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 

Abstract— Tor is free software that enables anonymous 

communication. It defends users against traffic analysis and 

network surveillance. It is also useful for confidential business 

activities and state security. At the same time, anonymized 

protocols have been used to access criminal websites such as those 

dealing with illegal drugs. This paper proposes a new method for 

launching a fingerprinting attack to analyze Tor traffic in order 

to detect users who access illegal websites. Our new method is 

based on Stacked Denoising Autoencoder, a deep-learning 

technology. Our evaluation results show 0.88 accuracy in a 

closed-world test. In an open-world test, the true positive rate is 

0.86 and the false positive rate is 0.02. 

 
Index Terms— Network Security, Tor, Fingerprinting Attack, 

Deep Learning, Autoencoder 

 

I. INTRODUCTION 

The Onion Router (Tor) is free software that enables 

anonymous communication. [1, 2]. It defends users against 

traffic analysis and network surveillance. It is also useful for 

confidential business activities and state security. At the same 

time, anonymized protocols have been used to access criminal 

websites such as those dealing with illegal drugs. There is a 

need to develop a method that can identify websites when 

anonymized protocols are used. 

This paper proposes a new method for launching a 

fingerprinting attack to analyze Tor traffic in order to detect 

users who access illegal websites. Using a fingerprinting 

attack, we can identify a website that a user accesses on the 

basis of traffic features such as packet length, number of 

packets, and time. We can analyze this information from 

captured packets regardless of encryption. Our new method for 

fingerprinting attacks is based on Stacked Denoising 

Autoencoder (SDAE), a deep-learning technology. Our 

evaluation results show 0.88 accuracy is in a closed-world test. 

In an open world test, the true positive rate (TPR) and false 

positive rate (FPR) are 0.86 and 0.02, respectively. 

The remainder of this paper is organized as follows. Section 
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II explains the technical background. Section III describes 

related work. Our new method is proposed in Section IV. 

Section V shows the evaluation results. Section VI concludes 

the paper. 

II. TECHNICAL BACKGROUND 

A. Tor Anonymity 

Tor [1, 2] is a popular anonymized protocol. Figure 1 shows 

an example of a Tor configuration. At the initial setting, there 

are three nodes between a user and a web server, as shown in 

Figure 1. Tor traffic data is encrypted using Transport Layer 

Security (TLS) between a user and each Tor node. Thus, Tor 

nodes do not know the original plain data, with one exception. 

The closest node to the web server can read the original data 

without encryption. In a Tor configuration, each node knows 

only the Internet Protocol (IP) addresses of adjacent nodes that 

are directly connected to the node. 

In the Tor protocol, content data is encapsulated into a series 

of cells, each with a fixed length of 512 bytes. It is difficult to 

estimate the original content only from the packet length. 

 

User

(victim of 

fingerprinting attack)

Tor Server 1
Tor Server 3

Tor Server 2 Web Server

 
Fig. 1. Configuration of Tor 

 

B. Fingerprinting Attacks on a Website 

1) Fingerprinting 

A website fingerprinting attack aims to detect a website 

even if the traffic is encrypted using Tor or a virtual private 

network (VPN). We cannot specify the website by inspecting 

the encrypted payload. However, we can utilize the packet 

information, such as packet length, number of packets, and 

time. In a fingerprinting attack, we can specify a website by 

providing the packet information. 

There are two methods for capturing traffic data in Tor. In 

the first method, an attacker (analyzer) prepares an entry node 
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of Tor and captures the traffic through this node. However, the 

Tor protocol selects nodes at random. It is unlikely that a 

specific victim connects to the attacker's node. In the second 

method, an attacker (analyzer) is a network operator, such as 

an Internet service provider (ISP). He or she can capture traffic 

packets between a victim and the entry node of Tor. This is a 

realistic scenario. This paper proposes a new approach using 

the second method. 

2) Closed- and Open-World Tests 

There are two evaluation schemes for fingerprinting attacks. 

The first scheme is a closed-world test. It conducts a test in 

which a victim can access only a limited number of websites, 

which the attacker attempts to detect. For example, an attacker 

might prepare 100 monitored sites and investigate the features 

of these 100 websites. The victim can access only these 100 

websites. 

The second scheme is an open-world test. In such a test, a 

victim can freely access any websites on the Internet. The 

attacker must be able to determine whether a website is 

monitored or non-monitored. If it is a monitored website, the 

attacker must be able to determine which website among the 

100 monitored sites it is. This paper uses two evaluation 

schemes, closed and open. 

