

Proceedings of the APAN – Research Workshop 2017
ISBN 978-4-9905448-7-4

Abstract — Recently high-performance computing (HPC) and

BigData workloads are increasingly running over
cloud-leveraged shared resources, meanwhile traditionally
dedicated clusters have been configured only for specific
workloads. That is, in order to improve resource utilization
efficiency, shared resource clusters are required to support both
HPC and BigData workloads. Thus, in this paper, we discuss
about a prototyping effort to enable workload-based resource
coordination for cloud-leveraged shared HPC/BigData cluster.
By taking OpenStack cloud-leveraged shared cluster as an
example, we demonstrate the possibility of workload-based
bare-metal cluster reconfiguration with interchangeable cluster
provisioning and associated monitoring support.

Index Terms — HPC/HTC workload, BigData workload,
cloud-based shared cluster, dynamic resource configuration, and
bare-metal cluster provisioning.

I. INTRODUCTION
OWDAYS we can easily realize diversified

applications at a low cost owing to the emerging
cloud-first computing paradigm that leverages flexible
resource pooling. In particular, high-performance computing
(HPC) and BigData workloads are increasingly spreading over
cloud-leveraged shared resource infrastructure to enjoy its
scaling and reliability benefits. Thus it is important to leverage
the resource pooling power of hyper-scale cloud-based shared
clusters, while balancing the dedicated engineering for HPC
MPI (message passing interface) parallel computing workload
and/or data-intensive BigData computing/storage workload.

This work is supported in part by a collaborative research project of PLSI
supercomputing infrastructure service and application, funded by Korea
Institute of Science & Technology Information (KISTI). Also, this work is
supported in part by Institute for Information & communications Technology
Promotion (IITP) grant funded by the Korea government (MSIT) (No.
R7117-16-0218, Development of automated SaaS compatibility techniques
over hybrid/multisite clouds).

Namgon Lucas Kim and JongWon Kim are with the School of Electrical
Engineering and Computer Science, Gwangju Institute of Science and
Technology (GIST), Gwangju, Korea (e-mail: {namgon, jongwon}@
nm.gist.ac.kr).

However, traditionally, dedicated clusters for HPC and

BigData parallel workloads have been separately configured
only for chosen workload and thus most of the dedicated
clusters could not flexibly match and utilize the full capacity of
cluster resources. To improve the efficiency of resource
utilization, various types of shared clusters have been proposed
[4-9]. Besides, the growing popularity of x86 hardware and
Linux operating system is accelerating the increasing adoption
toward hyper-converged (i.e., compute/storage/networking
integrated) cluster nodes (denoted as boxes in this paper) [1].
Thus, it is becoming cheaper and easier to flexibly support
both HPC and BigData workloads on a single cloud-leveraged
cluster of hyper-converged boxes, which are to be coordinated
with composable resource management.

Thus, in this paper, we discuss about a prototyping effort to
enable workload-based resource coordination for
cloud-leveraged shared HPC/BigData cluster. The
workload-based resource coordination (and thus sharing) is
coordinated by an entity called as composable resource
management, where software-based resource management for
the required dynamic coordination is prototyped with resource
management APIs. More specifically, as depicted in Fig. 1, we
enable workload-based cluster reconfiguration over
hyper-converged SmartX Boxes [2], clustered with
open-source OpenStack cloud infrastructure software [3]. That
is, workload-based cluster resource coordination is designed

Prototyping Workload-based
Resource Coordination for Cloud-leveraged

HPC/BigData Cluster Sharing
Namgon Lucas Kim and JongWon Kim

N

Fig. 1. Workload-based cluster resource configuration: Concept.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Proceedings of the Asia-Pacific Advanced Network

https://core.ac.uk/display/229875982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and prototyped over the shared resource pools of OpenStack
cloud-leveraged cluster. Especially flexible and automated
resource coordination is realized by leveraging bare-metal
OpenStack cloud provisioning. By taking OpenStack
cloud-leveraged shared cluster as an example, we demonstrate
the possibility of workload-based bare-metal cluster
reconfiguration with interchangeable cluster provisioning and
associated monitoring support.

