

Proceedings of the APAN – Research Workshop 2016

ISBN 978-4-9905448-6-7



Abstract— Tor is free software that enables anonymous

communication. It defends users against traffic analysis and

network surveillance. It is also useful for confidential business

activities and state security. At the same time, anonymized

protocols have been used to access criminal websites such as those

dealing with illegal drugs. This paper proposes a new method for

launching a fingerprinting attack to analyze Tor traffic in order

to detect users who access illegal websites. Our new method is

based on Stacked Denoising Autoencoder, a deep-learning

technology. Our evaluation results show 0.88 accuracy in a

closed-world test. In an open-world test, the true positive rate is

0.86 and the false positive rate is 0.02.

Index Terms— Network Security, Tor, Fingerprinting Attack,

Deep Learning, Autoencoder

I. INTRODUCTION

The Onion Router (Tor) is free software that enables

anonymous communication. [1, 2]. It defends users against

traffic analysis and network surveillance. It is also useful for

confidential business activities and state security. At the same

time, anonymized protocols have been used to access criminal

websites such as those dealing with illegal drugs. There is a

need to develop a method that can identify websites when

anonymized protocols are used.

This paper proposes a new method for launching a

fingerprinting attack to analyze Tor traffic in order to detect

users who access illegal websites. Using a fingerprinting

attack, we can identify a website that a user accesses on the

basis of traffic features such as packet length, number of

packets, and time. We can analyze this information from

captured packets regardless of encryption. Our new method for

fingerprinting attacks is based on Stacked Denoising

Autoencoder (SDAE), a deep-learning technology. Our

evaluation results show 0.88 accuracy is in a closed-world test.

In an open world test, the true positive rate (TPR) and false

positive rate (FPR) are 0.86 and 0.02, respectively.

The remainder of this paper is organized as follows. Section

Kota Abe and Shigeki Goto are with the Department of Computer Science

and Engineering, Waseda University, Shinjuku, Tokyo 169-8555 Japan
e-mail: (see http://www.goto.info.waseda.ac.jp).

II explains the technical background. Section III describes

related work. Our new method is proposed in Section IV.

Section V shows the evaluation results. Section VI concludes

the paper.

II. TECHNICAL BACKGROUND

A. Tor Anonymity

Tor [1, 2] is a popular anonymized protocol. Figure 1 shows

an example of a Tor configuration. At the initial setting, there

are three nodes between a user and a web server, as shown in

Figure 1. Tor traffic data is encrypted using Transport Layer

Security (TLS) between a user and each Tor node. Thus, Tor

nodes do not know the original plain data, with one exception.

The closest node to the web server can read the original data

without encryption. In a Tor configuration, each node knows

only the Internet Protocol (IP) addresses of adjacent nodes that

are directly connected to the node.

In the Tor protocol, content data is encapsulated into a series

of cells, each with a fixed length of 512 bytes. It is difficult to

estimate the original content only from the packet length.

User

(victim of

fingerprinting attack)

Tor Server 1
Tor Server 3

Tor Server 2 Web Server

Fig. 1. Configuration of Tor

B. Fingerprinting Attacks on a Website

1) Fingerprinting

A website fingerprinting attack aims to detect a website

even if the traffic is encrypted using Tor or a virtual private

network (VPN). We cannot specify the website by inspecting

the encrypted payload. However, we can utilize the packet

information, such as packet length, number of packets, and

time. In a fingerprinting attack, we can specify a website by

providing the packet information.

There are two methods for capturing traffic data in Tor. In

the first method, an attacker (analyzer) prepares an entry node

Kota Abe and Shigeki Goto

Fingerprinting Attack on Tor Anonymity

using Deep Learning

15

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceedings of the Asia-Pacific Advanced Network

https://core.ac.uk/display/229876143?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of Tor and captures the traffic through this node. However, the

Tor protocol selects nodes at random. It is unlikely that a

specific victim connects to the attacker's node. In the second

method, an attacker (analyzer) is a network operator, such as

an Internet service provider (ISP). He or she can capture traffic

packets between a victim and the entry node of Tor. This is a

realistic scenario. This paper proposes a new approach using

the second method.

