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Abstract— The Distributed Reflection Denial of Service 

(DRDoS) attack represents a critical security threat. As such 

attacks generate unidirectional traffic, it is difficult for the 

targets to protect themselves. To mitigate against such attacks, 

defense mechanisms must be installed on backbone networks, to 

detect and block the attack traffic before it reaches the final 

destination. Conventional approaches monitor the traffic volume, 

and assume that an attack is in progress if the observed volume 

exceeds a certain threshold. However, this simple approach 

allows the attacker to evade detection by adjusting the traffic 

volume. In this study, we proposed a novel approach that 

accurately detects DRDoS attacks using the time intervals 

between the arriving packets. We applied a K-means clustering 

algorithm to identify the appropriate threshold value. The 

proposed algorithm was implemented at a real data center, and 

the results demonstrated the high level of accuracy that our 

approach can achieve. 

 
Index Terms—DDoS, DRDoS, NTP, Time interval, K-means 

 

I. INTRODUCTION 

Distributed Denial of Service (DDoS) attacks pose a severe 

security threat. Distributed Reflection Denial of Service 

(DRDoS) is a sophisticated form of DDoS that makes use of 

open servers. There are four prominent types of DRDoS attack, 

using the protocols CharGen, DNS, NTP, and SSDP [1]. When 

these User Datagram Protocol (UDP)-based attacks are 

generated by DDoS as-a-service, they are known as Booters 

[2]. 

Several mitigation techniques are available. Li et al. report 

that cloud services may be used as botnets [3], allowing 

attackers to expand the scale of the attack at a low cost, and 

propose a defense called srcTrace. Arbor Networks offers a 

Peak Flow SP for service providers that monitors huge 
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amounts of backbone traffic to detect malicious packets [4]. 

These approaches assume that malicious packets will have a 

large traffic volume. In reality, however, some attacks may not 

be easy to detect by measuring traffic volumes. For example, 

the packet size of an HTTP GET request is small, while the 

response from the Web server is lengthy [5]. The UDP query 

packets that invoke DRDoS attacks are also small. 

In this study, we proposed a novel approach to detecting 

DRDoS attacks that use small packets. The key is the leverage 

of time interval analysis. The proposed method compares the 

time intervals between packets. After removing outliers, it then 

calculates a threshold value and applies a K-means clustering 

algorithm to the time intervals. 

The rest of this paper is organized as follows: Section II 

describes the mechanism and introduces the terminology of 

DDoS and DRDoS attacks. Section III discusses those existing 

methods that are relevant to the current study. In Section IV, 

we set out our goals. The proposed method is described in 

Section V. Section VI reports on an evaluation of the novel 

method, carried out in a data center. Some further issues are 

explored in Section VII, and our conclusions are presented in 

Section VII. 

II. DDOS AND DRDOS ATTACKS 

In Q4 of 2016, DRDoS attacks occurred more frequently 

than SYN Flood attacks. Table I shows examples of DRDoS 

attacks, which are characterized by their large traffic volume. 

In 2014, NTP amplification attacks attracted attention because 

of their catastrophic traffic volumes while using normal NTP 

servers, which are open to the Internet. 

Figure 1 shows the mechanism of a DRDoS attack. These 

use UDP packets such as CharGen, DNS, NTP, or SSDP. Such 

protocols have longer size responses, compared with the short 
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TABLE I 
LARGE VOLUME DRDOS ATTACK INCIDENTS. 

 

Date Protocol 
Traffic rate 

[Gbps] 

Mar. 2013 DNS 300 
May 2013 DNS 167 

Feb. 2014 NTP 400 

Aug. 2015 RPC 100 
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queries. The packet size is amplified by the reflector. For 

example, the monlist command of the NTP protocol replies to a 

query with the communication history for, at most, 600 devices. 

This offers a convenient tool for attackers who prefer 

packet-size amplification. Servers that reply to queries from 

the Internet are called reflectors. 

 

 
Fig. 1. Mechanism of DRDoS attacks. 