II. CLOUD-LEVERAGED CLUSTER SHARING FOR
HPC/BIGDATA WORKLOADS

Based on the coordination power of composable resource
management, the cloud-leveraged cluster sharing should serve
multiple heterogeneous workloads in general. If we configure
a dedicated cluster over a pay-per-use (mostly in VM unit)
public cloud, it can become easily inefficient when the
demanded workload does not match with the configured
resources. Thus, in order to efficiently manage and operate
cloud-leveraged shared cluster, the composable resource
management should manage shared resource pools based on
both workload-aware resource coordination (i.e.,
reconfiguration) and scheduling policy.

As discussed above, the composable resource management
for cloud-leveraged shared cluster usually includes workload
management to take complex and difficult scheduling logic in
charge. The shared cluster needs to flexibly manage the
resource allocation for workloads by utilizing resource
management APIs. Moreover, there are several early studies to
apply one shared cluster for heterogeneous workloads such as
HPC and BigData. First, Hadoop on HPC has ported Apache
Hadoop as a BigData processing framework to execute on an
HPC cluster [4]. Also, Univa supports API-based Apache
Mesos resource scheduling [5] through universal resource
broker (URB) [6] as a workload-aware tool for
grid-computing-style resource management. That is,
scheduling-based resource coordination is supported with
Mesos software frameworks without modifying Univa Grid
Engine. YARN-MPI [7] has modified YARN as a resource
management tool for Apache Hadoop cluster that enables the
running of MPI-based parallel computing. Note however that
most of these proposals require specialized implementation to
support other additional (i.e., not designed initially)
workloads.

Moreover, we may selectively choose the type of node (i.e.,
bare-metal or virtual machine) when configuring
cloud-leveraged shared clusters. A bare-metal cluster can
exhibit more computing power than a virtual machine cluster
[8]. For example, we can provision cloud-leveraged HPC
cluster with a highlighted focus on bare-metal clustering for
HPC workloads [9]. Similarly, BigData clusters can be
enabled over workload-customized provisioning of bare-metal
resource boxes with iSCSI-based storage to improve its overall
performance [10]. This work is indeed quite close to our work,
except that it only considers BigData cluster with iSCSI-based
storage and PXE+TFTP capability.

In summary, first, without any main update of related
software, the resource coordination module in the proposed

prototype should execute dynamic provisioning running over
reconfigurable HPC/BigData cluster. Also, we could utilize
more flexible resource management including cloud-leveraged
bare-metal provisioning. Finally, we adopt iPXE+HTTP to
deploy bare-metal images to reduce the provisioning time for
resource coordination.

III. PROTOTYPING WORKLOAD-BASED RESOURCE
COORDINATION

A. Cloud-leveraged Cluster and Resource Coordination
As depicted in Fig. 1, the proposed cloud-leveraged shared

cluster is built with hyper-converged bare-metal nodes. In
order to flexibly install and operate shared cluster over the
OpenStack cloud environment, we leverage OpenStack Ironic
bare-metal node provisioning to prepare the targeted shared
cluster nodes (i.e., bare-metal instances) with bare-metal
images including related libraries for a targeted cluster. Thus,
the proposed workload-based resource coordination should be
able to support bear-metal image generation/management and
consistent cluster configuration management, as part of
automated cluster provisioning. The automated provisioning is
critical since we need to frequently go through so-called
CRUD (create, read, update, and delete) of shared cluster
nodes to match with time-dependent workload variations. That
is, we need to define the life-cycle (tied with CRUD capability)
of desired resource coordination, and then design and
implement automated cluster provisioning (with
reconfiguration). Also, depending on operation policy and
resource status of whole shared cluster, the required amount of
resource slices is chosen from available resource pools. The
selected resource slices allocated and then configured to
execute the demanded workloads under the coordination of
composable resource management. In addition, the
composable resource management needs to be periodically
updated about the operation status data of shared cluster so that
it can continuously monitor resources and workloads.

This kind of required provisioning for cloud-leveraged
shared cluster can be divided into following two stages.

First, we prepare well-arranged bare-metal images and
execute the node creation by downloading (from public or
private repository) and installing them into the selected
bare-metal nodes from OpenStack cloud resource pool. Note
that all bare-metal images should be ready to communicate
with the proposed resource coordination via proper agents
pre-installed.

