

Proceedings of the APAN – Research Workshop 2019
ISBN 978-4-9905448-9-8

Abstract— With the development of the cloud, the Internet of

Things (IoT) and artificial intelligence (AI) technologies, the
demand for services that utilize these infrastructure technologies
is explosively increasing. In recent years, to develop and verify
services quickly and efficiently, traditional monolithic service has
evolved to a service composition that is based on a
container-based microservice architecture (MSA). In particular,
IoT-Cloud services that combine the internet of Things and the
cloud are appropriate to make the functions based on
cloud-native computing because it requires to connect with IoT,
Cloud, and AI functions flexibly. In this paper, we design
relocatable service composition to develop and compose
intelligent IoT-Cloud service in the cloud-native computing
environment based on IoT-Cloud pattern. In addition, to verify
the feasibility of the proposed approach of service composition,
we apply the specific IoT-Cloud service on multi-site playground
to verify mobility and usefulness. We show the proposed
approach can be proved that cloud-native based service is
partially adaptable to the service environment and can be
operated flexibly.

Index Terms—Microservices architecture, cloud-native
computing, container orchestration, service composition, IoT,
Cloud, multi-site.

I. INTRODUCTION
VER the past few years, the Internet of Things (IoT),
which has hit the IT industry as well as entire industries,

has had a powerful impact from businesses to everyday life.
IoT is a technology that connects real-time data from a sensor

This work was supported by Institute of Information & communications

Technology Planning & Evaluation (IITP) grant funded by the Korea
government(MSIT) (No. 2015-0-00575, Global SDN/NFV OpenSource
Software Core Module/Function Development). This work is also partially
supported by the Data-centric IoT-cloud service platform for smart
communities (IoTcloudServe@TEIN) project under the WP4 Future Internet
of Asi@Connect.

Seunghyung Lee, Jungsu Han, Jincheol Kwon and JongWon Kim are with
the school of Electrical Engineering and Computer Science, Gwangju Institute
of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu,
Gwangju, 61005, Republic of Korea (e-mail: {shlee, jshan, jckwon,
jongwon}@nm.gist.ac.kr).

Correspondence should be addressed to: JongWon Kim

attached to an object over a network [1]. Most IoTs use the
cloud backbone to link data collection, storage, and utilization.
The IoT-Cloud service is a service that provides users with
various values by flexibly linking IoT devices and the cloud. In
other words, it includes "-" which means inter-connect
between the IoT area and the cloud area so that corresponding
to the IoT part can be flexibly connected with the cloud part.

In this way, realizing data pipeline that analyzes the data
collected from the cloud and produces valuable and
meaningful information for an intelligent IoT-Cloud service is
becoming an important issue for IoT and Cloud service
developers. In addition, as the scale of service becomes more
complex and larger, we need to consider MSA-based service
composition that develops a small unit of service and links
them with each other functions [2]. Service composition refers
to the overall process for achieving a set of services such as
resource preparation, resource allocation, function distribution,
and functional coupling [3]. As the service development
approaches shifts from a single monolithic architecture to the
microservice architecture, the services are divided into a set of
functions, so we need to arrange them in a resource set well
and connect them. In addition, existing virtual machine-based
cloud computing has evolved into cloud-native computing due
to the introduction of container technology and the
microservice architecture development method [4]. In other
words, the service based on the cloud-native architecture that
develops services in small function units and performs in a
lightweight virtualized environment, container units, and
dynamically manages is becoming more powerful [5].

Thus, in this paper, we present a relocatable service
composition for IoT-Cloud service based on cloud-native
computing. The rest of this paper is organized as follows. In
Section 2, we present IoT-Cloud service Composition in the
cloud-native environment. In Section 3, we provide a design of
service composition based on IoT-Cloud pattern. We
implement the proposed approach in Section 4 and verify the
proposed approach by applying the real scenario of IoT-Cloud
services in Section 5. Finally, in Section 6, we conclude the
paper.

