

The Theory behind Minimizing Research Data

Problem

Application

- Different applications dealing with growing amounts of data:
- Research data management with measurement data
- Sensor data management for smart (assistive) systems aiming at the derivation of activity and intention models by means of Machine Learning algorithms
- Aim: Describing traceability, reconstructibility and replicability of the path from data collection to publication

Aim of our research project

- Reducing the primary measurement or sensor data to an important kernel
- Calculating the kernel even after updating databases or database schemes
- \Rightarrow Minimizing the sub-database that has to be stored to guarantee the reproducibility of the performed evaluation

Unification of Provenance and Evolution

- Goal: Performing provenance queries Q_{prov} after evolution \mathcal{E} of databases and database schemes
- Idea: Combination of provenance with schema and data evolution
- Wanted: New minimal sub-database to be archived $J^* \subseteq J$ \Rightarrow Calculation of a new query $Q'(J(S_3))$ from the old query $Q(I(S_1))$

Example

- Schemas: S_1 , S_2 and S_3
- Query: Q with minimal sub-database $I^* \subseteq I$
- Provenance Query: Q_{prov} with input $K^* \subseteq K$

Calculation of a minimal part of the database (minimal sub-database)

- Different constraints for the sub-database to be determined:
- Number of tuples of the original relation remains unchanged.
- The sub-database can be mapped homomorphically to the original database.
- The sub-database is an intensional description of the original database.
- Question: Which additional information is required to be able to reconstruct the minimal part I^* of the database I if the result and the evaluation query Q are both archived?
- Idea: Calculation of an inverse query Q_{prov} with input $K^* \subseteq K$ to determine the minimal sub-database
- \Rightarrow Type of inverse depending on the additional information noted

Example

- Schemas: S_1 , S_2 and S_3
- Query: Q = AVG(grade)
- Minimal sub-databases:
- $-I_a^*(S_1) \subseteq I(S_1)$ without extension $K'(S'_2)$
- $-I_h^*(S_1) = I(S_1)$ with extension $K'(S'_2)$
- Provenance Query: $Q_{prov} = AVG^{-1}(grade)$
- Input for Q_{prov} : $K^*(S_2) = K(S_2)$ \Rightarrow existence of a
- result equivalent CHASE-inverse for I_a^*
- tp-relaxed CHASE-inverse for I_h^*

	r1					1
$I_a^*(S_1)$:	<u>id</u>	mod	lule	grade		
	η_{id_1}	$\eta_{\sf mo}$	$dule_1$	1.7	25	$]t_1$
$I_b^*(S_1)$:	id	mod	lule	gra	lde	
	η_{id_1}	η_{module_1}		1.3		t_1
	η_{id_2}	η_{module_2}		2.3		t_2
	η_{id_3}	η_{module_3}		1.0		t_3
	η_{id_4}	η_{module_4}		2.3		t_4
$I_{c}^{*}(S_{1})$:	id		module		grade	
	2009372		002		1.3	
	2015	678	00	12	2.3	

