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ABSTRACT
A new mathematical model for chemotactically aggregating bacteria, which generate several aroma gases in an 
intestine with surrounding food, has been presented. This model makes it possible to simulate the destruction 
of bacteria caused by the lack of an attractant (feed), and our calculation has shown some of their traveling 
zones. The outbreak and the annihilation caused by the over aggregation and the proliferation are also calculated 
numerically as the result of this analysis. The interaction between the attractant and the bacteria is considered 
using successive approximation, as in our previous paper. This model calculation makes it possible to simulate 
some bowel obstructions (ileus) caused by gas-forming bacteria
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1. INTRODUCTION

　Recently the problems of swallowing are getting 

healthcare professionalsʼ attention in our aged 

society along with the use of QOLT (Quality of 

Life and Technology) for geriatric care; therefore 

gastroenterological science is becoming more and 

more important to senior care. Intestinal digestion 

is one of the most essential qualifications for 

healthy life, especially in aging people, however it 

sometimes happens that some symptoms of ileus 

caused by growing bacteria gas-formation disturb 

the transport system of the digested material in the 

intestine. At the very least, burnt cheese happens to 

damage the comfortable relationship among friends 

and hurts good QOL. These problems are seem to be 

caused by bowel gases with gas-forming bacteria, 

however their mechanism is not clear at this stage. 

In this article, we have restricted the gas forming 

process as follows1): Indole C8H7N↑ and 

3-Methlindole C9H9N↑ would be broken down 

by the following process. One of the amino-

acid essential Tryptophan C11H12N2O2 makes 

3-Indolepropionnic acid C11H11NO2↑ or Tryptamine 

C10H12N2↑+ carbon dioxide gas CO2↑. These 

chemical reactions are known to be activated by 

the catalyst activation of gas-forming bacteria. 

We have assumed the chemical reaction rates of 

gas generation are proportional to the products 

between “source material concentrations” and 

“number density of bacteria”. On the other hand, 

the swarming process of gas-forming bacteria is 

very important to investigating the mechanism 

of dynamic movement of gases in the intestine. 

These processes have been investigated by a lot 

of authors theoretically since half a century ago: 

About 40 years ago, Keller and Segel12) proposed 

an analytical model of chemotaxis, which was 

used in the theoretical biology as the most popular 

model for chemical control of cell movement. On 

the other hand, since Nicholson3) proposed the first 

competition theory, many authors4-6) have indulged 

in the whimsy of calculating the population problem 

of insects or animals, in which the fluctuations of 

the insectsʼ number between restricted limits are 

determined by the balance between that insectsʼ 
capacity to increase and the environmental checks 

to this increase. In the light of the above two 

approaches, we made a theoretical model of the 

aggregation of microorganisms in our previous 

paper, concerning the growth of swarming bacteria 

toward scraps stuck in the gap between teeth and 

infections speck in other organs. The equation 

of the previous model has involved a consuming 

term and a proliferation term, and the results 

of the calculation have exhibited the empirical 

logistic curves to maximum colonies. However the 

consuming term and the proliferation term in it are 

so modest that neither outbreak nor annihilation 

could be seen in the previous calculation, for all 

that many of the published studies of predation 

concentrate on discrete parts of them. Therefore, 

we have used the more violent terms, so that they 

should induce some travelling zones of bacteria 

caused by the lack of a feed, in some cases of the 

larger mortality parameter. Using this term it might 

be possible to calculate the bubble size change by 

gas-forming bacteria in the inhomogeneous food in 

the intestine.

 This paper is organized as follows. In section 2 we 

describe the mathematical model of our calculation, 

and in section 3 we show the method of the 

numerical calculation from the model. The result, 
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the discussion and concluding remarks follow in 

section 4.

2. The model

  The geometry of the bacteria swarming model 

is spherical symmetric except for the formed 

gas distribution. The main assumptions of this 

calculation are as follows.