Relocatable Service Composition based on
Microservice Architecture for Cloud-Native

IoT-Cloud Services
Seunghyung Lee, Jungsu Han, Jincheol Kwon and JongWon Kim*

O

23

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceedings of the Asia-Pacific Advanced Network

https://core.ac.uk/display/229876091?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jongwon%7D@nm.gist.ac.kr

II. IOT-CLOUD SERVICE COMPOSITION IN THE CLOUD-NATIVE
ENVIRONMENT

A. Requirements
For IoT-Cloud service composition in the cloud-native

environment, we need to understand the requirements at the
infrastructure layer that provide computing/network/storage
and the software requirements.
 Infrastructure environments such as IoT, IoT-Gateway,

Cloud: From the point of view for edge computing, the
cloud-native IoT-Cloud service environment requires a
clustering consisted of IoT, IoT-Gateway, and Cloud
infrastructure nodes. It also requires software that is
deployed on the IoT-Gateway to coordinate IoT and cloud
connections.
 Cloud-native computing based service development with

microservice architecture: To develop and compose the
functions of the IoT-Cloud service on the cloud-native
environment, we need to develop a service for each small
unit function. To follow such a service development method,
we should design the service functions based on the
microservice architecture and modularize the functions
properly. In addition, the functions must be stateless in a
container form to ensure high performance, high availability,
and sustainability throughout the life cycle.
 Deploy workloads to the appropriate nodes: Basically,

services in a cloud-native infrastructure environment work
by deploying workloads to clustered nodes. However, the
workloads of IoT-Cloud services should be run on nodes in
different environments. Therefore, we should consider the
process of specifying and deploying the actual workload to
the appropriate node. We also need to ensure that the
workloads do not cause conflicts with each other.
 Connect service workloads: To compose IoT-Cloud

services in a cloud-native computing environment, the
connection of modularized workloads based on the
microservice architecture is required. To do this, we need to
connect the computing, networking, and storage resources in
a programmable, flexible way by specifying interfaces using
Container Network Interface (CNI), and Container Storage
Interface (CSI).

B. Service composition considering IoT-Cloud pattern

Fig. 1. Cloud-Native IoT-Cloud Service composition

The IoT-Cloud service has a data flow that stores and
utilizes data collected from the IoTs connected with the cloud
to analyze the stored data and to provide feedback. IoT-Cloud
service pattern can be divided into IoT- pattern and -Cloud
pattern based on data flow. The IoT- pattern is a part of the
IoT-Cloud pattern consisted of functions to collect and
forward data from the IoT to the Cloud. The -Cloud pattern
means a part of the IoT-Cloud pattern configured by receiving
data from the IoT, storing, or utilizing the data.

To apply the service composition to the cloud-native
IoT-Cloud services, the services should be designed to
consider each pattern of the target IoT-Cloud services since
dividing the functions according to the pattern of the
IoT-Cloud service can distinguish the workloads with the
correct unit Also, to combine the divided functions into a
single service, several steps we need to perform. In this paper,
we propose the service composition through resource
preparation, function creation, function placement, function
stitching, and function liaison procedure as shown in Fig. 1.

III. SERVICE COMPOSITION DESIGN BASED ON IOT-CLOUD
PATTERN

Fig. 2. IoT-Cloud Service composition flowchart

In this section, we designed a service composition process

that considers patterns to develop and compose IoT-Cloud
services in a cloud-native computing environment. If
IoT-Cloud service functions are created based on the patterns
and workloads are located in a well-defined sequence, they can
be operated well by partially adapting with any other
cloud-native service environment.
1) Service discovery: Service functions created on the
cloud-native are dynamically allocated and changed on the
network, so a discovery process is required to invoke service
functions. First, we should be able to find the service function
created through the service description. In Kubernetes, we use
the service description to find and access IoT-Cloud functions.
First, specify the metadata name of the service in the service
description to access the functions created in the clustered
node. On the other hand, when the function needs to be
accessed from outside the cluster, service discovery is enabled
by specifying the Kubernetes NodePort of the Service.
2) Service matchmaking: Each function for service