C. SDAE 

   Deep learning is an attractive method in machine learning. It 

is called deep because it utilizes a multiple-layered neural 

network. An autoencoder is a deep-learning technique. This 

paper uses SDAE. 

An autoencoder is a neural network that consists of input, 

hidden, and output layers. Figure 2 shows an example of an 

autoencoder. It calculates weights on directed edges in Figure 

2 by learning from input data. One specific autoencoder 

feature is that the input data (vector) and the output data 

(vector) must be equal. 

 

Input Hidden Output

x yh

W W 

 
Fig. 2. Structure of an Autoencoder 

 

An autoencoder is represented by a mathematical formula. 

In formula (1), the input layer is represented as a vector 𝒙, the 

output of the hidden layer as a vector 𝒉, and weights from the 

input layer to the hidden layer as a matrix 𝑾 and vector 𝒃. The 

vector 𝒃 represents bias terms. We also define an activation 

function 𝑓. Data propagation from the input layer to the hidden 

layer is calculated using formula (1). 

 𝒉 = 𝑓(𝑾𝒙 + 𝒃) (1) 

Similarly, we define the output from the output layer as a 

vector 𝒚, and the weights from the hidden layer to the output 

layer are represented as a matrix 𝑾′ and vector 𝒃′. The vector 

𝒃′ consists of bias terms. We also define an activation function 

𝑓′. Data propagation from the hidden layer to the output layer 

is calculated using formula (2). 

 𝒚 = 𝑓′(𝑾′𝒉 + 𝒃′) (2) 

The autoencoder determines the weights 𝑾  and 𝑾′  that 

equalize the input 𝒙 and output 𝒚. The weights are calculated 

using formula (3), which minimizes the difference between the 

input data {𝒙𝒊, … } and output 𝒚. 

 min
𝑾,𝒃,𝑾′,𝒃′

∑‖𝒙𝒊 − 𝑓′(𝑾′𝑓(𝑾𝒙𝒊 + 𝒃) + 𝒃′)‖2
2

𝑖

 (3) 

Using an autoencoder, we can decrease the dimensions of 

data vectors. The dimension of 𝒉 is less than that of 𝒙 or 𝒚. 

The output vector 𝒉 of the hidden layer is used as a feature 

vector in machine learning.  

We can combine multiple autoencoders by overlapping a 

hidden layer as an input of the second autoencoder. This type 

of autoencoder is called Stacked Autoencoder (SAE). Figure 3 

shows an example. 

 

Input Hidden Output

Input Hidden

Input Hidden

Autoencoder 1

Autoencoder 2

 
Fig. 3. Structure of a Stacked Autoencoder 

 

It can be meaningful to add noise to an input vector. This 

type of autoencoder is called a denoising autoencoder (DAE). 

By adding noise data, an autoencoder can avoid overlearning 

or overfitting, with the result that formula (3) is satisfied only 

for the training data. Noise is sometimes useful to generalize 

the training data. A DAE can attain higher accuracy. 
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We can further combine multiple DAEs similarly to SAEs, 

This type of autoencoder is called SDAE. This paper uses 

SDAEs. We use Pylearn2 software [3] as a deep-learning tool. 

III. RELATED WORK 

A. Optimal String Alignment Distance (OSAD) 

In 2013, Wang and Goldberg [4] conducted a fingerprinting 

attack using OSAD. In their method, a sequence of Tor cells is 

treated as a string. If two instances of a cell string are captured 

for the same site, the distance between the two instances is 

small. If they are captured for two different sites, the distance 

of the two instances is large. Wang and Goldberg used OSAD 

in an algorithm to calculate the distance.  

Wang and Goldberg used this distance as the kernel matrix 

in a support vector machine (SVM). They defined the distance 

and the kernel by formulas (4) and (5), respectively. s1 and s2 

are two strings, and the distance between s1  and s2  is 

D(s1, s2).  
 

D′(s1, s2) =
D(s1, s2)

𝑚𝑖𝑛(|𝑠1|, |𝑠2|)
 (4) 

 

 K(s1, s2) = 𝑒−D
′(s1,s2)

2
 (5) 

 

When D′ = 0, two strings are equal, and K becomes one. 