Second, when the shared cluster is ready to start the
operation, we need to continuously apply coordination actions
to sustain the operation of shared cluster. The key feature of
required resource coordination is dynamic cluster
reconfiguration supported by composable resource
management. Note that in order to match diverse workload
demand, the status of resources and workloads should be
continuously monitored. Also resource coordination need to
cover the required orchestration of shared cluster operation.
For this, eventually, resource management APIs are to be
implemented to support various reconfiguration of shared

cluster operation. In addition, this kind of resource
coordination can be executed only if we have sufficient
access/control authority (i.e., privilege) on the underlying
shared cluster nodes and its operation. Thus, for each cluster,
we typically arrange cluster compute/agent nodes and
coordinate them via a cluster master node. Note that, if the
master node cannot access/control compute/agent nodes, we
may directly control troubled nodes.

To execute workload on the shared cluster, reconfiguration
request file is needed to setup workload type (HPC, BigData,
mixed), scheduling type, maximum wait time / min-max
requirements for resource, and cluster scaling. Meanwhile the
shared cluster operator prepares operation policy to define the
number of simultaneous users, maximum amount of resource
per user, maximum wait time, and others. Thus, it is required
to verify the requested reconfiguration files for its
completeness as well as operational conflicts. For example, if
some reconfiguration parameters are not reasonable, we need
to reject (or change to default) with warning messages.

B. Prototype Implementation
We implement a prototype of coordination of composable

resource management using OpenStack-based cloud resource
pool. Fig. 2 shows an overview of prototype implementation
including building blocks and associated procedures. As
explained already, we adopt OpenStack Ironic [11] and use
bare-metal node images for HPC cluster with Slurm and
BigData cluster with Mesos, respectively. Also, the Mesos
agent node image is pre-installed with Mesos and related
packages, following OpenStack bare-metal image format.
Similarly, the Slurm compute node image is prepared by
utilizing OpenHPC [12] packages and configured for efficient
HPC cluster operation. One thing to mention is that both
OpenStack and OpenHPC packages can support bare-metal

node provisioning. Thus, in this work, we only integrate
cluster management (i.e., reconfiguration related) features into
that Slurm compute image. Slurm requires synchronization
files for authenticated cluster operation and the consistency of
sync files across cluster nodes is important. Finally, all
bare-metal images are created by utilizing open-source
Diskimage-builder [13].

Each cluster node is provisioned by the cooperation of
bare-metal node provisioning and composable resource
management. Also, since we utilize OpenStack CLI to execute
required OpenStack commands, we internally embed
OpenStack client for OpenStack CLI. Note that all OpenStack
bare-metal images have cloud-init software and user agent
installed so that it can support the centralized control of all
cluster nodes. Also the operation policy is pre-installed before
creating and running the shared cluster. Finally, at this stage of
prototype implementation, we fix both Mesos and Slurm
masters on the desired node and run independently. Also, we
execute both direct and indirect monitoring every 10 minutes.

IV. EVALUATIONS ON PROTOTYPE IMPLEMENTATION
We verify the feasibility of proposed workload-based

resource coordination by prototyping it over an OpenStack
cloud-leveraged shared cluster. Table 1 shows the hardware
specification of the shared cluster with three nodes, which is
decomposed into a small-size resource pool of 1 master and 2
compute nodes, respectively. All these nodes are installed with
CentOS 7.3, OpenStack Ocata, Slurm 16.05, and Mesos 1.1.0.
In addition, OpenStack controller node (Intel Xeon X3330 and
8GB DDR2 RAM) is separately setup. Also all cluster nodes
can be power controlled by IPMI (Intelligent Platform
Management Interface).

Also, for benchmarking workloads, we use Intel MPI
Benchmark (IMB) [14] for HPC workload and Spark-Perf [15]
for BigData workload, respectively. For HPC workload,
IMB-NBC is selected as the test case and it is executed with
default parameters such as 10~1000 iterations, 0B ~ 4MB
message size, and 2/4/8 processes. Note that, since each
compute node has 12 logical cores, we do not apply Hyper
Threading for MPI workload to avoid potential performance
degradation. In addition, K-Means test case is selected for
BigData workload with Scale_Factor 1, which kind of matches
20 instance workload of Amazon AWS EC2 M1.xlarge.

A. Evaluation: Workload-based Cluster Coordination

BM Images
Generation/Management

Mesos Agent node

Slurm Compute node

Monitoring

Resource

Workload

Cluster Configuration

Operation Policy

Reconfiguration

BM Cluster Provisioning

Resource Management

OpenStack Client

(a) Building blocks

Request

Cluster Configuration

Same cluster
with already
Provisioned?

