

Proceedings of the APAN – Research Workshop 2017
ISBN 978-4-9905448-7-4

�
Abstract — This paper focuses on service description and

composition for complex 3-tier datacenter application services,
tied with firewalls and load balancing. By adopting cloud-native
container-based microservices architecture (MSA) for a
small-sized datacenter situation, we attempt to compare several
approaches for service description and composition, especially
from the viewpoint of service function chaining (SFC). Also we
prototype them with OpenStack-based cloud virtual machines
(VMs) by comparing their performances with resource usages.

Index Terms — Cloud-native computing, microservices
architecture, container orchestration, service description and
composition, and service function chaining.

I. INTRODUCTION
With the advent of cloud-first computing era, the value

chain around cloud industry has been rapidly growing. This led
to gradual migration of the specialized application services
over dedicated clusters to cloud-based shared infrastructures
[1, 2]. Following this trend, the service oriented computing
paradigm for diversified application services is transforming to
so-called microservices architecture (MSA) that stitches
together multiple openAPI-based component services (i.e.,
functions) to compose a whole composite service. This MSA is
known for several benefits such as dynamic agility, easy and
flexible maintenance, and cost effectiveness due to shared
resource pooling [3].

Typically, the service composition for MSA-based
application services is done by service function chaining
(SFC). With SFC, we start with allocating the necessary
resource slices from shared cloud infrastructure to

This work was supported by Institute for Information & communications
Technology Promotion (IITP) grants funded by the Korea government
(MSIT): No. R7117-16-0218 (Development of automated SaaS compatibility
techniques over hybrid/multisite clouds) and No. 2015-0-00575 (Global
SDN/NFV open-source software core module/function development).

Moonjoong Kang and JongWon Kim are with the school of Electrical
Engineering and Computer Science, Gwangju Institute of Science and
Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju, 61005,
Republic of Korea (e-mail: {mjkang, jongwon}@nm.gist.ac.kr).

accommodate all component services (i.e., functions). These
functions and their stitching requirements are to be satisfied by
enabling diverse inter-connections among them.

However, the effectiveness of SFC-based service
description and composition is not an easy target for the
complicated form of datacenter Web-App-DB 3-tier
application services, which may include additional firewalls
and load balancing [4]. There are several approaches to handle
this kind of complex SFC-based service description and
composition in general. Thus, in this paper, we are attempting
to explain and compare them by choosing example complex
Web-App-DB 3-tier application services. Also we attempt to
understand the whole procedure behind service description and
composition by prototyping the realization of SFC-based
service description and composition and by evaluating their
performance/cost in orchestrating SFC-based service
description and composition.

II. SFC-BASED APPROACHES FOR SERVICE DESCRIPTION
AND COMPOSITION

We compare three SFC-based service description and
composition in this paper: container-based MSA-SFC for
web-based SaaS (Software as a Service) applications,
HOT(Heat Orchestration Template)-SFC for OpenStack
Heat-based (cloud-integrated or Web-based) SaaS
applications, and IETF (Internet Engineering Task Force)
NSH(Network Service Header)-SFC for network
infrastructure-focused SaaS applications.

Regarding service description aspects, all 3 SFC approaches
commonly describe application services as a set of abstracted
functions with ordering constraints. They include identifiers
for all component functions, access interfaces for function
binaries (e.g., embedded scripts or URI), and the directional
dependency relation among functions. IETF NSH-SFC,
however, may include non-abstracted functions, which are
1-to-1 matched to specific physical machines and do not
require function binaries. Also IETF NSH-SFC is unique in
handling overlay networking by relying on NFV(Network
Function Virtualization)-enabled network infrastructure, while
other SFCs rely on service-transparent encapsulation-based

Comparison of
Service Description and Composition

for Complex 3-Tier Cloud-based Services
Moonjoong Kang and JongWon Kim

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceedings of the Asia-Pacific Advanced Network

https://core.ac.uk/display/229876155?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

overlay networking [5-8]. Because of this, IETF NSH-SFC
introduces NSH concept [9], where any involved function
must handle NSH directly or be wrapped with service function
proxy1. Also, due to the unique encapsulation for overlay
networking, IETF NSH-SFC is more effective in monitoring
and adjusting the complete routes of packets than other
approaches [9]. HOT-SFC covers OpenStack cloud
infrastructure [8], but its encapsulation is completely delegated
to OpenStack Neutron and transparent to its service.