24

composition has a different resource requirement and the
location of the target resource to be executed. In a cloud-native
environment, finding and matching the resources is important
to accord with the most suitable requirements of the service
function among the various resources. In this process, we find
the most appropriate resources to distribute each of the
functions of the IoT-Cloud service. Data collecting function,
temporary storage called DataPond, and data relay functions
should be distributed to resources for IoT pattern. The function
corresponding to the IoT pattern preferentially selects and
matches a node having a resource capable of performing a
function such as a sensor or a camera. In addition, functions
such as DataLake, which is the final repository, and analysis
and visualization using the accumulated data, are distributed to
the nodes in the Cloud pattern. The best resource to consider in
service matchmaking is the node with the least amount of CPU
and memory usage. Then, the functions are then distributed to
the selected nodes in a Round Robin (RR).
3) Service placement: In this stage, The function placing is in
progress on selected resources through service matchmaking
procedures. If there is a required precedence function in the
service, it should be arranged in order. The service distribution
should be done after checking the node status of the previously
matched functions. At this time, the relation of the separated
functions must be specified in order to prevent a crash between
the functions. The IoT-Cloud service distinguishes IoT,
Gateway, and Cloud nodes through attached labels on the
cluster nodes, and distributes the functions by separating them
through the namespace in the description of the service to be
deployed.
4) Service stitching: In the service stitching procedure, the
distributed functions are linked according to the service
specification. This linkage enables to transmit and receive data
of mutually connected functions through the definition of the
connection relationship of functions. Services that need to be
linked have dependencies. If the previously distributed
functions are essential, the stitching must be done taking into
account the order. We should check again to make sure we can
re-distribute it in case of not deployed or does not work. When
the dependency of the service function is satisfied, we define
the connection relationship of the functions by specifying the
label and the selector in the service description of Kubernetes.
5) Service monitoring: When the service stitching is
completed, the service is operated. However, the service
composition should be completed through continuous
monitoring and service management. Service monitoring in a
cloud-native computing environment should be at the level of
modularized service functions. The service is maintained by
continuously checking the status of service functions and
taking action accordingly.

6) Service tuning: Maintaining continuous service is
necessary by taking action if the status of the service functions
is abnormal. Service tuning in a cloud-native computing
environment fixes services by re-distributing and re-stitching
modularized functions. In case of IoT-Cloud service, the
service tuning procedure is as follows. First, the functions
corresponding to each pattern are classified. Then, after

identifying the node where the problem occurred,
re-distribution and re-stitching proceed. This results in a
relocatable service composition.

IV. IMPLEMENTATION OF SELECTED CLOUD-NATIVE
IOT-CLOUD SERVICE

We developed specific IoT-Cloud services called Smart
Energy IoT-cloud service to apply the service composition
method based on IoT-Cloud pattern. Smart Energy IoT-Cloud
service collects temperature, the humidity of the server room,
and collects the outdoor weather status data. When the
collected data detects an abnormal phenomenon such as high
temperature, the server manager can visualize and monitor the
situation on the dashboard which can be accessed through a
web browser.

Fig. 3. Implemented Smart Energy IoT-Cloud Service
function diagram

First, the functions of Smart Energy IoT-Cloud service in
Fig. 3 are Python programs developed with a microservice
architecture. The implementation of data collecting function
utilizes the DHT22 sensor connected to Raspberry Pi 2.
Adafruit Python package was installed and utilized to measure
the temperature and humidity of the server room using
connected sensors. We also used the open weather map, an
open-source API, to collect weather data such as external
temperature, external humidity, and external weather data. We
also leveraged the open source framework EdgeX Foundry for
Edge computing to implement data relaying. The DataPond
function used MongoDB and created Collections for data
storage. The functions of EdgeX service connected other
EdgeX functions through the port inside the container. The
EdgeX Metadata function registers the IoT device and data
format. This allows EdgeX Coredata to transmit the data
collected by IoT to the DataPond based on the RESTful API.

We also implemented the relay function utilizing Kafka to
cope with large data efficiently collected from IoT devices. By
using Kafka, we can deliver the data to the Data storage in the
cloud reliably. In this implementation, Kafka was composed of
three brokers and one zookeeper. To transfer data from
DataPond to Kafka, we implemented an API server called
Communicator using Flask. When transferring data from the
IoT device to the EdgeX service, the API request is sent
simultaneously to transfer the data from the DataPond to the
Kafka broker. The final data repository for Smart Energy
IoT-Cloud service was built using InfluxDB, an open-source

25

time series database, and it was defined as DataLake. The data
stored in Kafka is transferred to the DataLake through Data
Sender as Kafka consumer. And the Smart Energy IoT-Cloud
service used the Influx database to store and monitor the status
of the service. We implemented chart and graph visualization
function using Chronograf visualization tool.