Cluster Provisioning

Applying Operation
Policy (Reconfiguration)

Yes

No

Running and Monitoring
Workload

(b) Overall procedure

Fig. 2. Prototype implementation of resource coordination.

TABLE I
SHARED CLUSTER HARDWARE SPECIFICATION (2 COMPUTE NODES)

 Specification
CPU 12 cores, 24 threads (Intel Xeon D-1528@2.3Ghz)
RAM DDR4 64GB (PC4-17000)

Storage 400 GB SSD (Intel S3500)
Network 2-port 10GbE (EA), 2-port 1Gbe (EA)

 First, we check the provisioning performance of bare-metal
cluster nodes by adopting OpenStack Ironic bare-metal
provisioning tool with pxe_ipmitool driver over 1Gbps
network inter-connection: single node and multiple nodes. Fig.
3 shows the total elapsed time comparison for BigData cluster
provisioning for different provisioning options. Note that, in
this case, the bare-metal image size of BigData cluster is
bigger than that of HPC cluster and thus the overall
provisioning takes longer time. Also with OpenStack Ironic
bare-metal node provisioning, we need two types of images:
deploy image and user image. The deploy image includes
OpenStack IPA (Ironic Python Agent) that prepares the
bare-metal node provisioning itself. This deploy image is
identical with both HPC and BigData cluster provisioning and
consists mostly of Kernel (33MB) and Ramdisk (334MB). On
the other hand, separate user images are selectively used for
workload-based cluster configuration, which is decomposed
into three partitions for Kernel (5.2MB), Ramdisk (38MB),
and User image (714MB).

We represent the overall cluster node provisioning time by

separating time associated with OpenStack Ironic bare-metal
node provision and node boot. The time for OpenStack Ironic
bare-metal provision is measured by OpenStack Nova
compute service, which includes times consumed for
deploying images and node boot/reboot. In comparison, node
boot time indicates the time consumed for final booting after
the completion of OpenStack Ironic provisioning process,
which cannot be measured by OpenStack Nova. Fig. 4 shows
the detailed time comparison of cluster node boot according to
several booting options. The firmware option means that we
load UEFI firmware before loading OS boot loader. Also, if we
do not use local_boot option, boot loader consumes longer
time since it needs to receive images from the controller node.
User space option commonly takes longer and DHCP-interface
option needs longest boot time around 30 secs. Finally, as
shown in Fig. 3 and Fig. 4, we can compare the overall
reconfiguration time according to the choices on bear-metal
image delivery and local_boot option (about writing user
images to local storage or not). The comparison result is
showing that HTTP is better than TFTP in general, and
local_boot option can reduce cluster node boot time.

B. Evaluation: Workload Execution and Monitoring
Now we verify workload execution performance by

monitoring the operation (i.e., running) status of workload
execution. We independently perform each experiment on the
same shared cluster, which is provisioned beforehand. Fig. 5
shows the resource usage patterns to monitor several stages
(e.g., before/after and during) of workload execution. We
insert 1-min idle time between experiments and reserve key
resources (CPU and RAM) for monitoring to avoid
unnecessary resource contention.

From Fig, 5, each workload shows two different monitoring
results: one is directly collected from cluster compute nodes
and the other is collected from the master node for composable
resource management. In case of HPC workload, CPU usage
shows different patterns between two monitoring options,
since Slurm collects 5-min average load with Linux kernel
APIs. On the other hand, Mesos-based master node only
manages the allocated resource status, which makes the
allocated usage of CPU and RAM fixed. Note also that, with

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00

PXE+TFTP

PXE+TFTP+Local_Boot

iPXE+HTTP

iPXE+HTTP+Local_Boot

Time (m:s)
Ironic Provision Machine Boot

Fig. 3. Provisioning time comparison (bare-metal cluster node for
BigData workload).

0%

20%

40%

60%

80%

100%

120%

Resource Utilization for HPC Workload

CPU-USED_AVG (%) MEM-UTIL_AVG (%) SLURM-CPU-USED SLURM-MEM-UTIL

(a) HPC-IMB with Slurm

0%

20%

40%

60%

80%

100%

120%

Resource Utilization for BigData Workload

CPU-USED_AVG MEM-UTIL_AVG MESOS-CPU-USED MESOS-MEM-UTIL
(b) Spark-Perf with Mesos

Fig. 5. Monitoring result for workload execution.