Next, regarding the service composition aspects, 3 SFC
approaches mostly share similar step-by-step procedure
depicted in Fig. 1. The SFC orchestration tool first parses the
description for service composition and checks the resource
requirements of involved functions. If the resource
requirement is met, the orchestration tool proceeds to identify
and allocate demanded resources for involved functions by
considering their adjacency for stitching efficiency. Once
resources are allocated, the orchestration tool performs the
necessary interconnections to establish flexible networking of
resources. Then, all involved functions are appropriately
deployed (i.e., located, placed, and instantiated). Finally, these
deployed functions are activated and stitched together to
establish end-to-end composite service composition.

Also, during the function stitching, all 3 SFCs can manage
the interconnections among functions via KV (key-value)
storage. With function identifier as its key, we can orchestrate
the scaling and load balancing of service composition to
mitigate the service down time. However, OpenStack

1 Service function proxy translates NSH for non-NSH-aware functions.
Every inbound traffic must first go through a classifier that attaches NSH
while NSH is detached for outbound traffic.

Heat-based HOT-SFC provides function stitching only to
OpenStack-integrated functions while leaving the handling of
web-based SaaS application services to own implementation.

III. CONTAINER-BASED MSA-SFC SERVICE DESCRIPTION &
COMPOSITION

Now, by choosing container-based MSA-SFC service
description and composition, we explain the whole procedure
behind service description and composition by prototyping the
realization of SFC-based service description and composition
and by evaluating their performance/cost in orchestrating
SFC-based service description and composition. Note that
MSA-SFC does not need any change of the application service
to be composed as it does not need explicit encapsulation at the
service level. Also it may provide high availability for
Web-App-DB 3-tier application services without additional
own implementation.

Now for container-based MSA-SFC service description and
composition of complex Web-App-DB 3-tier cloud-based
services with more than 10 functions, we compare two popular
container orchestration tools: Docker Swarm and Kubernetes.
As shown in Fig. 2, both Docker Swarm and Kubernetes
follow almost identical workflows in terms of service
description and composition as follows. The description for
service composition uses string-based function identifier. Each
function can be given with required (and optional) resource
amount and identifier-based dependency configuration. Also,

TABLE I
SERVICE DESCRIPTION AND COMPOSITION APPROACHES: DIFFERENCES.

Type Container-based MSA-SFC OpenStack Heat-based HOT-SFC IETF NSH-SFC

Application
services Web-based SaaS Web-based and cloud

infrastructure-integrated SaaS Network infrastructure-focused SaaS

Encapsulation Transparent to application services All functions need explicit NSH encapsulation
or service function proxy

Flow tracking Not available NSH includes whole path info for packets

Service
function
stitching

No implementation required
for high availability

Needs its own implementation
for high availability

No implementation required
for high availability

Fig. 2. Example SFC for socks shop applications with additional firewall and
3x scaling to selected functions via Docker Swarm or Kubernetes.

• Functions’ ID, Codes, Configs,
Resource (box) req.

• Service Function & Resource Graph

Resource Inter-connect2 Function Deployment3 Function Stitching4

1 Resource allocationPrerequisite:
Service Description

0

Fig. 1. Step-by-step procedure for SFC-based service description and
composition.

after parsing the description for service composition, the
orchestration tool allocates resource boxes matching the
requirements of lightweight Docker container functions. Then
the orchestration tool makes a dedicated and isolated overlay
networking by interconnecting all resource boxes. Binaries for
involved functions are downloaded from Docker Hub and
deployed (i.e., located, placed, and instantiated) to the resource
boxes. Remember that the interconnections for the resource
boxes are managed via KV-based storage.