2.1 The Assumptions of the bacteria swarming model

We have assumed the following assumptions for this 

calculation.

(A) At the center of the model, a lump of an 

attractant having a rigid radius of “a” is fixed at 

a constant density. And, although the attractant 

diffuses into bacteria, the density of the central 

attractant does not change.

(B) Far from the central attractant, the number 

density of the bacteria is assumed to be a fixed value 

of n0, and the density of the attractant there is also 

assumed to be a fixed value of CB.

(C) At the beginning (t=0) the density of the 

bacteria everywhere around the central lump of the 

attractant is constant (the same number density of n0 

as the background density) and at the next moment 

a very thin membrane of the packed bacteria (the 

number density is nmax) is induced by the attractant 

containing the central sphere of the attractant. 

(D) The maximum number density of the bacteria 

is a constant independently of the surrounding 

attractant concentration.

(E) The diffusive velocity of the attractant is 

assumed to be much faster than that of the 

bacteria, and the quasi-stationary diffusion of 

the attractant corresponding to “the almost static 

arrangement of bacteria” is assumed to be induced 

by the distribution of the bacteria. The process of 

this diffusion is assumed to obey the differential 

equation, which we show later.

(F) The movement of the bacteria is governed by 

the gradient of the attractant obeying the differential 

equation which will be shown later.

(G) The bacteria should be killed instantaneously 

by the lack of the feed (attractant) therefore we 

have used a modified step-function of n/c, thus the 

bacteria will be killed at a constant rate when “the 

ratio of the number density of the bacteria to the 

density of the attractant n/c " exceeds a value, and 

the bacteria will not be killed without the lack of the 

feed. The concrete consuming term of the bacteria 

will be described in the equation (9) later.

(H) The proliferation of the bacteria is described by 

the following equation.

(I) The incremental radius of the gas sphere 

produced by bacteria with food is proportional to 

the product cn in the vicinity of the attractant center.

(J) The effects of the yield stress of the surrounding 

fluid and the surface tension on the expansion of the 

generated gas bubble is negligibly small, therefore 

we have assumed the pressure in any bubble is the 

same as the circumjacent one.  

Where ε1n is a proliferation rate of the bacteria at 

very high density of the attractant (feed), and ε1cn/μ 

is a proliferation rate of the bacteria at very low 

density of the attractant; the rate is proportional to 

cn . This proliferation model was first introduced 

Sherrat7), and the one used in this article is more 

sensitive to the density of the attractant than his.

2.2  The Boundary Conditions and the initial Conditions

 From the above assumption, the boundary 

conditions and the initial conditions have been 

summarized by the following relations:

At the surface of the sphere of the lump of the 
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central attractant,

density of n0 as the background density) and at the next moment a very thin membrane of the packed bacteria (the number density is nmax) is 
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(E) The diffusive velocity of the attractant is assumed to be much faster than that of the bacteria, and the quasi-stationary diffusion of the 

attractant corresponding to “the almost static arrangement of bacteria” is assumed to be induced by the distribution of the bacteria. The 

process of this diffusion is assumed to obey the differential equation, which we show later. 

(F) The movement of the bacteria is governed by the gradient of the attractant obeying the differential equation which will be shown later. 
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attractant center. 

(J) The effects of the yield stress of the surrounding fluid and the surface tension on the expansion of the generated gas bubble is negligibly 

small, therefore we have assumed the pressure in any bubble is the same as the circumjacent one.   

Where n1  is a proliferation rate of the bacteria at very high density of the attractant (feed), and  /1cn  is a proliferation rate of the 

bacteria at very low density of the attractant; the rate is proportional to cn . This proliferation model was first introduced Sherrat7), and the 
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Considering the assumption of initial density distribution of the attractant, a step-function should be set for the starting density. However this 

function is extremely difficult for the numerical calculation, and moreover, the merit of introducing the step-function is very little (restricted 

at just after t =0). Therefore, we have assumed a more practical function, as follows; 
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Where the first term of (7-1) represents the diffusion effect by the movement of the bacteria only, and the second term 

represents the flow induced by the gradient of the attractant (V is the local mean velocity of the bacteria induced by the 

gradient of the attractant). 