When the distance between two strings is large, K becomes 

small. When D → ∞, the limit of K becomes zero. Therefore, 

we can use K as the kernel matrix of an SVM. Wang and 

Goldberg used the one-against-one method in their SVM. This 

method is used for multi-class classification by repeating 

two-class classifications and by performing majority voting. 

B. k-Nearest Neighbor Algorithm (k-NN) 

In 2014, Wang et al. [5] proposed another fingerprinting 

attack using the k-nearest neighbor (k-NN) algorithm. In their 

new method, they extract features from captured packets. 

 General features (total transmission size, total 

transmission time, and numbers of incoming and 

outgoing packets) 

 Packet ordering 

 Concentration of outgoing packets 

 Bursts 

Some features are more meaningful than others. Then, they 

determine the weights of features. Finally, they classify test 

data using the k-NN method with features and weights. 

IV. NEW METHOD 

A. Dataset for Learning and Evaluation 

This paper uses the same dataset as that of Wang [6] in our 

evaluation experiment. This dataset contains 100 sites as 

monitored web sites and 9,000 sites as non-monitored sites. 

Monitored sites are used in the closed-world test. 

Non-monitored sites are used in the open-world test. Each 

monitored site has 90 instances (cells), and each 

non-monitored site has one instance. Monitored sites consist of 

porn sites, Bit Torrent trackers’ sites, and sites that have 

religious or political contents. Access to these sites is blocked 

in China, United Kingdom, and Saudi Arabia. Non-monitored 

sites consist of Alexa’s list [7], which covers ordinary popular 

web pages. In Figure 4, the first column records when a cell is 

captured. The timestamp unit is seconds. The time at which the 

first cell is sent is 0.0. The second column indicates the 

direction of a cell. When a cell is sent from a victim (target) to 

a Tor node, it is represented as 1. When a cell is sent from a Tor 

node to a victim, it is represented as −1. This time sequence 

starts when the web page begins loading and ends when the 

last cell is sent. 

 

0.0                     1

0.0                     1

0.116133928299    1

0.499715805054         -1

0.499715805054   -1

0.782404899597   -1

0.969846963882   -1

0.969846963882   -1

0.969846963882   -1

0.969846963882   -1
 

Fig. 4. Example of dataset. 

 

We count the number of cells in a packet. Since the size of a 

cell is fixed at 512 bytes, the number of cells is counted by 

dividing the packet length by 600. We use not 512 but 600 

because we consider inter-cell headers and the overhead 

[10] .Tor sends cells for flow control at regular intervals. Such 

a control cell is called a SENDME cell. SENDME cells are not 

useful in fingerprinting attacks. We exclude SENDME cells 

from the dataset. 

B. Proposed Method 

First, an attacker (analyzer) collects training data for 

machine learning. The attacker accesses websites he or she 

wants to monitor through Tor fingerprinting and then captures 

the traffic data repeatedly, e.g.,., 100 times. The attacker also 

collects traffic data from a large number of other websites. The 

data is used for the open-world test. Since this paper uses 

Wang’s dataset, we can omit the data collection phase. 

Next, the attacker extracts Tor cells from the captured data. 

These are used as input to the autoencoder. Again, we can omit 

this phase, because we use the same dataset as that in Wang’s 

method. Tor cells are already extracted. Then, we sort out data 

to create an input vector to the autoencoder. This paper uses 

the direction of a cell as an element of an input vector. It is a 

simple method. We do not use other features. It should be 

noted here that input vectors have a fixed length (dimension). 

The original traffic data have a variety of lengths (dimensions) 

according to the traffic pattern. We truncate a sequence of cells 

if the length is greater than 5,000. If the number of cells is less 

than 5,000, we put 0 as dummy padding to create a vector of 

size 5,000. Figure 5 shows an example of input data 

corresponding to Figure 4. 

 

17



 

1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, 1, -1, 1, 1,  ... , 0, 0, 0, 0, 0  

Fig. 5. Example of input data 

 

After preparing the data, the attacker conducts training using 

the SDAE. In our experiment, we specifically use a multilayer 

perceptron (MLP) that has two layers of SDAEs and an output 

layer realized by a softmax function. The parameters of the 

SDAE and MLP will be shown in the next section (V). Before 

inputting the training data, we randomize the order of the 

training vectors in the data set. If a batch has many similar 

vectors, the efficiency of learning might be decreased.  

The test data for evaluation is prepared similarly to the 

training data. 

V. EVALUATION 

A. Environment 

Table 1 shows the experimental environment. We use 

Compute Unified Device Architecture (CUDA) [8] to 

accelerate the training using a graphical processing unit (GPU). 