2) Closed- and Open-World Tests

There are two evaluation schemes for fingerprinting attacks.

The first scheme is a closed-world test. It conducts a test in

which a victim can access only a limited number of websites,

which the attacker attempts to detect. For example, an attacker

might prepare 100 monitored sites and investigate the features

of these 100 websites. The victim can access only these 100

websites.

The second scheme is an open-world test. In such a test, a

victim can freely access any websites on the Internet. The

attacker must be able to determine whether a website is

monitored or non-monitored. If it is a monitored website, the

attacker must be able to determine which website among the

100 monitored sites it is. This paper uses two evaluation

schemes, closed and open.

C. SDAE

 Deep learning is an attractive method in machine learning. It

is called deep because it utilizes a multiple-layered neural

network. An autoencoder is a deep-learning technique. This

paper uses SDAE.

An autoencoder is a neural network that consists of input,

hidden, and output layers. Figure 2 shows an example of an

autoencoder. It calculates weights on directed edges in Figure

2 by learning from input data. One specific autoencoder

feature is that the input data (vector) and the output data

(vector) must be equal.

Input Hidden Output

x yh

W W

Fig. 2. Structure of an Autoencoder

An autoencoder is represented by a mathematical formula.

In formula (1), the input layer is represented as a vector 𝒙, the

output of the hidden layer as a vector 𝒉, and weights from the

input layer to the hidden layer as a matrix 𝑾 and vector 𝒃. The

vector 𝒃 represents bias terms. We also define an activation

function 𝑓. Data propagation from the input layer to the hidden

layer is calculated using formula (1).

 𝒉 = 𝑓(𝑾𝒙 + 𝒃) (1)

Similarly, we define the output from the output layer as a

vector 𝒚, and the weights from the hidden layer to the output

layer are represented as a matrix 𝑾′ and vector 𝒃′. The vector

𝒃′ consists of bias terms. We also define an activation function

𝑓′. Data propagation from the hidden layer to the output layer

is calculated using formula (2).

 𝒚 = 𝑓′(𝑾′𝒉 + 𝒃′) (2)

The autoencoder determines the weights 𝑾 and 𝑾′ that

equalize the input 𝒙 and output 𝒚. The weights are calculated

using formula (3), which minimizes the difference between the

input data {𝒙𝒊, … } and output 𝒚.

 min
𝑾,𝒃,𝑾′,𝒃′

∑‖𝒙𝒊 − 𝑓′(𝑾′𝑓(𝑾𝒙𝒊 + 𝒃) + 𝒃′)‖2
2

𝑖

 (3)

Using an autoencoder, we can decrease the dimensions of

data vectors. The dimension of 𝒉 is less than that of 𝒙 or 𝒚.

The output vector 𝒉 of the hidden layer is used as a feature

vector in machine learning.

We can combine multiple autoencoders by overlapping a

hidden layer as an input of the second autoencoder. This type

of autoencoder is called Stacked Autoencoder (SAE). Figure 3

shows an example.

Input Hidden Output

Input Hidden

Input Hidden

Autoencoder 1

Autoencoder 2

Fig. 3. Structure of a Stacked Autoencoder

It can be meaningful to add noise to an input vector. This

type of autoencoder is called a denoising autoencoder (DAE).

By adding noise data, an autoencoder can avoid overlearning

or overfitting, with the result that formula (3) is satisfied only

for the training data. Noise is sometimes useful to generalize

the training data. A DAE can attain higher accuracy.

16

We can further combine multiple DAEs similarly to SAEs,

This type of autoencoder is called SDAE. This paper uses

SDAEs. We use Pylearn2 software [3] as a deep-learning tool.

III. RELATED WORK

A. Optimal String Alignment Distance (OSAD)

In 2013, Wang and Goldberg [4] conducted a fingerprinting

attack using OSAD. In their method, a sequence of Tor cells is

treated as a string. If two instances of a cell string are captured

for the same site, the distance between the two instances is

small. If they are captured for two different sites, the distance

of the two instances is large. Wang and Goldberg used OSAD

in an algorithm to calculate the distance.