 

The attacker sends malicious queries to these reflectors 

while spoofing the source IP address as that of a victim. The 

reflector then unwittingly returns large-scale responses to that 

address. 

A large number of reflectors exist worldwide, most of which 

are improperly configured or use a default setting. Several 

organizations attempt to identify vulnerable servers on the 

Internet, then notify their administrators [10]. 

III. RELATED WORKS 

A DRDoS attack works in two ways. A huge number of 

packets may be generated, occupying the entire bandwidth of 

certain communication links. This can be detected by 

measuring the traffic volumes across the links. This detection 

method is implemented using an IDS (Intrusion Detection 

System), in which an alarm is triggered if a traffic threshold is 

exceeded. 

A second DRDoS attack type uses a small query packet that 

is answered by a longer reply packet. If the number of query 

packets is large, the computational resources of a server, 

including memory, CPU, or process tables, may be 

overwhelmed. This form of attack is difficult to detect by 

measuring traffic volumes. 

Our earlier work, reported in [11], analyzed the time 

intervals between DRDoS packets, and covered the CharGen, 

DNS, NTP, and SSDP protocols. These time intervals were 

used to characterize each attack. The current study extended 

this approach by applying a clustering method to discriminate 

between DRDoS attacks and normal communications. 

Hayashi et al. proposed a time interval analysis-based method 

for mitigating HTTP GET request flood attacks on backbone 

networks [12]. Their approach used two threshold parameters, 

𝑇𝑡ℎ and 𝐷𝑡ℎ. If two packets arrive at the server within a time 

𝑇𝑡ℎ, they are assumed to be successive (see Figure 2). If the 

series of successive packets has a longer duration than 𝐷𝑡ℎ, it is 

treated as suspicious. However, no specific values for 𝑇𝑡ℎ and 

𝐷𝑡ℎ were given. In this study, a novel method was proposed for 

determining the values of 𝑇𝑡ℎ and 𝐷𝑡ℎ. The approach was then 

implemented in a data center to detect DRDoS attacks and 

assess its performance.  

 

 
Fig. 2. Packets judged to be successive.  
 

Li et al. [3] used the entropy of a network flow to detect an 

attacking flow. This assumes that the transmission rate of an 

attack flow will be larger than that of a legitimate flow. The 

current study did not assume this. Instead, the analysis was 

based only on the interval between the arrival times of packets. 

IV. PROBLEM TO BE SOLVED 

A. Environment of a Data Center 

The configuration of the data center implementation is 

shown as Figure 3. This center has its own AS number. The 

edge router forwards packets between the outside AS and the 

inside AS. 

 
Fig. 3. Configuration of the observation point. 

 

The packets were observed at a certain sampling rate by the 

edge router. Before data analysis, the source IP and destination 

IP addresses were anonymized using a hash algorithm, to 

protect the privacy of the information. Only the headers of the 

packets were observed. Observations were conducted over the 

period from November 9, 2016 to December 11, 2016. 

The packets were represented in 5-tuple flow format (src_IP, 

dst_IP, src_port, dst_port, protocol). Sampling was conducted 

randomly, at a rate of ten flows per hour. The key data were the 

packet lengths and the intervals between packet arrivals. Flows 

whose UDP source ports were numbered 17, 19, 53, 111, 123, 

137, 161, 1900, 3000, and 27960 were picked up, forming the 

UDP Port list. These ports are widely used in DRDoS attacks. 

We also picked up flows through TCP source port 80, as these 

are sent by Web servers. Potentially abnormal flows were 

identified by combining the source port number and the 

destination port number, as shown in Table II. 



 

Table III gives a breakdown of the observed flows used in 

the study. While UDP flows were also observed, these 

non-NTP packets were rare. Our analysis therefore focused on 

the NTP flows. 

B. Preliminary Investigation 

Since our analysis is based on the time intervals between 

incoming packets in a flow, the distribution of time intervals is 

important. Figure 4 shows the time intervals, organized by the 

range shown in Table IV. Significant differences were 

observed. Note that the Y-axis of Figure 4 uses a logarithmic 

scale, and each value differs by at least one order of magnitude 

from the next. The wide range of time intervals can be seen, 

and at least five groups could be distinguished. However, it 

was not clear whether this division by digits was appropriate. 