 The equation which represents the variation of the density of the attractant is 
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Where Dn, DC  are the coefficients corresponding to the diffusion coefficients of the bacteria and the attractant respectively, and DE is the 

coefficient of the attractant consumption which is caused by the predation by the bacteria. 

 Modifying the equations (7) and (8) for a three dimensional spherical equation, using the distance from the center “r”, we have the 

following equations. In the first equation, we have subtracted the consuming term, which makes the assumption (G) concrete, and we have 

added the proliferation term explained in the assumption (H). 
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Where the functional form of the above constants are as follows: 

 
 n

n

C
C

n



c

ccD
2

41  ……(11), 

cc K 1)(      ……(12), 

   n
DD cn  21

0


C  ……(13), 

  )C2
 c

ccED (  ……(14), 

and  cDn  in equation (l1) was first introduced by Lapidus16) experimentally. 

 

3. Numerical Calculation 

  For a practical calculation of the above equations we have used the following successive approximation; using the assumption (E) we 

have transformed Eq. (10) under the boundary condition (4-2), and have used the following equation (the second term in the right side of 

equation (10) can be assumed to be zero). 
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Where the functional form of the above constants are as follows: 
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and  cDn  in equation (l1) was first introduced by Lapidus16) experimentally. 

 

3. Numerical Calculation 

  For a practical calculation of the above equations we have used the following successive approximation; using the assumption (E) we 

have transformed Eq. (10) under the boundary condition (4-2), and have used the following equation (the second term in the right side of 

equation (10) can be assumed to be zero). 

    Bcdrrdr
rr

ac
r

a

r

a
rrr

c
  '''1

'''
20

 ........(15), 

Where Dn, DC  are the coefficients corresponding 

to the diffusion coefficients of the bacteria and the 

attractant respectively, and DE is the coefficient of 

the attractant consumption which is caused by the 

predation by the bacteria.

 Modifying the equations (7) and (8) for a three 

dimensional spherical equation, using the distance 

from the center “r” ,  we have the following 

equations. In the first equation, we have subtracted 

the consuming term, which makes the assumption 

(G) concrete, and we have added the proliferation 

term explained in the assumption (H).
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2.3 The differential equations describing the number density of bacteria and the density of the attractant 

  According to Ford et al.8),we use the following differential equations, which represent the number density of bacteria 

during the aggregation and the proliferation (destruction) very simply. 
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Where the first term of (7-1) represents the diffusion effect by the movement of the bacteria only, and the second term 

represents the flow induced by the gradient of the attractant (V is the local mean velocity of the bacteria induced by the 

gradient of the attractant). 

 The equation which represents the variation of the density of the attractant is 
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coefficient of the attractant consumption which is caused by the predation by the bacteria. 

 Modifying the equations (7) and (8) for a three dimensional spherical equation, using the distance from the center “r”, we have the 

following equations. In the first equation, we have subtracted the consuming term, which makes the assumption (G) concrete, and we have 

added the proliferation term explained in the assumption (H). 
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and  cDn  in equation (l1) was first introduced by Lapidus16) experimentally. 

 

3. Numerical Calculation 

  For a practical calculation of the above equations we have used the following successive approximation; using the assumption (E) we 

have transformed Eq. (10) under the boundary condition (4-2), and have used the following equation (the second term in the right side of 

equation (10) can be assumed to be zero). 
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and Dn(c) in equation (l1) was first introduced by 

Lapidus16) experimentally.

