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Abstract — Recently high-performance computing (HPC) and 

BigData workloads are increasingly running over 
cloud-leveraged shared resources, meanwhile traditionally 
dedicated clusters have been configured only for specific 
workloads. That is, in order to improve resource utilization 
efficiency, shared resource clusters are required to support both 
HPC and BigData workloads. Thus, in this paper, we discuss 
about a prototyping effort to enable workload-based resource 
coordination for cloud-leveraged shared HPC/BigData cluster. 
By taking OpenStack cloud-leveraged shared cluster as an 
example, we demonstrate the possibility of workload-based 
bare-metal cluster reconfiguration with interchangeable cluster 
provisioning and associated monitoring support.  
 

Index Terms — HPC/HTC workload, BigData workload, 
cloud-based shared cluster, dynamic resource configuration, and 
bare-metal cluster provisioning.  
 

I. INTRODUCTION 
OWDAYS we can easily realize diversified 

applications at a low cost owing to the emerging 
cloud-first computing paradigm that leverages flexible 
resource pooling. In particular, high-performance computing 
(HPC) and BigData workloads are increasingly spreading over 
cloud-leveraged shared resource infrastructure to enjoy its 
scaling and reliability benefits. Thus it is important to leverage 
the resource pooling power of hyper-scale cloud-based shared 
clusters, while balancing the dedicated engineering for HPC 
MPI (message passing interface) parallel computing workload 
and/or data-intensive BigData computing/storage workload.   
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However, traditionally, dedicated clusters for HPC and 

BigData parallel workloads have been separately configured 
only for chosen workload and thus most of the dedicated 
clusters could not flexibly match and utilize the full capacity of 
cluster resources. To improve the efficiency of resource 
utilization, various types of shared clusters have been proposed 
[4-9]. Besides, the growing popularity of x86 hardware and 
Linux operating system is accelerating the increasing adoption 
toward hyper-converged (i.e., compute/storage/networking 
integrated) cluster nodes (denoted as boxes in this paper) [1]. 
Thus, it is becoming cheaper and easier to flexibly support 
both HPC and BigData workloads on a single cloud-leveraged 
cluster of hyper-converged boxes, which are to be coordinated 
with composable resource management.  

Thus, in this paper, we discuss about a prototyping effort to 
enable workload-based resource coordination for 
cloud-leveraged shared HPC/BigData cluster. The 
workload-based resource coordination (and thus sharing) is 
coordinated by an entity called as composable resource 
management, where software-based resource management for 
the required dynamic coordination is prototyped with resource 
management APIs. More specifically, as depicted in Fig. 1, we 
enable workload-based cluster reconfiguration over 
hyper-converged SmartX Boxes [2], clustered with 
open-source OpenStack cloud infrastructure software [3]. That 
is, workload-based cluster resource coordination is designed 
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Fig. 1.  Workload-based cluster resource configuration: Concept. 
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and prototyped over the shared resource pools of OpenStack 
cloud-leveraged cluster. Especially flexible and automated 
resource coordination is realized by leveraging bare-metal 
OpenStack cloud provisioning. By taking OpenStack 
cloud-leveraged shared cluster as an example, we demonstrate 
the possibility of workload-based bare-metal cluster 
reconfiguration with interchangeable cluster provisioning and 
associated monitoring support.  

II. CLOUD-LEVERAGED CLUSTER SHARING FOR 
HPC/BIGDATA WORKLOADS 

Based on the coordination power of composable resource 
management, the cloud-leveraged cluster sharing should serve 
multiple heterogeneous workloads in general. If we configure 
a dedicated cluster over a pay-per-use (mostly in VM unit) 
public cloud, it can become easily inefficient when the 
demanded workload does not match with the configured 
resources. Thus, in order to efficiently manage and operate 
cloud-leveraged shared cluster, the composable resource 
management should manage shared resource pools based on 
both workload-aware resource coordination (i.e., 
reconfiguration) and scheduling policy. 