We therefore applied a K-means algorithm to the packet 

intervals to form more robust clusters when n equaled five. 

 
Fig. 4. Packet intervals grouped by five conditions. 

C. Identifying a Suspicious Flow 

The goal of the study was to propose a new method for 

discriminating between abnormal and normal flows. The 

output was therefore labeled either Suspicious or 

Non-suspicious. The possible outcomes are shown in Table V. 

Our proposed method identifies a flow as suspicious if the 

time between successive packets in the flow exceeds a certain 

threshold. We discuss the determination of this value in the 

following section. 

The proposed method does not use the port numbers to 

judge whether a sequence of packets is suspicious, because 

new protocols or port numbers may be used at some future date, 

allowing attacks to resume. Instead, our method uses only the 

time interval between arriving packets. 

V. PROPOSED METHOD 

The proposed method has three steps, as shown in Figure 5. In 

step one, outlier values are removed from each flow. In step 

two, the packet intervals in each flow are classified. In step 

three, the threshold value indicating a suspicious flow is 

derived. 

 
Fig. 5. Flow Chart of the proposed method. 

 

A. STEP 1: Removal of outliers 

Outliers may exist in a flow that contains a pause. For 

example, an attacker may intentionally insert a long pause 

between certain packets to evade detection. Such outliers 

would constitute noise when calculating the threshold values 

TABLE II 

DEFINITION OF ABNORMAL FLOWS BY PORT NUMBERS. 

 

Src            Dst 80 UDP Port List Over 49151 

80  Abnormal Normal 

UDP Port List Abnormal  Normal 

 

TABLE III 

BREAKDOWN OF OBSERVED FLOWS. 
 

             Normal Abnormal Total 

NTP flow 3,640 14 3,654 

HTTP flow 2,311 0 2,311 

 

TABLE V 

POSSIBLE OUTCOMES. 

 

 

 

Suggest 

Suspicious 

Suggest 

Non-suspicious 

Abnormal 

Flow 

True Positive  

(TP) 

False Negative  

(FN) 

Normal 

Flow 

False Positive  

(FP) 

True Negative  

(TN) 

 

TABLE IV 
DESCRIPTION OF GROUPS. 

 

Group 

Number 
Conditions 

1 i < 0.1𝑠  

2 0.1s ≤ i < 1𝑠 

3 1s ≤ i < 10𝑠 

4 10s ≤ i < 100𝑠 

5 100s ≤ i 

 



 

in step two. Any outliers were therefore removed, using the 

ChangeFinder algorithm [14] shown in Figure 6. 

 

 
Fig. 6. Two-phase learning process of the ChangeFinder algorithm. 

 

ChangeFinder applies two phase learning. First, input data 

are analyzed using the Autoregressive (AR) model, then the 

sequentially discounting AR model (SDAR) learning is 

applied. The AR model is given by Equation (1) where 𝑦𝑡  is 

the data on the packet intervals, 𝑎𝑖 is the AR coefficient, o is 

the order, and w is white noise, which follows a distribution 

whose average is zero. ChangeFinder learns the probability 

density 𝑃𝑡, of the packet intervals x𝑡 by applying the SDAR 

algorithm, then calculates the outlier scores m( 𝑥𝑡 ) using 

Equation (2). 

 m(𝑥𝑡)  =  −log 𝑝𝑡−1(𝑥𝑡|𝑥𝑡−1) (2) 

Here, 𝑝𝑡−1(𝑥𝑡|𝑥𝑡−1) is the conditional density function of 

𝑥𝑡 against the stochastic process p, and 𝑥𝑡−1 is the series (𝑥1, 

𝑥2 , … 𝑥𝑡−1 ). The scores indicate the degree of separation 

between the values predicted by the AR model and x𝑡. The AR 

model mainly assumes stationary data, so an important feature 

of ChangeFinder is its ability to handle non-stationary data by 

applying the SDAR algorithm. Figure 7 shows how 

ChangeFinder detects outliers in the data. These outlier scores 

are normalized regardless of the data range. In this study, we 

set a threshold value of 50 for the detection of outliers. 