3. Numerical Calculation

  For  a  pract ical  ca lcula t ion of  the  above 

equations we have used the following successive 

approximation; using the assumption (E) we have 

transformed Eq. (10) under the boundary condition 

(4-2), and have used the following equation (the 

second term in the right side of equation (10) can be 

assumed to be zero).
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Where the first term of (7-1) represents the diffusion effect by the movement of the bacteria only, and the second term 

represents the flow induced by the gradient of the attractant (V is the local mean velocity of the bacteria induced by the 

gradient of the attractant). 
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coefficient of the attractant consumption which is caused by the predation by the bacteria. 
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3. Numerical Calculation 
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where  is the distribution of the bacteria and is 

represented as;where  'r is the distribution of the bacteria and is represented as; 
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Namely, the number density of the bacteria changes corresponding to the density of the attractant, however we fixed the number density of 

the bacteria for the moment and calculated the density of the attractant from Eq.(15) and Eq.(16) at the individual moment (we have 

calculated the distribution function of the bacteria  'r  from the number density of the bacteria at that moment from Eq. (l6), using the 

density of the attractant at the preceding moment, and using this  'r  we have calculated the density of the attractant from Eq. (15), 

and then we have calculated again the distribution of the bacteria  'r  from this density of attractant, and we have repeated these process). 

These processes were repeated until the self-consistent stationary state of the density of the attractant was attained. 

Then the number density at the next moment was calculated from the final density distribution of the attractant at that moment using Eq.(9). 

Throughout this paper we have used the physical value in c.g.s. Units according the paper by Ford et al.8) in the practical calculation as 

follows.  

 

             Table 1. 

Symbol Physical Value         Unit 

0n  5.0×106 cell/cm3

      maxn  1.0×1011 cell/cm3

      0c  1.0×10 -7 mol/cm3  (mM) 

Bc  1.0×10 -11 mol/cm3  (mM) 

      2C  2.0×10 -7 mol/cm3  (mM) 

      nC  1.0×10 -7 mol/cm3  (mM) 

      1  0.8 cm3/ mol 

2  1.0×10 -9 cm3/ mol 

      3  1.0×10 -5   cm3/ mol 

     Dc0  3.0×10 -5   cm2/s 

      a  1.0×10 -2     cm 

        1.0×10 -18 ,1.0×10 -22    mol/(cell･s) 

      K1  5.0×106     cm2/s 

      R  5.0×106    non 

      ER  5.0×106    non 

 

Where RE is the mortality rate of bacteria in the moment when lack of the feed is extreme, and we used R to represent the sensitivity of the 

consuming function of the bacteria [R=1/( Bcn0 ) for the background]. 

 

4. Results and Discussion 
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background].
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4. Results and Discussion

We show the growth of the packed area of the 

bacteria and the travelling zones of the desk-don 

and the outbreak in Fig'1-Fig.4. From these figures, 

we can see that the number density of bacteria at a 

certain place decays exponentially according to the 

distance from the central attractant.

In case where the mortality parameter RE is larger 

than 0.2, there exist some empty zones of the 

bacteria. This mechanism is a little different between 

two types of predation; the types of predation of 

Fig-1 and Fig.2-Fig.4 are different. This means 

that consuming the feed by bacteria contributes to 

the destruction of the bacteria in relation to their 

mortality. The consuming speed of the type in Eq. 

(14) is faster than that of Lapidus16) in the case 

of starvation. The predation function represented 

in Eq.(14) is named Ho1lings Type-I function9). 

Although this analysis itself cannot be useful for 

medical treatment, we can apply this modeling to 

some other problems; we will show a few examples:

1. The population problem of epidemics can be 

analyzed replacing immunity with predation.

2. The war problem between macrophage and 

bacteria.

3. Analysis of the growth of tumor cell population 

or that of swarming bacteria.10)-18)

4 .  T h e  m o d e l  s t u d i e s  o f  a c u t e  l e u k e m i a 

chemotherapy.l9)-23)

An important aspect of our current and future studies 

is the investigation of the real behavior of these 

microorganisms or infected people, therefore we 

should analyze the above mentioned mechanisms.