As discussed above, the composable resource management 
for cloud-leveraged shared cluster usually includes workload 
management to take complex and difficult scheduling logic in 
charge. The shared cluster needs to flexibly manage the 
resource allocation for workloads by utilizing resource 
management APIs. Moreover, there are several early studies to 
apply one shared cluster for heterogeneous workloads such as 
HPC and BigData. First, Hadoop on HPC has ported Apache 
Hadoop as a BigData processing framework to execute on an 
HPC cluster [4]. Also, Univa supports API-based Apache 
Mesos resource scheduling [5] through universal resource 
broker (URB) [6] as a workload-aware tool for 
grid-computing-style resource management. That is, 
scheduling-based resource coordination is supported with 
Mesos software frameworks without modifying Univa Grid 
Engine. YARN-MPI [7] has modified YARN as a resource 
management tool for Apache Hadoop cluster that enables the 
running of MPI-based parallel computing. Note however that 
most of these proposals require specialized implementation to 
support other additional (i.e., not designed initially) 
workloads.  

Moreover, we may selectively choose the type of node (i.e., 
bare-metal or virtual machine) when configuring 
cloud-leveraged shared clusters. A bare-metal cluster can 
exhibit more computing power than a virtual machine cluster 
[8]. For example, we can provision cloud-leveraged HPC 
cluster with a highlighted focus on bare-metal clustering for 
HPC workloads [9]. Similarly, BigData clusters can be 
enabled over workload-customized provisioning of bare-metal 
resource boxes with iSCSI-based storage to improve its overall 
performance [10]. This work is indeed quite close to our work, 
except that it only considers BigData cluster with iSCSI-based 
storage and PXE+TFTP capability.  

In summary, first, without any main update of related 
software, the resource coordination module in the proposed 

prototype should execute dynamic provisioning running over 
reconfigurable HPC/BigData cluster. Also, we could utilize 
more flexible resource management including cloud-leveraged 
bare-metal provisioning. Finally, we adopt iPXE+HTTP to 
deploy bare-metal images to reduce the provisioning time for 
resource coordination. 

III. PROTOTYPING WORKLOAD-BASED RESOURCE 
COORDINATION 

A. Cloud-leveraged Cluster and Resource Coordination 
As depicted in Fig. 1, the proposed cloud-leveraged shared 

cluster is built with hyper-converged bare-metal nodes.  In 
order to flexibly install and operate shared cluster over the 
OpenStack cloud environment, we leverage OpenStack Ironic 
bare-metal node provisioning to prepare the targeted shared 
cluster nodes (i.e., bare-metal instances) with bare-metal 
images including related libraries for a targeted cluster. Thus, 
the proposed workload-based resource coordination should be 
able to support bear-metal image generation/management and 
consistent cluster configuration management, as part of 
automated cluster provisioning. The automated provisioning is 
critical since we need to frequently go through so-called 
CRUD (create, read, update, and delete) of shared cluster 
nodes to match with time-dependent workload variations. That 
is, we need to define the life-cycle (tied with CRUD capability) 
of desired resource coordination, and then design and 
implement automated cluster provisioning (with 
reconfiguration). Also, depending on operation policy and 
resource status of whole shared cluster, the required amount of 
resource slices is chosen from available resource pools. The 
selected resource slices allocated and then configured to 
execute the demanded workloads under the coordination of 
composable resource management. In addition, the 
composable resource management needs to be periodically 
updated about the operation status data of shared cluster so that 
it can continuously monitor resources and workloads. 

This kind of required provisioning for cloud-leveraged 
shared cluster can be divided into following two stages.  

First, we prepare well-arranged bare-metal images and 
execute the node creation by downloading (from public or 
private repository) and installing them into the selected 
bare-metal nodes from OpenStack cloud resource pool. Note 
that all bare-metal images should be ready to communicate 
with the proposed resource coordination via proper agents 
pre-installed.  

Second, when the shared cluster is ready to start the 
operation, we need to continuously apply coordination actions 
to sustain the operation of shared cluster. The key feature of 
required resource coordination is dynamic cluster 
reconfiguration supported by composable resource 
management. Note that in order to match diverse workload 
demand, the status of resources and workloads should be 
continuously monitored. Also resource coordination need to 
cover the required orchestration of shared cluster operation. 
For this, eventually, resource management APIs are to be 
implemented to support various reconfiguration of shared 



 

cluster operation. In addition, this kind of resource 
coordination can be executed only if we have sufficient 
access/control authority (i.e., privilege) on the underlying 
shared cluster nodes and its operation. Thus, for each cluster, 
we typically arrange cluster compute/agent nodes and 
coordinate them via a cluster master node. Note that, if the 
master node cannot access/control compute/agent nodes, we 
may directly control troubled nodes.  