Wang and Goldberg used this distance as the kernel matrix

in a support vector machine (SVM). They defined the distance

and the kernel by formulas (4) and (5), respectively. s1 and s2

are two strings, and the distance between s1 and s2 is

D(s1, s2).

D′(s1, s2) =
D(s1, s2)

𝑚𝑖𝑛(|𝑠1|, |𝑠2|)
 (4)

 K(s1, s2) = 𝑒−D
′(s1,s2)

2
 (5)

When D′ = 0, two strings are equal, and K becomes one.

When the distance between two strings is large, K becomes

small. When D → ∞, the limit of K becomes zero. Therefore,

we can use K as the kernel matrix of an SVM. Wang and

Goldberg used the one-against-one method in their SVM. This

method is used for multi-class classification by repeating

two-class classifications and by performing majority voting.

B. k-Nearest Neighbor Algorithm (k-NN)

In 2014, Wang et al. [5] proposed another fingerprinting

attack using the k-nearest neighbor (k-NN) algorithm. In their

new method, they extract features from captured packets.

 General features (total transmission size, total

transmission time, and numbers of incoming and

outgoing packets)

 Packet ordering

 Concentration of outgoing packets

 Bursts

Some features are more meaningful than others. Then, they

determine the weights of features. Finally, they classify test

data using the k-NN method with features and weights.

IV. NEW METHOD

A. Dataset for Learning and Evaluation

This paper uses the same dataset as that of Wang [6] in our

evaluation experiment. This dataset contains 100 sites as

monitored web sites and 9,000 sites as non-monitored sites.

Monitored sites are used in the closed-world test.

Non-monitored sites are used in the open-world test. Each

monitored site has 90 instances (cells), and each

non-monitored site has one instance. Monitored sites consist of

porn sites, Bit Torrent trackers’ sites, and sites that have

religious or political contents. Access to these sites is blocked

in China, United Kingdom, and Saudi Arabia. Non-monitored

sites consist of Alexa’s list [7], which covers ordinary popular

web pages. In Figure 4, the first column records when a cell is

captured. The timestamp unit is seconds. The time at which the

first cell is sent is 0.0. The second column indicates the

direction of a cell. When a cell is sent from a victim (target) to

a Tor node, it is represented as 1. When a cell is sent from a Tor

node to a victim, it is represented as −1. This time sequence

starts when the web page begins loading and ends when the

last cell is sent.

0.0 1

0.0 1

0.116133928299 1

0.499715805054 -1

0.499715805054 -1

0.782404899597 -1

0.969846963882 -1

0.969846963882 -1

0.969846963882 -1

0.969846963882 -1

Fig. 4. Example of dataset.

We count the number of cells in a packet. Since the size of a

cell is fixed at 512 bytes, the number of cells is counted by

dividing the packet length by 600. We use not 512 but 600

because we consider inter-cell headers and the overhead

[10] .Tor sends cells for flow control at regular intervals. Such

a control cell is called a SENDME cell. SENDME cells are not

useful in fingerprinting attacks. We exclude SENDME cells

from the dataset.

B. Proposed Method

First, an attacker (analyzer) collects training data for

machine learning. The attacker accesses websites he or she

wants to monitor through Tor fingerprinting and then captures

the traffic data repeatedly, e.g.,., 100 times. The attacker also

collects traffic data from a large number of other websites. The

data is used for the open-world test. Since this paper uses

Wang’s dataset, we can omit the data collection phase.

Next, the attacker extracts Tor cells from the captured data.

These are used as input to the autoencoder. Again, we can omit

this phase, because we use the same dataset as that in Wang’s

method. Tor cells are already extracted. Then, we sort out data

to create an input vector to the autoencoder. This paper uses

the direction of a cell as an element of an input vector. It is a

simple method. We do not use other features. It should be

noted here that input vectors have a fixed length (dimension).

The original traffic data have a variety of lengths (dimensions)

according to the traffic pattern. We truncate a sequence of cells

if the length is greater than 5,000. If the number of cells is less

than 5,000, we put 0 as dummy padding to create a vector of

size 5,000. Figure 5 shows an example of input data

corresponding to Figure 4.