 

 
 

Fig. 7. Packet intervals and outlier scores. 

 

B. STEP 2: Clustering by K-means 

The K-means clustering algorithm [16] was used to 

discriminate between successive packet sequences from the 

terminated packet sequences. The two threshold values, 𝑇𝑡ℎ 

and 𝐷𝑡ℎ, were determined in Step 3. The K-means algorithm 

attempts to minimize the value of Equation (3):  

 

 

Here, 𝐶𝑖  (1 ≤ 𝑖 ≤ 𝑛) represents a cluster, n is the number of 

clusters, x is an element in the cluster, and µ𝑖 is the centroid of 

the cluster. The K-means algorithm selects an appropriate µ𝑖 

for each cluster, in order to minimize the value of Equation (3). 

We used the K-means algorithm in the scikit-learn package 

[18], and applied it to each normal and abnormal flow. 

Each cluster was ranked in ascending order, based on its 

maximum interval. The values Q, R, and U in Table VI were 

then calculated for each cluster, and the value of U used to 

compare the clusters. When calculating Q, we rounded off the 

packet interval time to two decimal places. 

The cluster whose U value (=Q×R) is largest is likely to 

include a large number of intervals between successive packets. 

Li [3] noted an apparent difference between short packet 

intervals and long ones. Our observations confirmed this. 

 
Fig. 8. Example distribution of packet intervals in different clusters. 

 

Within a flow there are five clusters, each of which is a set of 

packet intervals. Figure 8 shows a distribution graph (CDF) of 

the packet intervals, in which gradient lines connect the points 

at CDF values of 0.1 and 0.9. In the example, there are five 

distribution graphs of packet intervals for each cluster, with 

different gradients. Combining all the flows and plotting the 

CDFs and gradients produced Figure 9, in which the 

distribution and gradient of merged clusters 2, 3, 4, and 5 are 

also shown. 

 

 

  
𝑦𝑡 = ∑ 𝑎𝑖𝑦𝑡−𝑖 + 𝑤

𝑜

𝑖=1

 
 

(1) 

 

 

∑ ∑ ||x − µ𝑖||2

𝑥∈𝐶𝑖

𝑛

𝑖=1

 

 

(3) 

TABLE VI 

DESCRIPTION OF VALUES FOR DETECTION. 
 

Values Description 

Q Maximum value of the number of duplicated 

packet intervals in the cluster 
R Total number of packet intervals in the cluster 

U Q × R 

 



 

 
Fig. 9. Distribution of gradients of all flows. 

 

The gradient line is steep if the distribution of packet 

intervals is concentrated. As shown in Figure 9, the CDF of 

cluster 1 for both normal and suspicious flows was larger than 

the CDF of the merged clusters 2, 3, 4, and 5. This suggested 

that shorter packet intervals were concentrated. However, 

longer packet intervals were also present. Cluster 1 was 

therefore assumed to include a large number of packet 

intervals. However, as it was not clear that the same result 

could be seen in each flow, the value Q was used. 

Because short intervals were more numerous than large 

intervals, we adopted the value R, as can be seen from Figure 4. 

This showed that the majority of intervals were small. 

As noted above, successive intervals should be short. We 

named the cluster whose U was largest 𝐶𝑠𝑢𝑐𝑐, and the cluster 

next to 𝐶𝑠𝑢𝑐𝑐 , and whose maximum interval was larger, 𝐶𝑑 . 
This is shown in Figure 10. Most of the packet intervals in 𝐶𝑑 

were not successive. 

 

 
 Fig. 10. Examples of clusters and packet intervals. 

