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Abstract—A wide area distributed application is affected by 
network failure due to natural disasters because the servers on 
which the application operates are distributed geographically in 
a wide area. Failure Injection Testing (FIT) is a method for 
verifying fault tolerance of widely distributed applications. In 
this paper, by limiting network failures to the connection line, 
whole FIT scenarios are generated and exhaustive evaluation of 
fault tolerance is performed. Authors evaluate the visualization 
method of performance data obtained from this evaluation and 
the reduction of the fault tolerance evaluation cost by the 
proposed method.  

Index Terms—Distributed Systems, Failure Injection testing, 
Resilience  

I. INTRODUCTION

NFORMATION and communication services are 
essential to people's lives. There are various services using 
information communication technology (ICT) such as 
e-mail, map services. One of the reasons for the wide
spreading of ICT services is the rapid spread of electronic
devices such as smartphones. Cloud computing is one of the
typical information communication services. Cloud
computing is a form of provision of computers that can use
computers without being aware of the location and number
via the Internet.
Cloud computing is a concept advocated by Eric Schmidt,

who was then CEO of Google in 2006 and has since advanced 
rapidly into research and development and commercial 
deployment. At present, Amazon Web Services (AWS) 
provided by Amazon, Microsoft Azure provided by 
Microsoft, Google Cloud Platform (GCP) provided by 
Google, and IBM Cloud provided by IBM, etc. are 

This work was supported in part by JSPS KAKENHI Grant Number 
19K20256.  

Hiroki Kashiwazaki, Shinnosuke Miura and Shinji Shimojo are with the 
Osaka University, Japan (e-mail: reo, shinnosuke.miura, shimojo @ 
cmc.osaka-u.ac.jp, respectively). 

Hiroki Kashiwazaki and Hiroki Takakura are with National Institute of
Informatics, Japan (e-mail: reo_kashiwazaki, takakura@nii.ac.jp, 
respectively) 

representative. Known as a cloud computing service. Cloud 
computing services are still rapidly spreading and the market 
is expanding. In fact, according to the domestic public cloud 
service market forecast announced by IDC Japan in October 
2018, the domestic public cloud service market in 2018 is 
expected to increase 27.4% over the previous year to 666.3 
billion yen. 

In addition, the market size in 2022 is estimated to be 
1.46.5 trillion yen, which is 2.8 times that in 2017. Cloud 
computing services are classified into Software as a Service 
(SaaS), Platform as a Service (PaaS), Infrastructure as a 
Service (IaaS), etc. according to the service level. SaaS is a 
form of cloud computing that provides the software. PaaS 
provides language processing systems, libraries, middleware, 
etc. as a basis for operating software. IaaS provides 
computing infrastructure such as CPU, memory, disk, and 
network. Furthermore, in recent years, a wide variety of cloud 
computing services such as Machine Learning as a Service 
(MLaaS), which provides machine learning services, and 
Desktop as a Service (DaaS), which provides personal 
desktop environments, are becoming widespread. is there. 

The ICT services are built on a wide area distributed 
system composed of computer resources of multiple 
geographically dispersed sites for the purpose of load 
distribution and improvement of fault tolerance. By 
distributing geographically, robustness can be secured against 
failure at a single site. However, the ICT service constructed 
as a wide area distributed system can be vulnerable to the 
simultaneous multiple failures of the network lines. Various 
factors can cause network failure. For example, packet loss 
can be caused by network device failure, disconnection of a 
network cable and human error caused by incorrect operation. 
Also, especially in Japan where natural disasters occur 
frequently, network failures due to disasters are also 
conceivable. In fact, in the case of large-scale disasters 
represented by the Great Hanshin-Awaji Earthquake (1995) 
and the Great East Japan Earthquake (2011), communication 
path interruption was a threat. 

From the viewpoint of ICT, considering the necessity of ICT 
services today, it is necessary to be able to always provide 
services with the same level of performance as in normal 

Evaluation of wide-area distributed services by 
SDN-FIT system 

Hiroki Kashiwazaki, Shinnosuke Miura, Hiroki Takakura and Shinji Shimojo 

I

2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceedings of the Asia-Pacific Advanced Network

https://core.ac.uk/display/229876248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

conditions. However, it is difficult to maintain the same level 
of performance under the condition of failure. The ICT 
service providers have become to be required to show users 
the service level agreement of their own services. As to 
network service providers, it is also important to show the 
fault tolerance performance of the provider network. In other 
words, it is necessary for the ICT service provider to find how 
their own ICT service can provide the performance not only 
under the normal conditions but also under the non-steady 
conditions due to various failures. 