17

1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1,
 -1, -1, 1, -1, 1, 1, ... , 0, 0, 0, 0, 0

Fig. 5. Example of input data

After preparing the data, the attacker conducts training using

the SDAE. In our experiment, we specifically use a multilayer

perceptron (MLP) that has two layers of SDAEs and an output

layer realized by a softmax function. The parameters of the

SDAE and MLP will be shown in the next section (V). Before

inputting the training data, we randomize the order of the

training vectors in the data set. If a batch has many similar

vectors, the efficiency of learning might be decreased.

The test data for evaluation is prepared similarly to the

training data.

V. EVALUATION

A. Environment

Table 1 shows the experimental environment. We use

Compute Unified Device Architecture (CUDA) [8] to

accelerate the training using a graphical processing unit (GPU).

Table 1 shows the machine specification, which includes a

GeForce GTX 750 Ti graphics card by NVIDIA.

TABLE 1

ENVIRONMENT OF EXPERIMENT

OS Ubuntu 14.04.03 LTS

CPU Intel Core i7-4790

RAM 32 GB

GPU NVIDIA GeForce GTX 750 Ti

B. Closed-World Test

1) Overview

In the closed-world test, the dataset contains 100 monitored

sites, with each site containing 90 cell instances. Seventy-two

instances are used for training data, and 18 instances for test

data. This closed-world test is a multi-class classification. We

labeled monitored websites as class 0 to class 99.

2) Layer

We used an MLP with two layers of SDAEs and with the

output layer realized by a softmax function. Parameters of

Pylearn2 are shows in Tables 2 and 3.

Nvis and nhid are the dimensions of the input and hidden

layers of the Autoencoder, respectively. Learning rate is a

coefficient during the weight-training phase.

TABLE 2

PARAMETERS OF SDAE (CLOSED-WORLD TEST)

Parameter First Layer Second Layer

nvis 5000 500

nhid 500 125

learning_rate 0.001 0.001

batch_size 50 50

TABLE 3

PARAMETERS OF MLP (CLOSED-WORLD TEST)

Parameter MLP

Nvis 5000

n_classes 100

learning_rate 0.005

batch_size 200

3) Results

We conducted a series of closed-world tests while changing

the number of learning sessions (max_epoch) every five times.

Values of max_epoch in each DAE and the output layer are the

same. Figure 6 shows the accuracy of the closed-world tests.

The highest accuracy of 0.88 is attained when the number of

learning sessions is 50.

Fig. 6. Relation between max_epoch and accuracy in closed world test.

We also conduct a series of closed-world tests by changing

the dimensions, nvis and nhid. We fix the max_epoch value as

50. The results are shown in Table 4. There is no major change

in the accuracy by the dimension parameters of the hidden

layer of the SDAE. The maximum accuracy is attained when

the nhid values of the first and second layers are 1,000 and 500,

respectively. When the nhid values are 500 for the first layer

and 125 for the second, the results are similar.

TABLE 4

RESULTS WHEN CHANGING NVIS AND NHID

(CLOSED-WORLD TEST)

Accuracy 1st layer

250 500 750 1000

2nd

layer

125 86.4 88.1 86.9 86.9

250 87.1 87.2 87.6 87.6

500 - 87.3 87.2 88.2

750 - - 87.9 87.3

1000 - - - 87.6

4) Execution time

Table 5 shows the execution time when max_epoch is set as

50. In this experiment, the autoencoder can use the weight that

is already learned. Then, the test time is very short. The

training time is also short, because the autoencoder does not

need to perform multiple layers of backpropagation.

TABLE 5

EXECUTION TIME (CLOSED-WORLD TEST)

Process Description Time [s]

Data
Transmission

Time to convert train data and test data to
Pylearn2 format.

124.4

Learning Time Time to train using 7200 train data. 163.0

Test Time Time to test 1800 Test data 3.0

5) Three-layer SDAE

The above results are obtained for the closed-world test by

18

the two-layer SDAE. It is worthwhile investigating the

performance of the three-layer SDAE.

We conduct another closed-world test using a three-layer

SDAE. Table 6 shows the parameters of the new SDAE. The

parameters of the MLP are the same as those in Table 3.

