
Conflict Resolution using Derived Classes

Jürgen Schlegelmilch

Computer Science Department, Database and Information Systems,
University of Rostock

18051 Rostock, Germany
E-mail: schlegel@informatik.uni-rostock.de

Abstract. Common object models select method implementations based on the class of the receiver.
If an object belongs to several classes, more than one implementation is applicable for a method
call. We present a conflict resolution strategy to get exactly one implementation per call. This is
achieved by adding derived classes with method redefinitions.

KEY WORDS: method lookup, multiple inheritance, conflict resolution

1. Introduction

In object-oriented systems, the object is the unit of discussion: it encapsulates some data called
attributes together with the operations, called methods, that manipulate these attributes. De-
spite this, there are only few programming languages that are based on single objects, e.g. Self
(Ungar and Smith, 1991). In contrast, class-based languages group objects with identical structure
and behaviour into classes. There, classes are the unit of description, and an object is defined by
the classes it belongs to; an example for a class-based language is Eiffel (Meyer, 1993). Mixed
approaches are Smalltalk (Goldberg and Robson, 1983), that is object-based but has class objects
providing the methods, and Oberon (Reiser and Wirth, 1992), that is class-based but binds imple-
mentations to objects.

In class-based languages, a method call to an object is performed by looking up its class member-
ship and executing the implementation that the class associates with that method. This assumes
that there is only one class that the method lookup has to consider. However, this is not always the
case, and there are several ways to still use class-based method lookup.

1.1. Considering Inheritance

Most class-based programming languages use the inheritance hierarchy for incremental definition
and substitution. Classes inherit structure definitions and methods as well as implementations for
the methods from their superclasses. Inheriting from more than one class may cause conflicts
because of either name clashes, or implementation clashes. The first means, attributes or methods
from different superclasses have the same name, the latter describes the situation where a class
inherits different implementations for one method from different superclasses. These languages
require an object to belong to exactly one class that defines the structure and behaviour of its
objects. We can therefore abstract from single objects to the classes, and resolve conflicts on the
class level rather than the object level.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universität Rostock, Lehrstuhl Datenbank- und Informationssysteme: Dbis Repository

https://core.ac.uk/display/229841878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Another view on these data models is that the object belongs to a set of classes, with two conditions:
First, if it is in a class, it also is in all the superclasses, and second, there is one most specific class
in the set. This is equivalent to the one-class view, since this most specific class inherits from all
the classes in the set, and therefore offers the same set of attributes and methods, as if the object
belongs to all the classes individually. Even the implementations used for method calls to the
object are the same: Either static binding is used, which executes the implementation defined by
the class the variable is declared for (not the class of the object that is bound to the variable), or late
binding, which selects the implementation from the most specific class anyway. Static binding is
considered inferior because here the context dictates the behaviour of objects, instead of the object
itself; we therefore assume late binding in the following.

1.2. Limitations of Simple Models

These simple models are very limiting: they require the user to specify a lot of classes to model
common situations, because he has to define classes for all possible combinations of classes that
an object might belong to. A typical example is a class hierarchy with class Person and sev-
eral incomparable subclasses describing professions (Employee, Student, Lawyer . . . ), hobbies
(Surfer, Golfer, IronMan . . . ) or other categories (Patient, Customer, Politician . . . ). To model
an ill person that is a successful lawyer with a golf handicap of 4, we need a class LawyerGolfer-
Patient . . .

Some object models try to circumvent this by splitting an object into many role objects that are
unrelated to each other. However, this only moves the problem into the role hierarchy: instead of
being in several classes with conflicting method implementations, an object has several role objects
with conflicting method implementations.

In most application models, the number of such classes is small enough, so this deficiency does
not show up. This explains why programming languages use this simple model: Their applications
handle only a tiny number of such categories so that the combinatorial explosion can be handled
without too many problems. In contrast, databases often store data for several applications and
therefore their schemas have to include all the (often orthogonal) categories of these applications.
So, in the database model we have to cope with the combinatorial explosion that each single
application does not encounter.