To execute workload on the shared cluster, reconfiguration 
request file is needed to setup workload type (HPC, BigData, 
mixed), scheduling type, maximum wait time / min-max 
requirements for resource, and cluster scaling. Meanwhile the 
shared cluster operator prepares operation policy to define the 
number of simultaneous users, maximum amount of resource 
per user, maximum wait time, and others. Thus, it is required 
to verify the requested reconfiguration files for its 
completeness as well as operational conflicts. For example, if 
some reconfiguration parameters are not reasonable, we need 
to reject (or change to default) with warning messages.   

B. Prototype Implementation 
We implement a prototype of coordination of composable 

resource management using OpenStack-based cloud resource 
pool. Fig. 2 shows an overview of prototype implementation 
including building blocks and associated procedures. As 
explained already, we adopt OpenStack Ironic [11] and use 
bare-metal node images for HPC cluster with Slurm and 
BigData cluster with Mesos, respectively. Also, the Mesos 
agent node image is pre-installed with Mesos and related 
packages, following OpenStack bare-metal image format. 
Similarly, the Slurm compute node image is prepared by 
utilizing OpenHPC [12] packages and configured for efficient 
HPC cluster operation. One thing to mention is that both 
OpenStack and OpenHPC packages can support bare-metal 

node provisioning. Thus, in this work, we only integrate 
cluster management (i.e., reconfiguration related) features into 
that Slurm compute image. Slurm requires synchronization 
files for authenticated cluster operation and the consistency of 
sync files across cluster nodes is important. Finally, all 
bare-metal images are created by utilizing open-source 
Diskimage-builder [13]. 

Each cluster node is provisioned by the cooperation of 
bare-metal node provisioning and composable resource 
management. Also, since we utilize OpenStack CLI to execute 
required OpenStack commands, we internally embed 
OpenStack client for OpenStack CLI. Note that all OpenStack 
bare-metal images have cloud-init software and user agent 
installed so that it can support the centralized control of all 
cluster nodes. Also the operation policy is pre-installed before 
creating and running the shared cluster. Finally, at this stage of 
prototype implementation, we fix both Mesos and Slurm 
masters on the desired node and run independently. Also, we 
execute both direct and indirect monitoring every 10 minutes. 

IV. EVALUATIONS ON PROTOTYPE IMPLEMENTATION 
We verify the feasibility of proposed workload-based 

resource coordination by prototyping it over an OpenStack 
cloud-leveraged shared cluster. Table 1 shows the hardware 
specification of the shared cluster with three nodes, which is 
decomposed into a small-size resource pool of 1 master and 2 
compute nodes, respectively. All these nodes are installed with 
CentOS 7.3, OpenStack Ocata, Slurm 16.05, and Mesos 1.1.0. 
In addition, OpenStack controller node (Intel Xeon X3330 and 
8GB DDR2 RAM) is separately setup. Also all cluster nodes 
can be power controlled by IPMI (Intelligent Platform 
Management Interface). 

Also, for benchmarking workloads, we use Intel MPI 
Benchmark (IMB) [14] for HPC workload and Spark-Perf [15] 
for BigData workload, respectively. For HPC workload, 
IMB-NBC is selected as the test case and it is executed with 
default parameters such as 10~1000 iterations, 0B ~ 4MB 
message size, and 2/4/8 processes. Note that, since each 
compute node has 12 logical cores, we do not apply Hyper 
Threading for MPI workload to avoid potential performance 
degradation. In addition, K-Means test case is selected for 
BigData workload with Scale_Factor 1, which kind of matches 
20 instance workload of Amazon AWS EC2 M1.xlarge.  

A. Evaluation: Workload-based Cluster Coordination   
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Fig. 2.  Prototype implementation of resource coordination.  
 
 

TABLE I 
SHARED CLUSTER HARDWARE SPECIFICATION (2 COMPUTE NODES) 

 Specification 
CPU 12 cores, 24 threads (Intel Xeon D-1528@2.3Ghz) 
RAM DDR4 64GB (PC4-17000) 

Storage 400 GB SSD (Intel S3500) 
Network 2-port 10GbE (EA), 2-port 1Gbe (EA) 

 



 

   First, we check the provisioning performance of bare-metal 
cluster nodes by adopting OpenStack Ironic bare-metal 
provisioning tool with pxe_ipmitool driver over 1Gbps 
network inter-connection: single node and multiple nodes. Fig. 
3 shows the total elapsed time comparison for BigData cluster 
provisioning for different provisioning options. Note that, in 
this case, the bare-metal image size of BigData cluster is 
bigger than that of HPC cluster and thus the overall 
provisioning takes longer time. Also with OpenStack Ironic 
bare-metal node provisioning, we need two types of images: 
deploy image and user image. The deploy image includes 
OpenStack IPA (Ironic Python Agent) that prepares the 
bare-metal node provisioning itself. This deploy image is 
identical with both HPC and BigData cluster provisioning and 
consists mostly of Kernel (33MB) and Ramdisk (334MB). On 
the other hand, separate user images are selectively used for 
workload-based cluster configuration, which is decomposed 
into three partitions for Kernel (5.2MB), Ramdisk (38MB), 
and User image (714MB).  