II. RELATED WORKS 
Failure Injection Testing (FIT) is widely known as a 

method to evaluate the fault tolerance of a service. This 
method is an evaluation method that measures the quality of 
service when a failure occurs by intentionally injecting 
failures into the system that constitutes the service. 
Depending on the implementation environment, FIT can be 
roughly classified into two approaches, one is implemented in 
a production environment and the other is implemented in a 
test environment. A representative example of the former is 
Chaos Engineering proposed by Netflix. In Chaos 
Engineering, first authors define the steady-state behavior of 
the system using externally observable performance indexes. 
Then, the behavior under non-steady condition is 
implemented by injecting the failures that assumed the stop of 
the server, the abnormal state of the hard disks, the 
disconnection of the network cable, etc. The fault tolerance of 
the system is evaluated by comparing the steady-state 
behavior to the non-steady one. One of the advantages of 
Chaos Engineering is that it is possible to implement traffic 
patterns and load patterns of actual services by performing 
fault tolerance evaluation in a production environment. On 
the other hand, since the failure is injected into the production 
environment, it is necessary to minimize the influence of the 
failure injection not to degrade the level of the service. 

 Netflix has developed a number of automation tools and 
released it as open source software in order to realize the 
above Chaos Engineering. Chaos Monkey is a tool to 
implement server failures by stopping virtual machines 
running on AWS at random. In addition, Chaos Gorilla is a 
tool to stop all virtual machines running on a specific 
availability zone in AWS. Furthermore, Chaos Kong is a tool 
to stop all virtual machines in a specific region. By 
implementing FIT using these tools usually, Netflix has built 
a wide-area distributed system with excellent fault tolerance 
and guarantees high service level agreement. Meanwhile, 
wide area distributed systems have various network 
topologies depending on the arrangement of computer 
resources that compose them. In addition, when the number 
of locations that compose the wide area distributed system 
increases, the combination of failures occurring on each 
network connection lines increases exponentially. When the 
fault tolerance evaluation is performed manually, it takes a lot 
of time and effort. So fault tolerance evaluation should be 
executed automatically. 

 DESTCloud is a platform for verifying and evaluating 

disaster tolerance and fault tolerance of wide-area distributed 
systems. DESTCloud uses Software Defined Disaster 
Emulation (SDDE) to inject network failure and collect logs 
generated during faults based on a disaster scenario described 
by the administrators who want to perform verification and 
evaluation of the system. In advance, the administrators 
describe the disaster scenario where kinds of failures are 
indicated in chronological order. Then the SDDE 
automatically injects the failure based on the disaster scenario 
into the network device using the Software-Defined 
Networking (SDN) approach. In addition, SDDE assigns a 
disaster scenario specific ID to the log generated during 
failure occurrence. As a result, it is easy for administrators to 
analyze the log without any manual operations. However, a 
disaster scenario can be only described as a simple 
combination of failures, and it is not suitable for applications 
that try whole combinations of network failures. Also, it can 
not reduce the time and effort of analyzing logs for each 
combination. 

 The service quality of the ICT service cannot be found 
only by performing the benchmark once. It is necessary to 
acquire data comprehensively by changing multiple 
parameters that become indexes. Because of this kind of data 
acquisition, fault tolerance cannot be evaluated just by listing 
the data. Therefore, it makes sense to visualize the 
consolidated data. This study aims to propose a tool that 
automatically performs fault tolerance evaluation from data 
acquisition to visualization. 

III. PROPOSED APPROACH 
In this paper, an ICT service provided by a geographically 

separated group of computers connected via a network is 
defined as a wide-area distributed service. The sites are 
connected by a route control device (router), and by operating 
this route control device, it is possible to generate intentional 
failures between the sites. Routers include not only appliance 
products with physical enclosures, but also software routers 
installed on computers using x86 processors, and virtual 
routers that can be installed as virtual machines (VMs). 

 Connect to the console of the Network Operation System 
(NOS) that operates the router, and execute the NOS 
command using the Command Line Interface (CLI) to 
connect the routers among the sites. However, NOS 
commands may require interactive input. This interactive 
input requirement can be a barrier when trying to implement 
programmatic automation. 

 With the spread of cloud computing, NOS also 
implemented cloud-like function sets when the cloud 
computing environments become possible to manipulate VM 
deployment and configuration changes using an application 
programming interface (API). In 2008, Cisco Systems in the 
United States released the API of its integrated router, Cisco 
ISR series, in 2008. For example, Vyatta, implemented as a 
software router, has implemented API operations since Ver. 
6.2 in 2011. In this study, the authors evaluate the fault 
tolerance and automate this evaluation by generating 
intentional failures in the network connecting the sites using 
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the API provided by NOS. 

A. Classification of network failures 
In a FIT, it is assumed that network failure caused by a 

natural disaster can be implemented. There are various factors 
in the network failure caused by a natural disaster, those are, 
failures directly caused by natural disaster and the in-direct 
failure caused by equipment failure, etc. In addition, it is also 
necessary to examine the influence range of the failure 
pattern, the presence or absence of spatial change, and the 
temporal transition. The network failures that are caused by a 
natural disaster can be classified according to reports of the 
Ministry of Internal Affairs and Communications “Study 
Group on the Ways to Secure Communications in Large-scale 
Disasters and Other Emergency Situations” and “Information 
Network Safety and Reliability Standards”. The reports show 
faults for communication equipment etc. and classify control 
applied to network equipment for each event (Table 1). 