1.3. Our Approach

The context of this work is the OSCAR1 database management system (Heuer et al., 1990), which
is based on the object-oriented database model EXTREM2 (Hörner and Heuer, 1991). In this
model, we drop the second condition mentioned in section 1.1: an object may still belong to
more than one class, but there does not have to be one most specific class; it still has to be in all
superclasses of a class it belongs to. This may cause a conflict if an object has more than one
most specific class, and these classes associate different implementations with a method. This
conflict has to be resolved, and we do so by introducing an additional derived class that redefines
the method. This new class is derived by intersecting the conflicting classes, and therefore all
concerned objects will automatically fall into it, and use the implementation defined there.

1Object Management System for Complex Applications, Approach: Relational
2EXTended RElational Model



The paper is organized as follows: to prepare the grounds, we first describe the EXTREM model
in Section 2, derived classes in Section 3 and the method lookup mechanism in Section 4. The
conflict resolution strategy is described informally in Section 5, and in full detail in Section 6,
including its application to an example. In Section 7 we review existing solutions in programming
languages and database models, and in Section 8 we summarize our results and conclude with an
outlook.

2. The EXTREM Database Model

In this section we informally introduce the database model EXTREM (Hörner and Heuer, 1991).
In this model, we describe the universe of discourse with objects and values. Objects are grouped
into classes, while values are partitioned into types. Types are either atomic, like integer, or
structured using type constructors like tuple or set, and offer a set of functions to be applied to
their values. The set of all types Types is organized in a lattice: A type K is a subtype of type L,
K �T L, iff K has more attributes or functions than L3.

Classes are defined by a set of objects, called the domain. Objects are characterized by a unique
identity and have to be created explicitly; the set of living objects of a class is therefore a subset
of its domain, called its extent. All classes are placed into an inclusion hierarchy: The domain of a
specialization class is the intersection of the extents of its superclasses, while that of a generaliza-
tion class is the union of the extents of its subclasses. The set of all classes Classes is partitioned
into abstract and free ones: abstract classes are pairwise disjoint and define each a domain of ob-
jects, while free classes are constructed by generalization and specialization of other classes. A
free class may be subclass of only one abstract class, otherwise it would be empty.

Each class has a set of functions called attributes, that map its objects to values, and a set of
methods that may be applied to its objects. The set of attributes corresponds to a tuple-structured
type called the state type. Due to the inclusion hierarchy, objects in subclasses inherit all the
attributes and methods of the superclasses. For generalizations we demand that the domain and the
extent are identical, so that the class hierarchy and the type hierarchy of the state types coincide.
We call this combined hierarchy the class graph.

To avoid name clashes, all attributes and methods are uniquely named. However, a method may
be redefined in subclasses: this does not introduce a new method but only provides a new imple-
mentation for the existing one, that is to be used for objects in the subclass instead of the inherited
implementation. A redefinition has to be substitutable for the implementations of its method in
superclasses. Besides semantic issues, this poses restrictions on the signature: if an implementa-
tion i � C� � � � � � Cn � C� is redefined in a subclass by j � D� � � � � � Dm � D�, then the
contravariance rule must hold:

m � n � D� �T C� � �k � �� � n� � Ck �T Dk

where � is the reflexive closure of 	, the subclass relation on classes as defined in Section 4.1,
and �T is � 
 idjTypes, i.e. there is no order on types.

3Although�T defines a substitutability relation, values cannot be substituted by those of subtypes due to their lack of
an identity; a discussion of this is out of the scope of this paper.



Classes have a set of methods with corresponding implementations. Due to inheritance, a method
is defined on more than one class, and redefinitions change for their class the implementation that
is associated with the method. We can therefore view methods as entities having a mapping from
classes to implementations.

3. Derived Classes

Up to now, the state type and extent of a class have been defined explicitly. However, using query
languages, one can retrieve sets of objects from the database. In EXTREM, objects sharing some
common structure are grouped in classes, and query results also group objects depending on shared
properties, so query results are seen as special classes. In contrast to classes defined in the schema,
both the structure and the domain of these classes are defined by the sequence of operators applied
to other classes. We call explicitly defined classes base classes, and query results derived classes.
OSCAR offers algebraic and SQL-like query languages as well as an object calculus as query
languages; any of them can be used for the derived classes that we need in this paper.

Unlike base classes, derived classes do not fit into the class graph without problems because the al-
gebra operators can change the set of objects and the state type independently. For base classes, the
class and type hierarchy are identical, but not for derived classes. The solution is to place derived
classes in clusters next to the base classes they are derived from, without establishing a hierarchy
among them; details can be found in (Heuer and Sander, 1991). For derived classes that can be
integrated into the class graph, we can define additional attributes and methods. Generalization
classes are a special kind of derived classes, namely unions of classes.