Table 1 shows the machine specification, which includes a 

GeForce GTX 750 Ti graphics card by NVIDIA. 

 
TABLE 1 

ENVIRONMENT OF EXPERIMENT 

OS Ubuntu 14.04.03 LTS 

CPU Intel Core i7-4790 

RAM 32 GB 

GPU NVIDIA GeForce GTX 750 Ti 

 

B. Closed-World Test 

1) Overview 

In the closed-world test, the dataset contains 100 monitored 

sites, with each site containing 90 cell instances. Seventy-two 

instances are used for training data, and 18 instances for test 

data. This closed-world test is a multi-class classification. We 

labeled monitored websites as class 0 to class 99. 

2) Layer 

We used an MLP with two layers of SDAEs and with the 

output layer realized by a softmax function. Parameters of 

Pylearn2 are shows in Tables 2 and 3. 

Nvis and nhid are the dimensions of the input and hidden 

layers of the Autoencoder, respectively. Learning rate is a 

coefficient during the weight-training phase. 

 
TABLE 2 

PARAMETERS OF SDAE (CLOSED-WORLD TEST) 

Parameter First Layer Second Layer 

nvis 5000 500 

nhid 500 125 

learning_rate 0.001 0.001 

batch_size 50 50 

 

TABLE 3 

PARAMETERS OF MLP (CLOSED-WORLD TEST) 

Parameter MLP 

Nvis 5000 

n_classes 100 

learning_rate 0.005 

batch_size 200 

 

3) Results 

We conducted a series of closed-world tests while changing 

the number of learning sessions (max_epoch) every five times. 

Values of max_epoch in each DAE and the output layer are the 

same. Figure 6 shows the accuracy of the closed-world tests. 

The highest accuracy of 0.88 is attained when the number of 

learning sessions is 50. 

 
Fig. 6. Relation between max_epoch and accuracy in closed world test. 

 

We also conduct a series of closed-world tests by changing 

the dimensions, nvis and nhid. We fix the max_epoch value as 

50. The results are shown in Table 4. There is no major change 

in the accuracy by the dimension parameters of the hidden 

layer of the SDAE. The maximum accuracy is attained when 

the nhid values of the first and second layers are 1,000 and 500, 

respectively. When the nhid values are 500 for the first layer 

and 125 for the second, the results are similar. 

 
TABLE 4 

RESULTS WHEN CHANGING NVIS AND NHID 

(CLOSED-WORLD TEST) 

Accuracy 1st layer 

250 500 750 1000 

2nd 

layer 

125 86.4 88.1 86.9 86.9 

250 87.1 87.2 87.6 87.6 

500 - 87.3 87.2 88.2 

750 - - 87.9 87.3 

1000 - - - 87.6 

 

4) Execution time 

Table 5 shows the execution time when max_epoch is set as 

50. In this experiment, the autoencoder can use the weight that 

is already learned. Then, the test time is very short. The 

training time is also short, because the autoencoder does not 

need to perform multiple layers of backpropagation. 

 
TABLE 5 

EXECUTION TIME (CLOSED-WORLD TEST) 

Process Description Time [s] 

Data 
Transmission 

Time to convert train data and test data to 
Pylearn2 format. 

124.4 

Learning Time Time to train using 7200 train data. 163.0 

Test Time Time to test 1800 Test data 3.0 

 

5) Three-layer SDAE 

The above results are obtained for the closed-world test by 
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the two-layer SDAE. It is worthwhile investigating the 

performance of the three-layer SDAE. 

We conduct another closed-world test using a three-layer 

SDAE. Table 6 shows the parameters of the new SDAE. The 

parameters of the MLP are the same as those in Table 3. 

 
TABLE 6 

PARAMETERS OF THREE-LAYER SDAE (CLOSED-WORLD TEST) 

Parameter 1st Layer 2nd Layer 3rd Layer 

nvis 5000 750 500 

nhid 750 500 250 

learning_rate 0.001 0.001 0.001 

batch_size 50 50 50 

 

Figure 7 shows the results while changing the learning 

intervals (max_epochs) every ten times. The maximum 

accuracy is 0.88, the same accuracy achieved by the two-layer 

SDAE. However, when three layers are used, the convergence 

of learning becomes slow compared with the two-layer SDAE. 

 

 
Fig. 7. Relation between max_epoch and accuracy in closed-world test. 