From the aspect of “cause of disorder” causation can be 

assumed in control operation or software, network equipment, 
communication line. From the aspect of ``disorder factor'', 
causation on control operation or software can be caused by 
disorders of communication restriction control and illegal 
route advertisement. Disorders on network equipment can be 
caused by entire/partial equipment and overload of 
equipment. Disorders on communication lines can be caused 
by cable disconnection, a disorder of repeaters or switches 
and concentrate on traffic. Finally, disorders on the facility 
can be caused by the destruction of office, lost of power 
supply and disorder of cooler. These factors can be presented 
by the phenomenon of congestion, loop or flapping of routes, 
communication lost, packet loss and rise of latency time. This 
classification can result in the network function required to be 
implemented in enough evaluation of fault tolerance. The 
requirement is shown below. 

 
1. Increased delay 
2. n% packet loss (0 <n ≤ 100) 
3. Deactivate network interface card (NIC) 
4. Change of routing control table 
 
Therefore, the authors implement the four types of network 

failures in this research. 

B. Proposed system 
Figure 1. shows a schematic diagram of the proposed 

system for implementing fault tolerance verification by 
intentional failure occurrence and its automation. The system 
consists of a failure pattern generator, FIT controller, 
benchmark controller, and visualizer. The failure pattern 
generator generates whole failure patterns based on the 
topology of the wide-area distributed system. The FIT 
controller inputs the failure pattern and implements the 
failures to SDN routers. The controller also always collect 
SDN router information and maintain topology information of 
the wide-area distributed system. The benchmark controller 
performs the benchmark program on the wide area distributed 
system cooperated with the FIT controller. After that, the 
benchmark controller sends the benchmark result to the 
visualizer. The visualizer receives and put the measurement 
results in order, then visualizes the data. The following 
sections describe each component. 
 

1) Failure pattern generator 
The fault pattern generator generates fault patterns according 
to the number of circuits in the topology from the topology 
information of the wide area distributed service. The sites 
supporting wide-area distributed services to be subjected to 
fault tolerance verification are connected by a routing 
controller that can be operated by API. The identifiers are 
given to each base, and the NICs at both ends of the circuit 
connecting the sites are given identifiers in the NOS of each 
router. From the above information, the topology of the site 
supporting wide-area distributed service can be expressed by 
the nesting of hash and array. Yet Another Markup Language 
(YAML) is a format that represents structured data, and the 
topology can be described using YAML. For example, a 
network consisting of three sites in Figure 1. can be expressed 
as shown in Listing 1. In this topology data, site A is 
connected to B by eth0 and to C by eth1; site B is connected 
to A by eth0 and A by eth1; and site C is connected to A by 
eth0 and B by eth1. Listing 1 is an example of YAML file to 
indicate it. 

At the same time, this topology data shows the circuit 
between sites. In the example of Listing 1., the line a 
connecting eth0 of site A to eth0 of site B, the line b 
connecting eth1 of site A to eth0 of site C, and the line 

 
Table. 1.  Classification of network failures 

 
Figure 1 A diagram of proposed SDN-FIT system 

- A: 
 - [[eth0, B], [eth1, C]] 
- B: 
 - [[eth0, A], [eth1, C]] 
- C: 
 - [[eth0, A], [eth1, B]] 

Listing 1.  
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connecting eth1 of site B to eth1 of site C Indicates that there 
are 3 lines of c. When the number of lines is m, the fault 
pattern generator searches for combinations of fault patterns 
that generate all n (0 < n ≤ m) double faults in each line. One 
failure pattern is represented by an array composed of the 
failure type identifier, the identifier of the router that 
generates the failure, and the identifiers of one or more NICs 
that cause the failure in the router. Listing 2. shows the case 
where the line a and the line b are interrupted due to the 
deactivation of the NIC. 

 
 

2) FIT controller 
The FIT controller uses the fault patterns created by the fault 
pattern generator to update probabilistic data in accordance 
with each fault. The implementer of fault tolerance 
verification provides the FIT controller with router 
information of the site supporting the wide area distributed 
service to be verified. The FIT controller uses the API for the 
router to obtain NIC information of each router and the IP 
address assigned to that NIC. It is determined that NICs in the 
same IP address range at different sites are connected, and 
topology data is created. 
The FIT controller provides the created topology data to the 
fault pattern generator, and the fault pattern generator returns 
all fault patterns to the FIT controller. The FIT controller 
sequentially processes the obtained fault pattern data. As 
described in Section III-B1, a failure pattern consists of an 
identifier of the failure type, an identifier of the router that 
causes the failure, and an identifier of one or more NICs that 
cause the failure in that router. The FIT controller reads this 
array and uses the API to control the NIC specified as the 
router and the instruction corresponding to the identifier of 
the failure type. 
After the control that implements the fault condition ends 
normally, the FIT controller applies to process to the 
benchmark to measure the performance in the event of a fault. 
When the execution of the benchmark ends normally, the FIT 
controller controls the specified NIC of the router using the 
API and cancels the failure status. When the release of the 
fault condition ends normally, the FIT controller applies to 
process to the visualizer to visualize the performance 
measurement results obtained by the benchmark controller. 
Execute these processes for all failure patterns, and repeat 
them until finished. 
3) Benchmark controller 
Benchmark controller performs object storage benchmarking. 
The benchmark controller then sends the benchmark results to 
the visualizer. In benchmark controller, benchmark software 
is implemented according to the wide area distributed service 
to be verified. According to an instruction from the FIT 
controller, benchmark controller executes the specified 
benchmark software based on the specified arguments. 
Those who perform fault tolerance verification install 
benchmark software according to the items they want to 
investigate. For example, if the wide area distributed service 
is a Web service and you want to verify its response 