 
We represent the overall cluster node provisioning time by 

separating time associated with OpenStack Ironic bare-metal 
node provision and node boot. The time for OpenStack Ironic 
bare-metal provision is measured by OpenStack Nova 
compute service, which includes times consumed for 
deploying images and node boot/reboot. In comparison, node 
boot time indicates the time consumed for final booting after 
the completion of OpenStack Ironic provisioning process, 
which cannot be measured by OpenStack Nova. Fig. 4 shows 
the detailed time comparison of cluster node boot according to 
several booting options. The firmware option means that we 
load UEFI firmware before loading OS boot loader. Also, if we 
do not use local_boot option, boot loader consumes longer 
time since it needs to receive images from the controller node. 
User space option commonly takes longer and DHCP-interface 
option needs longest boot time around 30 secs. Finally, as 
shown in Fig. 3 and Fig. 4, we can compare the overall 
reconfiguration time according to the choices on bear-metal 
image delivery and local_boot option (about writing user 
images to local storage or not). The comparison result is 
showing that HTTP is better than TFTP in general, and 
local_boot option can reduce cluster node boot time. 

 

B. Evaluation: Workload Execution and Monitoring 
Now we verify workload execution performance by 

monitoring the operation (i.e., running) status of workload 
execution. We independently perform each experiment on the 
same shared cluster, which is provisioned beforehand. Fig. 5 
shows the resource usage patterns to monitor several stages 
(e.g., before/after and during) of workload execution. We 
insert 1-min idle time between experiments and reserve key 
resources (CPU and RAM) for monitoring to avoid 
unnecessary resource contention. 

From Fig, 5, each workload shows two different monitoring 
results: one is directly collected from cluster compute nodes 
and the other is collected from the master node for composable 
resource management. In case of HPC workload, CPU usage 
shows different patterns between two monitoring options, 
since Slurm collects 5-min average load with Linux kernel 
APIs. On the other hand, Mesos-based master node only 
manages the allocated resource status, which makes the 
allocated usage of CPU and RAM fixed. Note also that, with 

0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00

PXE+TFTP

PXE+TFTP+Local_Boot

iPXE+HTTP

iPXE+HTTP+Local_Boot

Time (m:s)
Ironic Provision Machine Boot  

Fig. 3. Provisioning time comparison (bare-metal cluster node for 
BigData workload). 
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Fig. 5. Monitoring result for workload execution. 
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direct monitoring, the usage impact of operating system kernel 
and daemons is included. In summary, with two different 
monitoring results, we can verify that the resource 
coordination module could figure out and assist the 
workload-based resource usage. 

C. Provisioning Scalability Expectation 

Finally we check cluster node scalability by estimating the 
cluster provisioning time for up to 50 nodes. Based on the 
provisioning time performance in Section IV and with iPXE 
local_boot option, we depict the estimated time in Fig. 4.  It is 
estimated that around 20 minutes is consumed to 
simultaneously provision a 50-node cluster by utilizing the 
17-sec delta time for one additional node provisioning. Also, 
1GB-size bare-metal image transfer takes around 13 secs over 
1Gbps network (assuming 600 Mbps throughput). In addition, 
we assume involved delay due to OpenStack controller node.  

V. CONCLUSION 
We presented a prototype of resource coordination module 

that performs bare-metal cluster coordination for both HPC 
and BigData workloads based on an OpenStack 
cloud-leveraged resource pool. We also verified the possibility 
of cluster reconfiguration depending on the types of workloads 
by leveraging automated OpenStack Ironic bare-metal 
provisioning. Note that the consumed provisioning delay for 
shared resource clustering is 8 minutes and 30 seconds, only 

with two compute nodes. It might be a non-negligible 
overheads for overall shared cluster performance. However, 
remember that usually the combined workloads of HPC and 
BigData will be running for several hours.  
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Fig. 6. Estimated node boot time. 
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