4. The Method Lookup

Method lookup is the way to determine an implementation, given a method call to an object. Class-
based approaches use classes to find implementations, while with object-based lookup each object
knows what implementation to use. Of course, there cannot occur any conflicts with object-based
lookup, but the size of the dispatch table is large and redundant for sets of similar objects — which
are classes.

EXTREM is a class-based model, so each method has a name and a set of mappings from classes
to implementations. The mappings are taken from the class graph: each explicit definition or
redefinition forms a mapping from the class to the implementation given in it. This set of mappings
defines a partial function from classes to implementations that needs to be extended by adding
mappings for inherited methods. Of course, multiple inheritance introduces conflicts; we solve
them by explicit redefinition in the subclass (Schlegelmilch, 1992). Now the function is still partial
but maximal: given a class where m is defined or inherited, we can find its implementation of m
by applying the function. It is therefore suitable for class-based method lookup.

4.1. Formalization

Let m be the method that is called on object o, with the mapping implm � Classes � Impl, i.e.
implm�C� is the implementation of m in C; impl can be extended to sets of classes, delivering
sets of implementations. In the rest of this paper we will omit m since it suffices to consider one
method at a time.



Classes are ordered into a class hierarchy defined by inclusion of extents. Two relations SPEC
and GEN describe the explicit subclass hierarchy: A free class C is a specialization of classes
C�� � � � � Cn iff �C�Ci� � SPEC �i � �� � n�, or it is a generalization of them iff �Ci� C� �
GEN �i � �� � n�. Of course, no cycles are allowed in SPEC 
 GEN. We write C 	 D if
�C�D� � �SPEC 
 GEN��.

Most derived classes cannot be placed into the class hierarchy with tuples in SPEC or GEN,
and therefore have to be considered more specific than any other class; details can be found in
(Schlegelmilch, 1992). Note that methods are type-dependent, so we cannot restrict our view to
the class hierarchy. For base classes and a small set of derived classes the class and type hierarchy
coincide; we call them schema classes. For other derived classes, the hierarchies diverge.

For object o, we define c�o� �� fC � Classesjo � extent�C�g the set of classes that o belongs to,
and c��o� �� fC � c�o�j�D � c�o� � D 	 Cg the set of most specific classes in c�o�.

4.2. Choosing an Implementation

With early binding, all we need is the class c�v� that the variable v is declared for; the actual class of
the object that is bound to v is ignored. For a call to the methodm, we execute the implementation
impl�c�v��. However, early binding does not fit well into an object-oriented environment. With
late binding, we have to choose an implementation for method m from the set impl�c��o��. If it
contains more than one implementation, there is a method lookup conflict.

5. Conflict Resolution

The aim of conflict resolution is to have only one element in the set of conflicting implementations.
This can be done by adding derived classes so that we can resolve conflicts by redefining m in the
derived class. If there are n conflicting implementations, then the object is in at least n incompa-
rable classes, and what we need is a specialization of these classes where we can redefine m, thus
resolving the conflict. The important point here is that the object automatically has to belong to
this new class — this is only possible with derived classes.

An intersection class is a class C derived from other classes Ci by C ��
T
iCi. It is a proper

specialization of the classes Ci, so we can make it a schema class by inserting tuples �C�Ci� into
SPEC. If there already exists a specialization class C� of all the Ci, then we make C� a direct
specialization of C by replacing all the tuples �C�� Ci� by the one tuple �C �� C� in SPEC (Fig. 1).
This is allowed since the extent of C is the domain of C�. We need the intersection class even then
because C� will resolve conflicts only for objects in its extent which is only a subset of its domain.

Because of the derivation, an intersection class C automatically holds all objects that are in (the
intersection of) all its superclasses Ci. By redefining the method m in C, we resolve the conflict
between the implementations in the Ci for all these objects. Since intersection classes are schema
classes, any such class will replace its superclasses in c��o� and so reduce the number of conflicting
implementations. The last problem is to determine the classes that are necessary to resolve all
conflicts in a given schema.