performance, the fault tolerant verifier uses Apache Bench. If 
wide area distributed services are POSIX compliant storage, 
fio or IOZONE may be used as benchmark software. 
4) Visualizer 
The visualizer receives measurement results from the 
benchmark controller and visualizes the result data. The 
measurement results obtained by the benchmark controller are 
placed in a local storage area in the computer where the 
visualizer is deployed, or placed in a place that can be 
obtained by remote access. When the visualizer receives an 
instruction from the FIT controller, it reads the specified file 
and visualizes the data according to the specified drawing 
method. The visualizer shows the location of the visualized 
file. This enables the verifier to view the visualized data. 

IV. IMPLEMENTATION 
Authors deployed a wide area distributed service in a real 
environment and implement SDN-FIT system to verify the 
fault tolerance of this wide area distributed service. 

A. Implementation of the evaluation environment 
1) Distcloud 
Distcloud is a wide-area distributed virtualization platform 
under Regional InterCloud Subcommittee (RICC) of the 
Internet Technology 16th Committee (ITRC) of the Japan 
Society for the Promotion of Science and Technology. It is 
constructed by connecting computers distributed by 
geographically dispersed universities, research organizations, 
and cloud computing providers by broadband networks 
(Figure 2). Wide-area distributed virtualization infrastructure 
is implemented by deploying scale-out distributed storage. 
Focusing on live migration as a disaster recovery method, 
authors implement storage technology with little degradation 
of I/O performance before and after wide-area live migration. 
Distcloud's sites are connected by SINET, an academic 
information network provided by the National Institute of 

Informatics. It uses L2VPN / VPLS service that allows 
Ethernet frames to be exchanged between LANs at remote 
sites. 
Virtual Private LAN Service (VPLS) is a technology that can 
transfer Ethernet frames using Multi-Protocol Label 
Switching (MPLS) defined in RFC3031. Because a virtual 
Ethernet LAN can be constructed for each network created in 
each network, a protocol to be used does not depend on IP, 
and a network with L2 connectivity can be constructed 
(Figure 3). 

- [shutdown, A, eth0, eth1] 
Listing 2.  

 
Figure 2. Schematic Diagram of Distcloud (2018) 
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Distcloud uses SINET VPLS and prepares L2 networks called 
distcloud-core and distcloud-mgmt respectively. A 
distcloud-core is a network used for communication of 
services and applications, and a distcloud-mgmt is a network 
for management of devices constituting the sites. In addition, 
an L3VPN network called distcloud-L3 is prepared 
separately. As for distcloud-L3, / 24 IPv4 addresses are 
assigned in advance for each site. 
A site connected to Distcloud needs to prepare a VLAN to 
connect with the distcloud-core, distcloud-mgmt and 
distcloud-L3 in the LAN of the site. A site connected to 
Distcloud prepares computer resources and connects this with 
the above-mentioned VPLS. Two L2VPN / VPLS 
connectivity by VPLS provided by SINET, one IPv4 network 
by L3VPN, three VLANs in the site, and computer resources 
connected to it is the environment provided by Distcloud. 
2) VyOS 
VyOS is a network OS developed by open source. It is 
developed based on Debian GNU / Linux. Originally from 
Vyatta mentioned in section III, it was forked from version 
6.6 R1 of Vyatta Core, which is the free version of Vyatta. In 
addition to being installed on a physical computer and used as 
a software router, it may also be installed as a VM in a virtual 
environment and used as a virtual router. Like a general NOS, 
it has a unified CLI like a hardware router. 
   In order to cause communication failure due to FIT 
proposed in this research among sites, it is necessary to 
configure an independent network at each site that configures 
Distcloud, and it is necessary to perform routing control with 
the deployed router at the site. The NICs connecting between 
the sites are independent of the networks owned by each site, 
and the two connected sites need to belong to the same 
network. In Distcloud, only the aforementioned network with 
distcloud-core is provided as a service network. 
   Although it is conceivable to newly secure an independent 
VLAN for connection between sites as L2VPN / VPLS, it is 
necessary to apply for the number of lines connecting 
between sites and to apply L2VPN / VPLS. This method 
becomes impractical if the number of connected lines 
increases. Therefore, by using IEEE802.1ad (Q-in-Q) in a 
router deployed at each site, networks of different VLANs 
can be configured across different sites on the distcloud-core 
network. 
VyOS is a network OS that can communicate with Q-in-Q 
and can realize all the failure implementations described in 
Section III-A on its own. As VyOS is developed based on 
Debian GNU / Linux as mentioned above, it can be used by 
specifying the tc command of Linux as traffic-policy of 
VyOS. For these reasons, it is used for verification 
experiments of this study. 