However, while both orchestration tools allocate box-style
resources for the service composition in the form of Docker
containers, Docker Swarm orchestration tool is tightly
integrated with extended Docker engine. In comparison,
Kubernetes orchestration tool utilizes only Docker containers
with Docker APIs and wraps it with other open-source tools
for the required orchestration. Kubernetes deploys its own
functions as additional Docker containers running inside
resource boxes while Docker Swarm does not. For example,
when interconnecting allocated resource boxes, Docker
Swarm can provide its own native network driver to form
overlay networking for the application services to be
composed. On the contrary, Kubernetes does not provide any
native counterparts and the operator must choose a network
addon from 3rd parties.

IV. EXPERIMENT ENVIRONMENT AND RESULTS
While Docker Swarm and Kubernetes can orchestrate

container-based MSA-SFC service description and
composition, they have quite different architecture that may
lead to performance differences. Thus, in order to evaluate the
service description and composition for complex
Web-App-DB 3-tier datacenter application services, an
experiment environment is built based on two types of
distributed OpenStack clouds to simulate remote users
accessing the cloud-leveraged services. The primary
OpenStack cloud consists of 3 boxes with Intel Xeon
E5-2640v3, 24GB DDR4 ECC Register RAM, 400GB Intel
750 NVMe SSD and each box is distributed to 3 different sites.
The secondary OpenStack cloud is based on one box (with the
same specification with the former cloud boxes) as OpenStack
control node, another 4 Supermicro SYS-E200-8D boxes with
Intel Xeon D-1528, 32GB DDR4 ECC RAM, 500GB
Samsung SSD. Each experiment is performed mostly on the
VMs with the same configuration of 4 vCPU cores, 8GB
RAM, and 40GB storage.

To eliminate any possible interference with each other, the
service composition by Docker Swarm and Kubernetes are
respectively realized at the different sites of the primary cloud.
The cluster configurations of both orchestration tools are
almost identical with one VM as a manager node, other two
VMs as worker nodes. Also service function is not scheduled
to the manager node. For container networking, Docker
Swarm is configured use its native network driver and
Kubernetes is configured to use Weave Net network addon
from Weaveworks. The application services are using overlay
networking to interconnect all involved functions. Also, both
orchestration tools are configured to interconnect resource
boxes using the same network interface listening for inbound
connections from outside.

Also, for the example application services for the
composition of both clusters, we choose socks shop
application services from Weaveworks by considering its
similarity with the complex application services used for
production and its load-testing function that simulates users to
test the composed service. We also use Linux kernel’s Netfilter
firewall function via Docker Swarm and Kubernetes to block
any unintended access to the application services and modify
its service description to scale socks shop’s functions (i.e., 1
Web and 2 App functions with 3 replications for
load-balancing). To perform load-testing on the composed
application services, the load-testing function is placed at the
last unoccupied sites of the primary and secondary clouds.
Each load-testing function generates 3 clients and 40000
requests to the orchestration tools, respectively. Therefore it
generates 6 clients with 80000 requests to the service
composed by each orchestration tool from 2 remote places.

Our evaluation of service description and composition tool
is focusing on resource usage of the composed services for the
same 3-tier application. For the measurement of evaluations,
we use Intel Snap telemetry framework and place its agents to
each VM and collect CPU utilization percentages, RAM usage
percentages, disk read/write bytes per second, and network
interface sent/received bytes per second2. Collected metrics are
stored into InfluxDB time-series database on another VM
located at the secondary cloud.

Thus, as shown in Table II, when comparing CPU active
percentages for manager node, Kubernetes shows slightly
higher usage than Docker Swarm. For worker nodes, this slight

2 These resource metrics represents the usage of computing, storage,
networking resources.

TABLE Ⅱ
AVERAGE AND STANDARD DEVIATION OF COLLECTED METRICS DURING LOAD TEST ON COMPOSED SERVICES

Tool Node
Type Value CPU

Active %
RAM
Util %

Ethernet Bytes Disk Bytes
Received Sent Read Written

Docker
Swarm

Manager
μ 0.86 % 44.31 % 1009086.44 966419.12 0.00 4741.95
σ 0.76 0.02 361933.12 345394.14 0.00 10297.25

Worker
μ 266.52 % 146.04 % 1594812.37 1594812.37 0.00 1045358.23
σ 67.75 7.34 494473.55 494473.55 0.00 798980.66