Data analysis function is implemented as the machine
learning function that considers energy efficiency. First,
machine learning training is performed by ingesting data of
Smart Energy IoT-Cloud service by using Kubeflow which is
an open source project for machine learning workflows on
Kubernetes. One record of the training data consists of the time
stamp, air conditioner current temperature, outdoor humidity,
outdoor temperature, server room temperature, server room
humidity, server temperature, weather. This data is extracted
as a CSV file for machine learning and delivered to the
machine learning training function. The machine learning
training server uses the received CSV file to perform learning
and generate a trained model. After the trained model is
deployed in an inference server, the inference server is ready to
offer the inferred temperature using the RESTful API.

Fig. 4. UI for Smart Energy IoT-Cloud Service monitoring

Fig. 4 shows the result of the visualization of the
implemented Smart Energy IoT-Cloud service. The graph on
the upper left of the user interface shows room temperature and
outdoor temperature, and the graph on the upper right
illustrates indoor humidity and outdoor humidity. This UI
enables monitoring of temperature and humidity and detailed
data accumulation results in the form of a table.

V. VALIDATION OF SELECTED IOT-CLOUD SERVICE

A. Target environment for service verification

Fig. 5. Local-site verification environment

Fig. 5 shows the local-site verification playground for

cloud-native infrastructure environment. IoT device consisting

of a Raspberry Pi, physical IoT-Gateway micro box, and two
logical VMs created in OpenStack Cloud. Each component is a
Kubernetes worker node and consists of one cluster, including
the Kubernetes master at the Orchestration Center. The
local-site playground utilizes the Weave network add-on for
networking of functions.

Fig. 6. Multi-site verification environment

Fig. 6 shows a multi-site verification playground with
multi-site distributed small-size boxes so called microboxes.
Unlike the local-site verification playground, multi-site
verification playground is provisioned through physical nodes
that are not logical VM nodes through the cloud. First, two
microboxes and one Raspberry Pi are working as the
Kubernetes worker nodes and P+O Center of SmartX
Playground Tower is used as the master node in GIST
(Gwangju Institute of Science and Technology) in Korea. In
addition, a multi-site verification playground was composed
through microboxes located in CHULA (Chulalongkorn
University) in Thailand, ITB (Institute Teknologi: Bandung) in
Indonesia, and UM (University of Malaya) in Malaysia. They
are Belonging to the OF@TEIN project for international
collaboration [6]. For the container networking between
distributed boxes, we use Calico network plugin on
Kubernetes.

B. Smart Energy IoT-Cloud Service composition
1) Service discovery: The functions of Smart energy service
are divided into internal discovery and external discovery
according to the access policy. Smart Energy service has
Kafka, DataLake and Visualization functions that service
discovery is done according to the internal access policy by
describing metadata of service. In contrast, the Communicator,
EdgeX service, DataPond, and ML functions, which are
external discovery approaches, utilize NodePort on
Kubernetes.
2) Service matchmaking: In Smart Energy Service,
Kubernetes deployment description is used to make requests
and limits on required resources by specifying them in the
YAML file. For example, the Communicator function matches
the cloud node resources with 200 Milli-cores CPU and 64
Milli-byte memory requirements. Through this process,
appropriate nodes can be matched with functions by
considering requirements.
3) Service placement: First, IoT, Edge, and Cloud are