3) CLOUDIAN HYPERSTORE 
CLOUDIAN HYPERSTORE is an object storage product that 
is fully compatible with the Amazon S3 API marketed by 
CLOUDIAN.  
Object storage is a computer data storage that manages data 
as an object as opposed to filesystems that manage data as a 
file hierarchy and other storage architectures such as block 
storage that manages data as blocks specified by sectors and 
tracks Refers to the architecture. Each object contains data, 
metadata, and a unique identifier. Object storage can be 
implemented at multiple levels, including object storage 
device level, system level, and interface level, in which case 
object storage is an interface directly programmable by the 
application, multiple instances of physical hardware It 
provides data management functions including namespaces 
that can span and replication of data. 
CLOUDIAN HYPERSTORE has a function to manage data 
at the bucket level, and control parameters can be defined at 
the bucket level. The bucket policy is a parameter that 
determines the number of copies of data. In this evaluation 
experiment, when the client uploads a file (PUT operation) 
when three copies are created at all sites. The policy is to 
return an acknowledgment (ACK). CLOUDIAN 
HYPERSTORE is a wide area distributed service that is also 
used in the back end of the video sharing site “Nico Nico 
Douga” of Dwango Co., Ltd. 
4) COSBench 
COSBench is an object storage benchmark tool developed by 
Qing Zheng et al. Object storage has different indexes 
(workloads) to keep the performance of the access system in a 
proper state for each service that utilizes it. However, in 2013, 
when the use of object storage started to increase worldwide, 
there was no workload for object storage. COSBench was 
designed and implemented to address this problem. 
The development of COSBench, which has been developed 
by Intel, aims at preparing both object storage system 
performance comparison and system optimization and is a 
scalable implementation to cope with the scale of the system. 
At COSBench, there are two types of drivers: a driver that 
loads object storage, and a controller that instructs to load the 
driver. If the load details such as read / write (R: W) ratio are 
described in the XML file that describes the workload and 
registered in the controller by the web console or the 
command for CLI, it will be queued on the controller. The 
load test is performed sequentially. 

 
Figure 3. Inter-communication among sites with VPLS 

 
Figure 4. diagram of the wide-area distributed system 
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B. Construction of wide-area distributed system environment 
In this study, CLOUDIAN HYPERSTORE and its 
environment for verification are constructed using three 
Distcloud sites (Osaka University, Tohoku University, 
Ryukyu University) (Figure 4). The x86 server installed at 
Osaka University has a CPU of 28 physical cores, a main 
memory of 256GB, a 3.6TB SSD array is connected, and an 
exclusive 10 Gbps leased line is connected to the campus 
network. Tohoku University has 28 physical cores of CPU, 
128GB of main memory and 2.2TB of disk array connected 
and is connected to the campus network via a shared 10 Gbps 
line. SINET 5 connects Osaka University and Tohoku 
University at 100 Gbps, and Osaka University and Ryukyu 
University, and Tohoku University and Ryukyu University at 
40 Gbps. 
Install Ubuntu 18.04 LTS, an operating system based on 
Debian GNU/Linux, on the x86 server at each site. In order to 
run VM on this Linux, authors build the environment of 
KVM which is a virtualization module that makes Linux 
kernel function as a virtual hypervisor. 
Then the authors created the following four VMs on Linux 
installed on the x86 server at each site. 

 
� CLOUDIAN HYPERSTORE 2VMs 
� CentOS7 for COSBench 1VM 
� VyOS 1VM 

 
The VMs performance of CLOUDIAN HYPERSTORE, 
COSBench, and VyOS are shown in Table 2. 
 
 

The VM belongs to an independent network for each 
location and assigns an IPv4 address that does not overlap 
with the networks of other locations. A unique VLAN is 
assigned to this network in the site, and VMs for CLOUDIAN 
HYPERSTORE at each site, VMs for COSBench, and one 
NIC of VyOS are connected to the bridge interface of this 
VLAN. 

The VyOS at each site has a NIC for configuring a 
backbone network connected to the VyOS at the other two 
sites. As described in Section 3.1.2, NICs connected to each 
backbone network need to belong to independent VLANs, so 
select VLANs that do not overlap with VLANs at all sites. 
The two NICs connected to the backbone network are 
connected via a unique L2 network created on the L2 network 
of distcloud-core by Q-in-Q. 

In VyOS at each site, OSPF is operated as an Interior 
Gateway Protocol, the cost with the adjacent site is set to 10, 

dead-interval to 40 seconds, hello-interval to 10 seconds, and 
retransmit-interval to 5 seconds. In this way, VMs belonging 
to the networks at each site can communicate with each other. 
Also, by setting disabled for the interconnected NICs, that 
NIC can be deactivated and communication disconnection 
can occur. When the NIC becomes inactive and 
communication interruption occurs, OSPF recalculates the 
path in the topology where communication interruption 
occurred, and the path is changed by sending Link State 
Update packet. The inactive state of the NIC can be released 
by the delete command. 