TABLE 6

PARAMETERS OF THREE-LAYER SDAE (CLOSED-WORLD TEST)

Parameter 1st Layer 2nd Layer 3rd Layer

nvis 5000 750 500

nhid 750 500 250

learning_rate 0.001 0.001 0.001

batch_size 50 50 50

Figure 7 shows the results while changing the learning

intervals (max_epochs) every ten times. The maximum

accuracy is 0.88, the same accuracy achieved by the two-layer

SDAE. However, when three layers are used, the convergence

of learning becomes slow compared with the two-layer SDAE.

Fig. 7. Relation between max_epoch and accuracy in closed-world test.

The learning and test times also become slow. For the

three-layer SDAE, when max_epoch is 50, the learning time

becomes 241.9 s and the testing time becomes 3.6 s.

C. Open-World Test

1) Overview

In the open-world test, we use the data not only of 100

monitored sites, but also those of 9,000 non-monitored sites.

The data of the monitored sites is divided into 72 instances for

training data and 18 instances for testing data. We use 1,800

instances of non-monitored sites as the testing data.

A non-monitored website never appears in the training data.

The victim can access a new website that the attacker does not

expect. We label monitored websites as classes 0 to 99 and all

the non-monitored websites as a single class 100.

2) Layer

In the open-world test, we use an MLP that has an input

layer with a dimension of 5,000 and a two-layer DAE. The

output layer is realized by a softmax function. The parameters

of Pylearn2 are showed in Tables 7 and 8.

TABLE 7

PARAMETERS OF SDAE (OPEN-WORLD TEST)

Parameter First Layer Second Layer

Nvis 5000 500

Nhid 500 125

learrning_rate 0.001 0.001

batch_size 50 50

max_epoch 30 30

TABLE 8

PARAMETERS OF MLP (OPEN-WORLD TEST)

Parameter MLP

Nvis 5000

n_classes 101

learning_rate 0.005

batch_size 200

max_epoch 50

3) Results

We investigate the TPR, i.e., the rate at which monitored

websites are classified correctly, and the FPR, i.e.,., the rate at

which a non-monitored website is classified as a monitored

site. The TPR is shown in Figure 8, and the FPR is shown in

Figure 9.

In Figure 8, when the number of training data instances of

non-monitored sites is larger, the TPR is lower. The maximum

TPR is 0.87, when the number of the training data of

non-monitored sites is 1,000, and the minimum TPR is 0.86,

when the number is 7,000. In Figure 9, in addition to the TPR,

when the number of training data instances of non-monitored

sites is larger, the FPR is lower. The minimum FPR is 0.02,

when the number of training data of non-monitored sites is

7,000.

Fig. 8. Relation between number of training data of non-monitored sites and

TPR in the open-world test.

Fig. 9. Relation between number of training data of non-monitored sites and

FPR in open-world test.

19

There is a trade-off between TPR and FPR. It is better to have a

high value of TPR, while keeping the FPR value low.

Comparison with Related Work

Wang et al. showed the results of the OSAD [4] and k-NN

methods [5] using the same dataset. Table 9 shows the

comparison with previously known methods and our method.

In our proposed method, the accuracy in the closed-world

test is 0.88, slightly lower than those of OSAD and k-NN. In

the open-world test, our TPR (0.86) is higher than that of

OSAD, and our FPR (0.02) is lower than that of OSAD.

However, our FPR is higher than that of the k-NN method.

TABLE 9

COMPARISON WITH EXISTING METHODS

Method Accuracy in Closed

World Test

TPR in Open

World Test

FPR in Open

World Test

Our Method 0.88 0.86 0.02

OSAD Method 0.90 0.83 0.06

k-NN Method 0.91 0.85 0.006

VI. CONCLUSION

A. Summary

Here we propose a new method for fingerprinting attacks on

Tor anonymity using SDAE. The input vector takes a very

simple form, with elements 1, −1, or 0. The evaluation results

show an accuracy of 0.88 in the closed-world test and TPR and

FPR values of 0.86 and 0.02, respectively, in the open-world

test. It is the advantage of our method that we can realize a high

accuracy without selecting the features manually. Out method

is based on mechanical Deep Learning.