 

The learning and test times also become slow. For the 

three-layer SDAE, when max_epoch is 50, the learning time 

becomes 241.9 s and the testing time becomes 3.6 s. 

C. Open-World Test 

1) Overview 

In the open-world test, we use the data not only of 100 

monitored sites, but also those of 9,000 non-monitored sites. 

The data of the monitored sites is divided into 72 instances for 

training data and 18 instances for testing data. We use 1,800 

instances of non-monitored sites as the testing data. 

A non-monitored website never appears in the training data. 

The victim can access a new website that the attacker does not 

expect. We label monitored websites as classes 0 to 99 and all 

the non-monitored websites as a single class 100. 

2) Layer 

In the open-world test, we use an MLP that has an input 

layer with a dimension of 5,000 and a two-layer DAE. The 

output layer is realized by a softmax function. The parameters 

of Pylearn2 are showed in Tables 7 and 8. 

 
TABLE 7 

PARAMETERS OF SDAE (OPEN-WORLD TEST) 

Parameter First Layer Second Layer 

Nvis 5000 500 

Nhid 500 125 

learrning_rate 0.001 0.001 

batch_size 50 50 

max_epoch 30 30 

 

TABLE 8 

PARAMETERS OF MLP (OPEN-WORLD TEST) 

Parameter MLP 

Nvis 5000 

n_classes 101 

learning_rate 0.005 

batch_size 200 

max_epoch 50 

 

3) Results 

We investigate the TPR, i.e., the rate at which monitored 

websites are classified correctly, and the FPR, i.e.,., the rate at 

which a non-monitored website is classified as a monitored 

site. The TPR is shown in Figure 8, and the FPR is shown in 

Figure 9. 

In Figure 8, when the number of training data instances of 

non-monitored sites is larger, the TPR is lower. The maximum 

TPR is 0.87, when the number of the training data of 

non-monitored sites is 1,000, and the minimum TPR is 0.86, 

when the number is 7,000. In Figure 9, in addition to the TPR, 

when the number of training data instances of non-monitored 

sites is larger, the FPR is lower. The minimum FPR is 0.02, 

when the number of training data of non-monitored sites is 

7,000. 

 

 
Fig. 8. Relation between number of training data of non-monitored sites and 

TPR in the open-world test. 

 

 
Fig. 9. Relation between number of training data of non-monitored sites and 

FPR in open-world test. 
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There is a trade-off between TPR and FPR. It is better to have a 

high value of TPR, while keeping the FPR value low. 

Comparison with Related Work 

Wang et al. showed the results of the OSAD [4] and k-NN 

methods [5] using the same dataset. Table 9 shows the 

comparison with previously known methods and our method. 

In our proposed method, the accuracy in the closed-world 

test is 0.88, slightly lower than those of OSAD and k-NN. In 

the open-world test, our TPR (0.86) is higher than that of 

OSAD, and our FPR (0.02) is lower than that of OSAD. 

However, our FPR is higher than that of the k-NN method. 

 
TABLE 9 

COMPARISON WITH EXISTING METHODS 

Method Accuracy in Closed 

World Test 

TPR in Open 

World Test 

FPR in Open 

World Test 

Our Method 0.88 0.86 0.02 

OSAD Method 0.90 0.83 0.06 

k-NN Method 0.91 0.85 0.006 

 

 

VI. CONCLUSION 

A. Summary 

Here we propose a new method for fingerprinting attacks on 

Tor anonymity using SDAE. The input vector takes a very 

simple form, with elements 1, −1, or 0. The evaluation results 

show an accuracy of 0.88 in the closed-world test and TPR and 

FPR values of 0.86 and 0.02, respectively, in the open-world 

test. It is the advantage of our method that we can realize a high 

accuracy without selecting the features manually.  Out method 

is based on mechanical  Deep Learning. 

This paper shows that deep-learning technology can be 

applied to fingerprinting attacks on Tor communications to 

have results comparable to those of existing technologies. 

B. Future Research 

It may be meaningful to combine our method with other 

methods proposed in related work. For example, the output of 

SDAE can be used as features in Wang’s method and used for 

training by k-NN.  

There are convolutional neural networks (CNNs) and 

recurrent neural networks (RNNs) in deep learning. CNN has 

been used in pattern recognition. RNN can handle time-series 

data. It may be possible to improve the accuracy of our method 

by applying other neural network technologies as well. 
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