Kubernetes
Manager

μ 4.67 % 29.62 % 1013737.24 974305.11 0.00 60993.94
σ 2.30 0.04 363253.35 346119.57 0.00 40172.65

Worker
μ 375.11 % 154.86 % 2214655.04 2214655.04 394567.97 32735233.68
σ 81.74 11.87 669057.69 669057.69 3288517.74 9230700.90

μ = Average, σ = Standard Deviation

gap grows and reaches the average difference of 108.53%3.
Memory utilization percentages show that Docker Swarm is
using larger RAM from its manager node. More specifically it
shows about 14.68% more than Kubernetes. Also, both
environments show almost constant usages during the whole
load testing. For the sum of the metrics from worker nodes,
however, Kubernetes is 8.82% higher performance than
Docker Swarm. Network interface sent/received bytes per
second metric shows that Kubernetes generates more traffic
than Docker Swarm with bytes received 4.54KB/s higher at
manager node and 605.32KB/s higher overall at worker nodes
and bytes received 7.70KB/s higher at manager node and
605.32KB/s higher overall at worker nodes. While both
Kubernetes and Docker Swarm never read their manager
node’s disk as the metric always stays at 0, Kubernetes shows
that bytes written only 54.43KB/s more than Docker Swarm.
But Docker Swarm shows more constant rates than
Kubernetes’, with the difference of standard deviation by
about 29,875. However, the most contrasting result is the
metric of written bytes to disks at worker nodes, as Kubernetes
is 30.22MB higher than Docker Swarm and shows 8431720.24
as higher standard deviation. As seen in Fig. 3, Docker Swarm
shows almost no bytes written compared to Kubernetes.

Thus, by considering all the collected metrics, we believe
that Docker Swarm is more effective than Kubernetes in terms
of resource usage for the composition of complex
Web-App-DB 3-tier application services.

V. CONCLUSION
This paper performed the comparison of service description

and composition for complex Web-App-DB 3-tier datacenter
application services by comparing Docker Swarm and

3 The scale of one core’s full utilization is set to 100%.

Kubernetes on OpenStack-based cloud VMs. Also for Socks
shop application service described and composed, VM’s
resource usage was collected during the load testing and
evaluated.

REFERENCES
[1] N. Kratzke and Q. Peter-Christian, “Understanding cloud-native

applications after 10 years of cloud computing - A systematic mapping
study,” Journal of Systems and Software, vol. 126, pp. 1-16, Apr. 2017.

[2] N. Dragoni et al, “Microservices: Yesterday, today, and tomorrow,” in
e-print arXiv:1606.04036. June 2016.

[3] K. Karanasos et al, “Mercury: Hybrid centralized and distributed
scheduling in large shared clusters.” in Proc. USENIX ATC, 2015.

[4] J. Stubbs, M. Walter, and R. Dooley, “Distributed systems of
microservices using docker and serfnode,” IEEE International Workshop
on IEEE Science Gateways (IWSG), 2015.

[5] V. Marmol, R. Jnagal, and T. Hockin, “Networking in containers and
container clusters,” Proc. of NetDev 0.1, Feb. 2015.

[6] B. U. I. Tuan-Anh et al, “Cloud network performance analysis: An
OpenStack case study,” 2016.

[7] A. L. Kavanagh, “OpenStack as the API framework for NFV: The
benefits, and the extensions needed,” Ericsson Review 2, 2015.

[8] Y. Yamato et al, “Development of template management technology for
easy deployment of virtual resources on OpenStack." Journal of Cloud
Computing, vol. 3. No. 1, July 2014.

[9] J. Halpern and C. Pignataro, Service function chaining (sfc) architecture,
IETF RFC 7665. 2015.

Fig. 3. Collected metrics during load testing on the composed services. From left to right, top to bottom: a) CPU utilization on manager nodes, b) CPU utilization
on worker nodes, c) RAM utilization on manager nodes, d) RAM utilization on worker nodes, e) Received/sent bytes via network on manager nodes, f)
Received/sent bytes via network on worker nodes, g) Read/written bytes from/to disk on manager nodes, and h) Read/written bytes from/to disk on worker nodes.