��
��

��
��
��
��

��
��

Z
Z
Z
ZZ�

B
B
BN

�
�

�
���

C�

C �

Ci Cn

��
��
C �

��
��

��
��

��
��

��
��

Z
Z
Z
ZZ�

B
B
BN

�
�

�
���

�

. . . C� Ci Cn

C

. . .

��

Figure 1: Insertion of a derived class C as intersection of classes Ci, i � �� � n�

6. Generating the Intersection Classes

The basic idea of the algorithm is to generate all possible sets of classes, and if they could be
c��o� for any object o, make sure there is only one implementation in the corresponding set of
implementations for any method m. The means to ensure this are suitable derived classes, as
described above. This naive approach is not optimal: it will generate far too many sets of classes,
and it will add too many intersection classes because it ignores inheritance.

6.1. Observations

We start with some observations that allow us to optimize the generation of the sets of classes.

1. If we have already solved the conflict for a set of classes, doing so for any superset becomes
easier: we can replace the set in the superset by the generated intersection class, thereby
reducing the conflict set, because the object will automatically fall into the new class, and
late binding will ignore its superclasses.

2. Since an intersection class is properly integrated into the class graph, all subclasses inherit
its implementation. It is therefore necessary to start inserting intersection classes at the top
of the class graph.

3. For any object o, there will be no generalization classes in the set c��o�. An object appears
in a generalization class if and only if it is in any of the classes that are generalized. So, if a
generalization class is in c�o�, there will also be at least one subclass of it, and therefore the
generalization will not be in c��o�.

4. If a set S contains two classes with disjoint domain, there cannot be an object with S � c�o�,
and consequently no method lookup conflict can occur. However, in EXTREM only abstract
classes are pairwise disjoint, and specializations from different abstract classes. We therefore
call two classes C and D disjoint iff C � E and D � F holds for two different abstract
classes E and F .

5. In Sections 4 and 5, we considered only one method in the presentation. Since the method
lookup handles each method independent from others, the conflict resolution for one method
has no side effects on the conflict sets of other methods. Thus, we can resolve conflicts in
sets of classes for all methods simultaneously.



6.2. The Algorithm

With these preliminaries, we can now present the resulting algorithm:

1. We generate the power-set Sp �� P�Classes� of the set of all classes, and then filter out
superclasses from its elements: For each set S � Sp, if it contains two classes C and D with
C 	 D, we delete D from S. Sp will shrink due to duplicate elimination.

The sets that we generate are potential sets c�o� for some object o, and deleting superclasses
corresponds to taking c��o� instead of c�o�. This is justified by late binding because this will
ignore superclasses during the selection process.

2. In this step, we remove superfluous sets. These are sets that cannot be the set c��o� of most
specific classes for any object o, or do not require conflict resolution for obvious reasons:

 all sets S with jSj � � from Sp since for them jimplm�S�j � � holds with any method
m, so they cannot cause conflicts.

 all sets containing a generalization class because of observation 3.

 all sets containing disjoint classes because of observation 4.

3. The set Sp is then transformed into a list by applying a partial order 	M , defined as

S 	M S � �� S � S � � �C � S � � S � fDj�C�D� � SPECg

That means, we place a set S� after all its subsets and also after all sets S where S is the set
of all direct superclasses of some C � S�.4

This takes the first and second observation into account, making sure that there are no side
effects of intersection classes on sets found earlier in the list.

Note that it suffices to consider only the relation SPEC, but not GEN: step 2 removes all sets
containing generalization classes from the set Sp.

4. We iterate over the sets in the list in ascending order and make sure that implm�S� holds only
one implementation for each such set S and each method m:

(a) First, we apply observation 1: if there already exists an intersection class for a subset
of classes of S, we replace the subset by the corresponding intersection class. This has
to be done in parallel for all possible replacements.

(b) We then do the following test: if there is at least one method m in the set Methods of
all methods where � � jimplm�S�j holds, we generate a new intersection class for the
set S, and ask the user for each such methodm to redefine it in this class with a suitable
implementation.

if �m � Methods � � � jimplm�S�j then
create intersection class CS ��

T
C�S C

�m � Methods �
if � � jimplm�S�j then redefine m in CS

4See below for a proof that �M is a partial order on the set Sp generated up to now.



Due to the partial order, this new class does not interfere with classes that were defined
earlier in the process, or with base classes, since it is either a subclass of or incompa-
rable to them.

Because of the fifth observation, we can resolve conflicts for all methods without side
effects.