 
In Figure 10, interval 𝑖𝐸 is within 𝐶𝑠𝑢𝑐𝑐. Because 𝐶𝑠𝑢𝑐𝑐 has 

the largest U, 𝑖𝐸 is a successive interval, whereas 𝑖𝐹 is within 

𝐶𝑑, and it is non-successive. 

 

C. STEP 3: Determining the values 

To detect suspicious flows, the optimal threshold Dth must 

be found. 

1) Longest interval time 𝑇𝑡ℎ for successive packets 

We set 𝑇𝑡ℎ to the maximum packet interval time in cluster 

𝐶𝑠𝑢𝑐𝑐. This threshold value was used in (2). 

2) Formation of successive packet sequences 

For each flow, we collected all the interval times from 

cluster 1 to 𝐶𝑠𝑢𝑐𝑐 . For each flow, we formed a successive 

sequence of packets that fell within the maximum interval time 

𝑇𝑡ℎin (1). We then calculated the total duration of a sequence 

as the sum of the successive arrival times. For a normal flow, 

we used all successive sequences. For an abnormal flow, we 

used the maximum successive arrival time. 

3) Fix 𝐷𝑡ℎ 

Finally, we calculated the distribution of successive 

duration times of the normal and abnormal flows, represented 

in the CDFs. The optimal time 𝐷𝑡ℎ is given when Equation (4) 

takes the maximum value. 

 𝐶𝐷𝐹(𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒)

− 𝐶𝐷𝐹(𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒) 

(4) 

The proposed method uses the derived value of 𝐷𝑡ℎ as the 

threshold for detecting a suspicious flow. If the time between 

successive packets equals or exceeds this threshold, an 

abnormal flow is suspected. 

VI. EVALUATION 

A. Threshold Value: 𝐷𝑡ℎ 

 To evaluate our method, the proposed method was applied 

to the equipment in a data center, as shown in Figure 3. The 

algorithm produced a threshold value of 𝐷𝑡ℎ  =  4.0 sec. 

B. Performance of the proposed method 

Figure 11 shows the results. These follow the ground truth 

of flows defined by port numbers from Table II, in which an 

abnormal flow has the source port number 80 (HTTP) and a 

destination port number 123 (NTP) or a source port number 

123 (NTP) and the destination port number 80 (HTTP). Table 

VII shows the outcomes, where S is the time between the 

arrival of successive packets in the real traffic. The True 

Positive rate (TP) was 100%, and the False Positive rate (FP), 

while not zero, was low at 5%. For the analyzed packets, most 

flows were normal. If a high (FP) were found, extra resources 

would be needed to investigate those suspicious flows that turn 

out to be normal.  

 
Fig. 11. Distribution of duration times. 



 

 

VII. DISCUSSION 

A.  Effect of outlier removal 

When the outlier values were not removed, different results 

were produced. Using the same threshold value of 𝐷𝑡ℎ = 4.0, 

the FP rate rose to 14.2%. Figure 12 shows the results without 

removal of the outliers. It can be seen that the performance was 

inferior to that reported in Figure 12, demonstrating the 

effectiveness of outlier removal. 

 

 
Fig. 12. Distribution of interval times. 

  
Fig. 13. Distribution of packet sizes across all sampled flows. 

 

B. Observed packet sizes 

In the Introduction, we noted that the UDP query packets 

used to invoke DRDoS attacks are small. Figure 13 shows the 

distribution of packet sizes across all sampled flows in the data 

center. This demonstrates that there exists no threshold value 

that allows normal HTTP packets to be distinguished from 

NTP attacks based on packet size alone. 

VIII. CONCLUSIONS 

This study proposed a practical method for detecting 

DRDoS attacks by analyzing the time intervals between the 

arrival timestamps of packets. Threshold values were 

determined after outlier removal, using a K-means clustering 

algorithm. 

An evaluation experiment demonstrated that our proposed 

method is superior to the conventional DRDoS detection 

method, based on measurement of traffic volume. 

This study addressed only the NTP protocol. In future work, 

we will investigate DRDoS attacks using other protocols, 

including CharGen, DNS, and SSDP. 
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