Using these data of swarming bacteria and the 

condensation of the attractant, we have calculated 

the buoyant velocity of the spherical gas bubble 

 
Fig.1  The Density Distribution of the Bacteria on the Radial Coordinate from Centre. 
The radius of the packed bacteria region in the vicinity of the central core is expanding in the  
course of time. (5s~8s)   (In the case of Γ=10-18 [mol/(cell･s)]) 
 
 
 
 
 
 

Fig.1  �The Density Distribution of the Bacteria on the Radial 
Coordinate from Centre.

The radius of the packed bacteria region in the vicinity of the 
central core is expanding in the 
course of time. (5s~8s)  (In the case of Γ=10-18 [mol/(cell･s)])

 
Fig.2  The Density Distribution of the Bacteria on the Radial Coordinate from Centre. 
The radius of the packed bacteria region in the vicinity of the central core is expanding in the  
course of time. (6s~8s)   (In the case of Γ=10-22 [mol/(cell･s)]) 
 

 
Fig.3  The Radial Growth of the Bacteria Core region at the Central Attractant. 
The radius of the packed bacteria region in the vicinity of the central core is expanding  
in the course of time. (In the case of Γ=10-18 [mol/(cell･s)], 1×108> n >3×107 cell/cm3) 

Fig.2  �The Density Distribution of the Bacteria on the 
Radial Coordinate from Centre.

The radius of the packed bacteria region in the vicinity of the 
central core is expanding in the 
course of time. (6s~8s)   (In the case of Γ=10-22 [mol/(cell･s)])
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The radius of the packed bacteria region in the vicinity of the central core is expanding  
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Fig.3  �The Radial Growth of the Bacteria Core region at 
the Central Attractant.

The radius of the packed bacteria region in the vicinity of the 
central core is expanding 
in the course of time. (In the case of Γ=10-18 [mol/(cell･s)], 
1×108> n >3×107 cell/cm3)
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through the surrounding food in the vicinity of the 

central core region: The quasi-stationary buoyant 

velocity can be calculated using Hadamard ʼ
s Formula for liquid droplets27). The practical 

absorption of the bubble strongly depends on 

the yield stress and the surface tension of the 

surrounding liquid (food in this calculation), 

therefore we cannot estimate whether the ileus 

condition is attained with this calculation. However 

we can estimate the interval period for the position 

change of the body to prevent ileus; the interval 

should be shorter than the amount of time for 

bubbles to cross the inner radius of the intestine in 

these conditions.        

5. Concluding Remarks

 U s i n g  a  n e w  m a t h e m a t i c a l  m o d e l  f o r 

chemotactically aggregating bacteria, we have 

calculated the buoyant velocities of bubbles 

produced by bacteria in the intestine. This swarming 

model has a new consuming term, which kills 

the bacteria instantaneously by the lack of feed, 

besides simplifying the physical condition of the 

surrounding food around the bacteria. We have 

also estimated the generated gas size, assuming 

the chemical reaction rates of gas generation are 

proportional to the products between the source 

material condensations and the swarming bacteria 

number density. In this calculation we have used a 

modified step-functional term which reveals some 

traveling zones of the annihilation of the bacteria, as 

many authors investigated24)-26) the traveling bands 

of chemotactic bacteria, whereas the zones break 

out in our cases of the large mortality parameter in 

the new term. The buoyant velocities introduced 

in this calculation make it possible to estimate the 

position change interval period and would be useful 

to prevent the ileus in the intestine.
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腸内バクテリア集合によるガス発生の簡単なモデル計算

多羅尾範郎

   聖隷クリストファー大学　リハビリテーション学部

要　旨
　腸内の食物中の誘引物質に群がるバクテリアの挙動を擬似実験する新しい走化性数学的モデルで、
発生ガスの成長と浮上速度を計算した。この計算は、ガスによる腸閉塞を防止するための体位変換の
時間間隔を見積もるのに役立つと期待される。
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