When implementing the algorithm, the steps 1, 2, and 3 can be combined into one step by gen-
erating elements of P�Classes� on demand, skipping the trivial ones, and using the insertion sort
algorithm to build up the list. However, we still have to build up this list, which is exponential in
the number of classes jClassesj.

6.3. The partial Order 	M

Finally, we have to prove that 	M is indeed a partial order on the set Sp after step 2. It is defined
as the union of two relations, where the first is the well-known subset relation � which is a partial
order on any set of sets. The second relation 	S is a partial order only on the set of sets generated
by step 1 of the algorithm:

Let’s assume 	S is not a partial order, i.e. not antisymmetric:

S 	S S
� � S � 	S S

�� �C � S � � S � fDj�C�D� � SPECg
� �D � S � S � � fEj�D�E� � SPECg

�� �C � S �� D � S�E � S � � �C�D�� �D�E� � SPEC
�� �C�E � S � � �C�E� � SPEC � � C 	 E

The last assertion is false because of step 1 of the algorithm: all elements of S� are
incomparable to each other under	. Consequently, the assumption was false, and 	S
is a partial order.

The second step is to show that 	M �� �� 
 	S� is antisymmetric.

Again we assume it is not, and derive the contradiction:

�S� S �� �	M � �S �� S� �	M

�� �S� S �� �� � S � 	S S

Since both � and 	S are antisymmetric, this mixed case is the only possible one.

�� S � S � � �C � S � � S � fDj�C�D� � SPECg
�� �C � S �� D � S � S � � �C�D� � SPEC

As before, this is a false statement, because step 1 of the algorithm deletes D from S�

if it finds such a pair �C�D�. Therefore, the assumption must have been false, and	M
is a partial order.



��
��

��
��

��
��

��
��

��
��

�
�
���

�
�

��I

�
�

��I

�
�
���

D

B

E

A

C

m �� i�

m �� i�

m �� i�

m �� i�

m �� i�

Figure 2: The class hierarchy of the sample schema

6.4. An Example

We use a simple schema with five classes A� � � � � E, with a class hierarchy (Fig. 2) defined by
GEN � � and SPEC � f�B�A�� �C�A�� �D�B�� �E�B�g, and a method m with three implemen-
tations: implm � fA �� i�� C �� i�� E �� i�g. There are no conflicts due to multiple inheritance:
B and D inherit the implementation i� from A. We can clearly see conflicts caused by multiple
class membership, for example for objects that belong to both C and D.

The first step builds up Sp and filters out superclasses, and step 2 removes trivial sets; this gives us

Sp � ffB�Cg� fC�Dg� fC�Eg� fD�Eg� fC�D�Egg

from the original 32 sets. In the third step, we apply the partial order 	M to this set, transforming
it into the list hBC�CD�CE�DE�CDEi.

We now go through the list and check impl�S� for each element S. The first element requires the
intersection class B C , defined as intersection of B and C. B C is a specialization of both B and
C, so we add tuples �B C � B�� �B C � C� to SPEC; an already existing specialization of B and C
would become a subclass of B C but there is none. Let us redefine our method m in B C to use
implementation i�; it could have been any implementation, even a new i�. The next three sets cause
the generation of similar classes C D , C E , and D E , for which we choose implementations i�,
i� and i� for m.

For the last set fC�D�Eg, we can for the first time apply the first step of the loop: it contains the
subsets fC�Dg, fC�Eg, and fD�Eg, which are now replaced by their corresponding intersection
classes C D , C E , and D E , giving the set S � fC D �C E �D Eg, with impl�S� � fi�� i�g.
This requires the intersection class C D E , for which we choose implementation i�.

Now we have resolved all conflicts: objects may now be in any subset of classes5 and still have a
well-defined reaction on a call to method m.

5with the requirement to be in all superclasses of a class it is in, of course.



6.5. An Incremental Algorithm

It does not make sense to give an incremental version of the algorithm because it would create
intersection classes that could become obsolete later. Since the user can create intersection classes
on his own, the classes created by the algorithm are not uniquely identifiable and can therefore
only be removed by the user, thus causing unnecessary hassle.

Anyway, to integrate a new class into the class graph and resolve conflicts we simply start with a
smaller set of classes, namely all sets of classes containing the new class. The algorithm then goes
on as in the full version.