C. Implementation of SDN-FIT system 
In this research, five programs were created to implement the 
FIT controller, the benchmark controller, and the visualizer 
among the proposed systems described in Section III. In the 
FIT controller, in this paper, in order to simplify the 
evaluation of CLOUDIAN HYPERSTORE, authors 
implemented the deactivation of the network interface among 
the four faults shown in Section III-A. The outline of each 
script is as follows. 
 
1) network failure implementation script 
The network failure implementation script is one of the 
scripts that configure the FIT controller and causes a failure 
in the network connecting among sites. In VyOS, it is 
separated into operation mode and configuration mode, and it 
connects to the VyOS console and switches to configuration 
mode by entering configure at the prompt. Here, in order to 
deactivate eth0, you need to input command as follows. 
 
# set interface ethernet eth0 disable 
 
The network failure implementation script is an 
implementation of this series of processing using VyOS 
cli-shell-api. The network failure implementation script must 
first initialize the environment. Use a command to acquire 
environment variables required for initialization. 
 
# /bin/cli-shell-api getSessionEnv 
 
The getSessionEnv command outputs a series of operations 
specific to the session by giving a process identifier as an 
argument. The initialization is completed by executing as 
follows after initialization. 
 
# /bin/cli-shell-api setupSession 
 
After initialization is complete, the following command can 
deactivate the NIC with the identifier specified by the NIC 
identifier. 
 
# /opt/vyatta/sbin/my_set ethernet [NIC identifier] disable  
 
The program that executes this series of processing receives 
the identifier of NIC as an argument. When multiple NIC 
identifiers are specified, the specified NICs are sequentially 
deactivated. 

 OS/Version RAM 
[MiB] 

number of 
vCPUs 

CLOUDIAN 
HYPERSTORE 

CentOS Linux 
release 7.4.1708 

32768 8 

COSBench CentOS Linux 
release 7.6.1810 

4096 2 

VyOS VyOS 1.1.8 512 1 
 
Table 2. Performance of VM for Cloudian Hyperstore, COSBench and VyOS 
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2) network failure deactivation script 
The network failure deactivation script is one of the programs 
that configure the FIT controller and is a script that 
deactivates the failure that has occurred in the network 
connecting the sites. As described in Section 3.3.1 Network 
Failure Implementation Script, after using cli-shell-api of 
VyOS and initializing by executing getSessionEnv command 
and /bin/cli-shell-api/setupSession, it is used as an argument. 
Execute the following command for the specified NIC 
identifier to release the inactive status. 
 
# /opt/vyatta/sbin/my_delete ethernet [NIC identifier] disable 
 
The network failure deactivation script can receive multiple 
arguments in the same way as the network failure 
implementation script, and when multiple NIC identifiers are 
specified, the inactive state of the specified NIC is released 
sequentially. 
3) Benchmark execution script 
The benchmark execution script is a program that configures 
the benchmark controller and is a program for performing 
comprehensive benchmarks that is specialized for COSBench. 
The benchmark execution script uses the program cli.sh that 
executes the load test installed on the controller of 
COSBench. Benchmark can be performed by giving an XML 
file name that contains information necessary for the 
workload as an argument when executing this program. Since 
benchmarking is performed repeatedly changing the 
workload, the benchmark execution script generates an XML 
file describing all the workloads in advance. 
Workloads executed with cli.sh are given a workload 
identifier, and the benchmark output of different workloads 
can be distinguished by this identifier. The program of the 
visualizer described in Section III-B2 also has a function to 
save this identifier as data in order to align the data using this 
identifier. 
4) Data formatting script 
The data shaping script is one of the programs that make up 
the visualizer and is a program that organizes the data output 
by the benchmark execution script. The bandwidth 
information to be evaluated is extracted from the data of 
multiple workloads output by the benchmark execution script, 
sorted, and compared with the steady-state benchmark result 
performed before the fault tolerance evaluation is performed, 
Normalize the implemented daily steady-state benchmark and 
output it. The output data is shaped as a format that can be 
read by gnuplot used in the visualization script in a next 
Section. 

5) Visualization script 
The visualization script is one of the programs that compose 
the visualizer, and the data output from the data shaping script 
is output using gnuplot. gnuplot is graph utility software 
based on command line operation that runs on various 
operating systems such as various UNIX operating systems 
and Windows. The visualization script can change the width 
of the x-axis and the y-axis according to the arguments given 
and is an implementation that enables adaptive visualization 
according to the range of the benchmark. 
 

V. EVALUATIONS 
Authors evaluate the disaster tolerance of CLOUDIAN 
HYPERSTORE quantitatively using CLOUDIAN 
HYPERSTORE which is constructed in Section IV-A3 and 
the SDN-FIT system implemented in Section IV-C. Then the 
authors visualize the results of evaluations. The network 
consisting of three sites constructed in Section IV-B is 
connected by three independent connection lines, and the 
failure pattern of a single failure on the network is the 
following three patterns. 
 