0:00 0:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00

PXE+TFTP

PXE+TFTP+Local_Boot

iPXE+HTTP

iPXE+HTTP+Local_Boot

Time (m:s)firmware loader kernel initrd userspace
Fig. 4. Boot time comparison (bare-metal cluster node).

direct monitoring, the usage impact of operating system kernel
and daemons is included. In summary, with two different
monitoring results, we can verify that the resource
coordination module could figure out and assist the
workload-based resource usage.

C. Provisioning Scalability Expectation

Finally we check cluster node scalability by estimating the
cluster provisioning time for up to 50 nodes. Based on the
provisioning time performance in Section IV and with iPXE
local_boot option, we depict the estimated time in Fig. 4. It is
estimated that around 20 minutes is consumed to
simultaneously provision a 50-node cluster by utilizing the
17-sec delta time for one additional node provisioning. Also,
1GB-size bare-metal image transfer takes around 13 secs over
1Gbps network (assuming 600 Mbps throughput). In addition,
we assume involved delay due to OpenStack controller node.

V. CONCLUSION
We presented a prototype of resource coordination module

that performs bare-metal cluster coordination for both HPC
and BigData workloads based on an OpenStack
cloud-leveraged resource pool. We also verified the possibility
of cluster reconfiguration depending on the types of workloads
by leveraging automated OpenStack Ironic bare-metal
provisioning. Note that the consumed provisioning delay for
shared resource clustering is 8 minutes and 30 seconds, only

with two compute nodes. It might be a non-negligible
overheads for overall shared cluster performance. However,
remember that usually the combined workloads of HPC and
BigData will be running for several hours.

REFERENCES
[1] J. Kim, "Realizing Diverse Services Over Hyper-converged Boxes with

SmartX Automation Framework," in Proc. Conference on Complex,
Intelligent, and Software Intensive Systems (CISIS 2017).

[2] A.C. Risdianto, J. Shin, and J. Kim, "Building and Operating Distributed
SDN-Cloud Testbed with Hyper-convergent SmartX Boxes," in Proc.
6th EAI International Conference on Cloud Computing, Daejeon, Korea,
Oct. 2015.

[3] OpenStack, http://openstack.org.
[4] A. Luckow, et al., "Hadoop on HPC: Integrating Hadoop and Pilot-based

Dynamic Resource Management," arXiv preprint arXiv:1602.00345
(2016).

[5] B. Hindman et al., "Mesos: A Platform for Fine-Grained Resource
Sharing in the Data Center," In Proc NSDI 2011.

[6] Univa URB, http://www.univa.com/resources/files/urb.pdf.
[7] MPICH2-Yarn, https://github.com/alibaba/mpich2-yarn.
[8] C. G. Kominos, N. Seyvet, and K. Vandikas. "Bare-metal, virtual

machines and containers in OpenStack." In Proc. Innovations in Clouds,
Internet and Networks (ICIN), 2017.

[9] P. Rad, et al. "Benchmarking bare metal cloud servers for HPC
applications." In Proc. Cloud Computing in Emerging Markets (CCEM),
2015.

[10] A. Turk, et al. "An experiment on bare-metal bigdata provisioning." In
Proc. 8th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 16), 2016.

[11] OpenStack Ironic, https://wiki.openstack.org/wiki/Ironic.
[12] Karl W. Schulz, et al., "Cluster Computing with OpenHPC," In Proc.

HPCSYSPROS16, 2016.
[13] Diskimage-builder,

http://docs.openstack.org/developer/diskimage-builder.
[14] Intel, Intel MPI Benchmarks.

https://software.intel.com/en-us/articles/intel-mpibenchmarks.
[15] Spark-Perf, https://github.com/databricks/spark-perf.

00:00

05:00

10:00

15:00

20:00

25:00

0 10 20 30 40 50

Time (m:s)

of machines

Fig. 6. Estimated node boot time.

	I. INTRODUCTION
	II. Cloud-leveraged Cluster Sharing for HPC/BigData Workloads
	III. Prototyping Workload-Based Resource Coordination
	A. Cloud-leveraged Cluster and Resource Coordination
	B. Prototype Implementation

	IV. Evaluations on Prototype Implementation
	A. Evaluation: Workload-based Cluster Coordination
	B. Evaluation: Workload Execution and Monitoring
	C. Provisioning Scalability Expectation

	V. Conclusion
	References

