)
Metric,” RFC 3785, May 2004. [Online]. Available:
https://rfc-editor.org/rfc/rfc3785.txt

11