1. Osaka-Tohoku 
2. Ryukyu-Osaka 
3. Tohoku-Ryukyu 
 
 When a double failure occurs, the connectivity of the two 
sites is maintained but the split-brain state is isolated from the 
other one. As described in Section IV-A-3, the CLOUDIAN 
HYPERSTORE bucket used in this evaluation has the policy 
to return an ACK when all 4 sites have been replicated in all 3 
sites. Unable to complete the PUT process, all COSBench 
workloads fail. Because triple failure also causes all 
workloads to fail for the same reason, this evaluation does not 
evaluate double failure and triple failure. 
In this evaluation, the minimum value of the file size is set to 
64 KB by using benchmark_exec command, and the 
evaluation is performed with nine file sizes up to 16 MB by 
doubling each time. Also, the workload read:write (RW) ratio 
is increased by 10 % from 0 % to 100 %. After each failure 
pattern is implemented, this workload is executed, and the 
non-steady-state benchmark results are normalized using the 
previously measured steady-state benchmark results (Figure 
5). The horizontal axis is the logarithm axis of the file size, 
and the vertical axis is the RW ratio, which is visualized as a 
three-dimensional color map. This can be visualized as a 

 
Figure 5. Calculation diagram of normalized performance. 
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two-dimensional heat map by displaying it in the gaze 
direction of a vector parallel to the Z axis. With this heat map, 
it is possible to grasp the relative quality deterioration in the 
unsteady state for each failure pattern. 
 As described in Section IV-C, when you deactivate the 
VyOS interface connected to the backbone network 
connecting each location, OSPF detects it and re-routes the 
routing table in the topology where one of the backbone 
networks is lost. Calculate and send Link State Update 
packets to VyOS at other sites, and the routing control tables 
of VyOS at all sites are updated. In the steady state, all 
locations can reach all other locations with one hop. 
 Among them, the one with the largest increase rate of the 
delay time is at the time of failure occurrence between Osaka 
University and Tohoku University of failure pattern 1, and the 
delay time is 14.81 ms at steady state, and it is 56.71ms which 
is 3.8 times. The average transfer rate of normalized Read and 
Write at the failure pattern is shown on the left side of Figure 
6. The average transfer rate of Read is 8MB/s, and the RW 
ratio shows the worst value of 0.42 at 60 %, which indicates 
that only 42 % performance can be obtained compared to the 
average transfer rate at steady state. Moreover, the average 
transfer rate of Write is less than 0.83 in the whole area, and 
the worst value is 0.56 in 10% of RW ratio of 4 MB. 
The normalized average transfer rate of Read and Write at 
failure pattern 2 (Osaka-Ryukyu) is shown in the center part 
of Fig. 2. In case of the failure pattern, the delay time of 
Ryukyu University-Osaka University is 23.56 ms at steady 
state, which is 2.0 times that of 48.55 ms. It is clear that the 
tendency of performance degradation at failure 2 is different 
from the tendency of performance degradation at failure 1 and 
both Read and Write, and the file size is large, and the smaller 
the RW ratio, the lower the performance deterioration. This 
means that if the file size tends to be large and the RW ratio 
tends to be small in the use of wide area distributed services, 
CLOUDIAN HYPERSTORE in this verification environment 
can be said to have high fault tolerance, but conversely, the 

use of small files is large, and authors show that fault 
tolerance is low when the RW ratio tends to be high. 
The normalized average transfer rate of Read and Write at 
failure pattern 3 (Ryukyu-Tohoku) is shown on the left side 
of Fig. 3. In case of the failure pattern, the delay time of 
Tohoku University-Ryukyu University, which is 35.11 ms at 
steady state time, is 37.33 ms which is 1.1 times. The 
tendency of performance degradation at failure 3 differs from 
the tendency of performance degradation at failures 1 and 2 
and both Read and Write, and it can be seen that the larger the 
file size and the smaller the RW ratio, the larger the 
performance degradation. 
These results are the non-stationary average transfer rates 
obtained by changing the file size and the read: write ratio 
normalized with the steady-state values. In addition to the fact 
that the read: write ratio differs for each wide-area distributed 
service, the ratio changes with the time zone even for the 
same wide-area service. Similarly, the same is true for file 
size. Therefore, the service provider can quantitatively grasp 
the deterioration of the service quality at the time of 
non-station according to the state of provision of the own 
service. 
Looking at failure pattern 1, the proportion of colors close to 
1, ie, yellowish colors, is smaller than the average transfer 
rate at the time of failure occurrence of the other two patterns. 
As can be seen from Table 1, the rate of change of RTT is 1.9 
to 3.6 times that of the other patterns in case of the failure 
occurrence pattern of 1 compared to the steady state. It can be 
said that the output heat map represents the effect. 