• Schema evolution: \mathcal{E} with minimal sub-database $J^* \subset J$

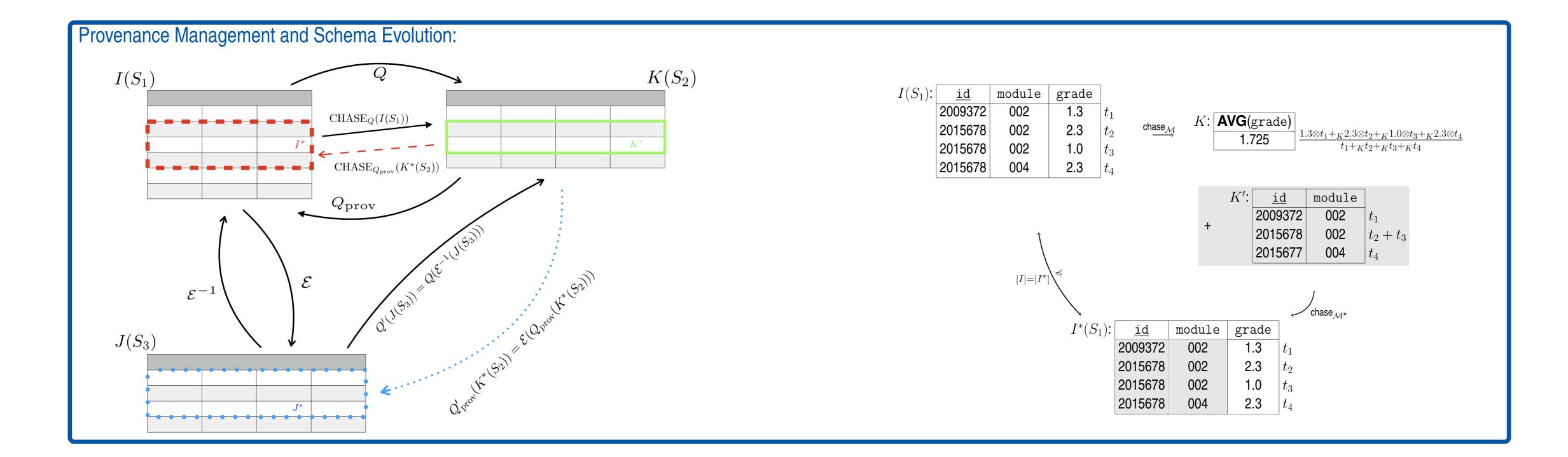
– exact CHASE-inverse for I_c^*

2015678 **2.3** t_4 004

002

1.0

2015678



CHASE-inverse schema mappings

Combining the techniques

• CHASE:

- CHASE incorporates dependencies \star in an object \bigcirc , i.e.

 $chase_{\star}(\bigcirc) = \bigstar$

Types of CHASE-Inverses

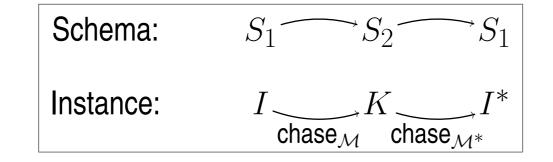
- CHASE-types:
 - Exact CHASE-inverse: Reconstructs the complete original database
 - Tuple preserving relaxed CHASE-inverse: Preserves the number of tuples

- Source-to-target tuple-generating dependency (s-t tgd):

$\forall \mathbf{X} : (\phi(\mathbf{X}) \to \exists \mathbf{y} : \psi(\mathbf{X}, \mathbf{y}))$

 \Rightarrow Express the evaluation query Q as a schema mapping $\mathcal{M} = (S_1, S_2, \Sigma)$ with source and target schemas S_1 and S_2 and a set of dependencies Σ

• Provenance Management: traceability of a result back to the relevant original data • CHASE&BACKCHASE:



- Result equivalent CHASE-inverse: chase $\mathcal{M}(I)$ = chase $\mathcal{M}(I^*)$

• Reduction: result equivalent \leq relaxed \leq tp-relaxed \leq exact

• Conditions for the existence of CHASE inverse:

CHASE inverse	sufficient condition	necessary condition
Exact	-	$I^* = I$
Classical	Exact CHASE-inverse	$I^* \equiv I$
Tp-relaxed	Exact CHASE-inverse	$I^* \preceq I, \mid I^* \mid = \mid I \mid$
Relaxed	Tp-relaxed CHASE inverse	$I^* \preceq I$
Result equivalent	Relaxed CHASE-inverse	$I^* \leftrightarrow_{\mathcal{M}} I$

Tanja Auge, Andreas Heuer

INSTITUTE OF COMPUTER SCIENCE | DATABASE RESEARCH GROUP | **University of Rostock**, Albert-Einstein-Straße 22 | 18059 Rostock, Germany