This paper shows that deep-learning technology can be

applied to fingerprinting attacks on Tor communications to

have results comparable to those of existing technologies.

B. Future Research

It may be meaningful to combine our method with other

methods proposed in related work. For example, the output of

SDAE can be used as features in Wang’s method and used for

training by k-NN.

There are convolutional neural networks (CNNs) and

recurrent neural networks (RNNs) in deep learning. CNN has

been used in pattern recognition. RNN can handle time-series

data. It may be possible to improve the accuracy of our method

by applying other neural network technologies as well.

ACKNOWLEDGEMENTS

A part of this work was supported by JSPS Grant-in-Aid for

Scientific Research B, Grant Number 16H02832.

REFERENCES

[1] The Tor Project, “Tor Project: Anonymity Online,”

https://www.torproject.org/, referred Jan. 20, 2016.
[2] Roger Dingledine, Nick Mathewson and Paul Syverson, “Tor: the

second-generation onion router,” in Proceedings of the 13th USENIX

Security Symposium, 2004, pp. 303–320.
[3] the LISA lab, ”Welcome — Pylearn2 dev documentation,”

http://deeplearning.net/software/pylearn2/, referred Jan. 20, 2016.

[4] Tao Wang and Ian Goldber, “Improved Website Fingerprinting on Tor,”
WPES ’13 Proceedings of the 12th ACM workshop on Workshop on

privacy in the electronic society, 2013, pp. 201–212.

[5] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson and Ian
Goldberg, “Effective attacks and provable defenses for website

fingerprinting,” in 23th USENIX Security Symposium, 2014, pp. 143–

157.
[6] Tao Wang, “Website Fingerprinting,”

https://cs.uwaterloo.ca/~t55wang/wf.html, referred Jan. 20, 2016.

[7] Alexa, “Alexa - Actionable Analytics for the Web,”
http://www.alexa.com/, referred Jan. 20, 2016.

[8] NVIDIA, “Parallel Programming and Computing Platform

 — CUDA — NVIDIA — NVIDIA,”

http://www.nvidia.com/object/cuda_home_new.html, referred Jan. 20,

2016.
[9] Andriy Panchenko, Lukas Niessen, Andreas Zinnen and Thomas Engel,

“Website Fingerprinting in Onion Routing Based Anonymization

Networks,” in WPES ’11 Proceedings of 27 the 10th annual ACM
workshop on Privacy in the electronic society, 2011, pp. 103–114.

[10] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson,

“Touching from a distance: website fingerprinting attacks and defenses,”
in CCS ’12 Proceedings of the 2012 ACM conference on Computer and

communications security, 2012, pp. 605–616.

[11] Hideki Asoh, Muneki Yasuda, Shiniti Maeda, Daisuke Okanohara,
Takayuki Okatani, Yotaro Kubo and Danushka Bollegala, “Deep

Learning,” Kindai kagaku sha, Tokyo, 2015.

[12] Takayuki Okatani and Masaki Saito, “Deep Learning,” IPSJ SIG-CVIM:

Computer Vision and Image Media, 2013, pp.1–17.

Kota Abe Kota Abe received the B.S. degree in
Computer Science and Engineering from Waseda
University in March, 2016. He is now a master
student at Department of Computer Science and
Communications Engineering, Waseda University.
His research interest covers Cyber Security.

Shigeki Goto Shigeki Goto is a professor at
Depart-ment of Computer Science and Engineering,
Waseda University, Japan. He received his B.S. and
M.S. in Mathematics from the University of Tokyo.
Prior to becoming a professor at Waseda University,
he has worked for NTT for many years. He also
earned a Ph.D in Information Engineering from the
University of Tokyo. He is the president of JPNIC.
He is a member of ACM and IEEE, and he was a
trustee of Internet Society from 1994 to 1997.

20

https://www.torproject.org/
http://deeplearning.net/software/pylearn2/
https://cs.uwaterloo.ca/~t55wang/wf.html
http://www.alexa.com/
http://www.nvidia.com/object/cuda_home_new.html