A. Evaluation of time and accuracy required for failure 
injection 
As described in Chapter 1, the total number of failure patterns 
increases exponentially as the number of networks connecting 
each site number increases. When FIT is performed manually, 
the time required to implement a fault on a router is 
sufficiently small time for fault tolerance verification as a 
whole, but due to the increase in the number of sites and the 

 
Figure 6. Normalized averaged R/W performance 
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number of networks, the time required for manual input is 
also possible. It also increases exponentially. In addition, it is 
possible to make an incorrect input by manual input. 
In this section, authors measure the time required for manual 
input, determine whether the NOS command of the input 
router is correct, and calculate the wrong answer rate. The 
network used for evaluation prepared the topology connected 
in mesh form with 4 nodes and 6 networks (Figure 7). 
This topology diagram describes the identifiers of the NICs at 
both ends of the network connected to other sites at each site 
and provides the subject with an example of command input 
in the case of causing single failure or double failure as a 
manual. An example of command input for single failure and 
double failure is shown below. 
 
$ ssh kyusan 
$ configure 
$ set interface ethernet eth8 disable 
$ commit 
$ save 
$ exit 
 
$ ssh ryukyu 
$ configure 
$ set interface ethernet eth5 disable 
$ set interface ethernet eth8 disable 
$ commit 
$ save 
$ exit 
 
The subjects were four persons aged 22 to 42 with the 
background information system. The subjects were asked to 
display 22 types of failure patterns from single failure to 
triple failure, and each failure pattern was input in an 
environment simulating the console of NOS. The time 
required for the input was measured, and the correctness of 
the input result was judged. 
  Figure 9 shows a graph comparing the time taken to 
implement the fault by the proposed method and manually. 
Since the FIT controller implements the fault in the router 

according to the fault pattern output by the fault pattern 
generator, the time required for a single fault is 1.854 seconds 
on average. Since the current FIT controller implementation 
expands multiple faults into multiple single faults and 
implements faults, the time required is linearly increased 
while the number of double faults, triple faults, and fault 
points increases. Yes. The time required to execute a commit 
command and the save command required to complete a 
session is dominant in the time required to implement a single 
failure in a router. Therefore, it is thought that the time 
required by the proposed method can be reduced by 
implementing the implementation of the FIT controller in 
case of causing failures in multiple NICs at one site in one 
session. 
On the other hand, it can be seen that the time required to 
implement a manual failure is an average of 28.17 seconds for 
a single failure, which is 15.2 times longer than that of the 
proposed system. It takes an average of 38.48 seconds for 
double failure, but 35.22 seconds for triple failure, which is 
not a simple increase. This is considered to be due to the fact 
that the failure pattern of the triple failure in the 22 types of 
failure patterns listed can complete the execution of the 
command with one router. 
The error rate of manual fault implementation was 25% for 
single fault, 5.6% for double fault and 6.3% for triple fault. 
The reason for the high error rate in a single failure is thought 
to be that the single failure was concentrated in the early 
stages of 22 different failure patterns, and it took time to 
establish the understanding of the provided manual. Although 
triple failure is a failure pattern that can be completed by one 
router command as described above, the error rate is higher in 
triple failure than double failure. From this, it can be 
considered that the error rate increases as the number of input 
command increases. 
One of the problems in manual fault implementation is that 
the worker is forced to wait until the end of the benchmark 
after the fault implementation. Although the constraint time 
required to implement a fault is on the order of seconds, the 
constraint time from fault implementation to fault release is 
on the order of time, which makes manual fault tolerance 
verification difficult as the scale increases. ing. The error rate 

 
Figure 7. The assumed environment used to evaluate failure injection time 

and accuracy 

 

Figure 8. Required time for failure injection by the system and manually 

10



 

of the implementation of the fault by the proposed method is 
0% in all faults. 

VI. CONCLUSION 
In this paper, authors proposed a system that supports 
automation of fault tolerance evaluation of wide area 
distributed service for the purpose of quantifying fault 
tolerance evaluation of information communication service 
constructed as a wide-area distributed system and reducing 
the cost required for evaluation. This system consists of a 
fault pattern generator, FIT controller, benchmark controller 
and visualizer. 
 
In order to evaluate the effectiveness of this proposal, authors 
constructed a wide area distributed service on the wide area 
distributed platform "Distcloud" and performed fault 
tolerance verification by implementing the proposed method 
for this service. Perform comprehensive benchmarks based on 
failure patterns that are automatically generated by providing 
router information at multiple locations, and compare the 
steady-state and non-steady-state performances to reduce the 
performance against steady-state The heat map was output 
and visualized. 
In order to evaluate the cost reduction by automation of the 
fault tolerance evaluation of this proposal, the time required 
for failure occurrence was measured and compared between 
the proposed method and the manual case. In single failure, 
double failure, and triple failure, it was confirmed that the 
proposed system finished processing in less than 20% of the 
time required for manual failure implementation. It is also 
found that the probability of performing incorrect fault 
implementation for a given fault pattern occurs with a 
probability of 5% or more in the manual case. From this, it is 
shown that the proposed system reduces human restraint time 
and realizes accurate fault implementation. 
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