26

assigned to nodes in the cluster, respectively through label. We
use the label to specify the Kubernetes NodeSelector to
distribute service functions to the right node. In smart energy
IoT-Cloud service, The IoT node has a data collecting function
and the Edge node has a data relay function. We also deploy
DataLake and visualization functions on Cloud nodes, and
distributed machine learning server and inference server. We
also proceed through the grouping of dependent functions. The
grouping is done through the namespace, which was intended
to prevent conflicts between the distributed functions.
4) Service stitching: The connection between the data
collection function and the relay function is defined using the
Kubernetes Selector in the YAML file. In addition, we use the
Kubernetes NodePort to forward ports from the actual ports to
the Kubernetes ports. For example, the inference server
function uses NodePort through service discovery to support
inference requests based on RESTful API. It sends six
consecutive datasets with five fields, such as external
temperature, external humidity, server room temperature,
server room humidity, and weather information, to the
connected port in JSON format.
5) Service monitoring: In the service monitoring phase, the
connection relation and the operation state of the distributed
functions are divided into nodes and namespaces. Deployment
proceeds to other nodes, and monitoring is discussed in more
detail in the next section, along with the results of using the
visualization tools.
6) Service tuning: In Smart Energy Services, service tuning
identifies problematic functions through monitoring,
re-distributes them, and re-stitching them. If there are
problems among the inter-connected functions, the functions
are re-distributed six times to the same node. If there are
persistent problems after 6 re-distributions, try again to another
node with the same label via NodeSelector.

C. Verification of Smart Energy IoT-Cloud service using
visualization tool

Finally, we check the status of the container-based service
through the service composition using the basic open-source
visualization tool. We confirm that Smart Energy IoT-Cloud
service using a cloud-native environment not only local-site
but also multi-site can operate well.

Fig. 7. Local-site workload layer visualization

Fig. 7 shows the state of the workload deployed in the local-
site verification playground. We can see container-based
workloads deployed in IoT, IoT-Gateway, and Cloud nodes.
We can also see the service functions completed through the

service composition process of the five steps are deployed to
the appropriate nodes and inter-connected and running.

Fig. 8. Multi-site workload layer visualization

Fig. 8 shows the container-based workload status deployed
in a multi-site verification playground. The left side
demonstrates the connection status of the nodes spread on the
mult-site, and the right side shows the status of the workloads
distributed on the nodes. In a multi-site verification
playground where there is no IoT-Gateway node, the
IoT-Gateway functions spread to the smartx-microbox-gist-1
node. And the microbox nodes spread to other sites are used as
a cloud. Also, it illustrates that the functions of -Cloud pattern
are deployed and running on the microbox which is spread in
UM, ITB, and CHULA. The functions of different patterns are
deployed in the isolated namespace as pod units and operate
normally.

VI. CONCLUSION
In this paper, we propose a relocatable service composition

based on microservice architecture according to IoT-Cloud
pattern. In addition, specific IoT-Cloud service that we
implement is applied to two different cloud-native computing
environments and verify the feasibility of the proposed
approach by using visualization tools. Thus, we confirmed that
the cloud-native service has excellent portability. In
conclusion, like the approach proposed in this paper, we can
develop services through service composition in response to
future-oriented and practical cloud-native services.

REFERENCES
[1] Madakam, Somayya, R. Ramaswamy, and Siddharth Tripathi. (2015,

Jan.). Internet of Things (IoT): A literature review. Journal of
Computer and Communications. 3(5), pp. 164–164.

[2] Tang, Bo, Ravi Sandhu, and Qi Li. (2015, Nov.). Multi‐tenancy
authorization models for collaborative cloud services. Concurrency
and Computation: Practice and Experience. 27(11), pp.
2851–2868.

[3] H. Mansoo, L.Kwanwoo, Y. Seonghye. (2014, Feb.). Software
Development Methodology for SaaS Cloud Service. The Institute
of Internet, Broadcasting and Communication (IIBC). 14(1), pp.
61–67.

[4] Balalaie, Armin, Abbas Heydarnoori, and Pooyan Jamshidi, “Migrating
to cloud-native architectures using microservices: an experience
report,” European Conference on Service-Oriented and Cloud
Computing, 2015, pp. 201-215.

[5] Cloud Native Computing Foundation (CNCF) [Online].
Available: https://www.cncf.io

[6] Kim, J, et al. “OF@ TEIN: An OpenFlow-enabled SDN testbed over
international SmartX Rack sites,” Proceedings of the Asia-Pacific
Advanced Network 36, 2013, pp. 17-22.

27