7. Related Work

We already mentioned in the introduction that typical programming languages require an object to
have one most specific class and leave it up to the user to define all the classes he will need. In
the narrow context of a single application, this is not too limiting, but for databases, the situation
is different since they have to store objects for several applications. These applications generally
do not agree on the exact class of an object, making role systems and object migration necessary.
Therefore most of the following approaches are database models.

In the logic-based model DOL (Wieringa et al., 1994), a class can have several partitions into
subclasses; such a partition is called static if an object may not migrate between its classes, and
dynamic otherwise. All possible combinations of classes from different partitions have to be in-
stantiated, so an object is essentially in exactly one class, the most specific one. In addition, an
object can have any number of roles which are dependent objects of special classes; roles can del-
egate method calls to their owner. (Wieringa et al., 1994) does not discuss redefinition of methods
in roles and therefore has no conflicts to resolve.

The object model of the object-oriented database system OpenODB (Ahad and Dedo, 1992) allows
objects to be in more than one class, but disallows method redefinition in subclasses. Each method
in OpenODB has exactly one implementation, so there cannot be any conflicts. However, method
redefinition is considered one of the prime characteristics of object-oriented systems.

The semantic object model TROLL (Hartmann et al., 1994) in its revised version allows objects
to have several roles without requiring a most specific role. Roles may redefine methods, but in
TROLL you can only specify additional actions for events instead of completely new implementa-
tions, to ensure semantic properties. This excludes optimizations in subclasses as well as omitting
redundant actions, but avoids conflicts since the system simply executes all associated actions at
the arrival of an event. On the other hand, order-dependencies in the set of actions are not handled.

The persistent programming language Fibonacci (Albano et al., 1995) uses roles just like TROLL

but allows for arbitrary redefinition. It offers two different kinds of method lookup to cope with the
conflicts: the first one is equivalent to static binding since you have to name a role to see the role-
specific behaviour, while the second one implements late binding but orders incomparable roles by
the time the object acquired them. This results in strange semantics for objects with the same set
and hierarchy of roles but different history when the late binding variant of method lookup is used.

In (Gottlob et al., 1994), the authors propose an object model very similar to that of Fibonacci.



Objects consist of one class object and a set of role objects. Methods can be called for roles,
showing role-specific behaviour, as well as for the object. With respect to method redefinition, this
approach resembles TROLL: it allows any redefinition in roles but executes all the implementations
in the most-specific roles, combining the results in one out of a fixed number of ways. Like
TROLL, this avoids the combinatorial explosion only for semantic overriding but offers no help if
method redefinitions for optimization are necessary; one has to make the role with the optimized
implementation the one most-specific role — this is where our algorithm comes into play.

Other alternatives are rule-based implementation selection and ordering of implementations. In
both approaches the method lookup has two stages: the first computes the set of applicable imple-
mentations just like conventional approaches, but the second stage uses a rule set or a total order
to select one of them. In CLOS (Keene, 1989), classes have a list rather than a set of superclasses,
and the list orders the classes and with them their implementations; Dylan (Bowen and Hall, 1993)
uses a metric to order the superclasses and picks the implementation of the least one. Both pro-
gramming languages use this approach only to resolve the conflicts caused by multiple inheritance
— they still have the simpler object model.

The approach presented in this paper refines the technique introduced in (Schlegelmilch, 1992),
where view classes were added without integrating them completely into the class lattice. The
resulting algorithm was simpler, but required more classes because it could not use inheritance. In
this paper, we are able to place the required classes into the class and type lattice, so that subclasses
can profit from them.

An early version of Cecil (Chambers, 1993) supported predicate classes that are simple view
classes: a predicate defines class membership, so that an object may belong to several incom-
parable classes. However, the resulting conflicts were not resolved but caused a runtime message.

8. Conclusion

Our aim was to allow arbitrary redefinitions in subclasses while still having late binding with
the traditional method lookup strategy. We achieved this by adding derived classes with method
redefinitions. The advantages of our approach are:

 The method lookup strategy is simple and straightforward, as opposed to the twofold solution
in Fibonacci (Albano et al., 1995). Once we know one most specific class of an object where
the method in question is defined, any path upwards through the class graph will lead to the
correct implementation.

 Each object shows uniform behaviour independent of the context it is used in. This is in
contrast to static binding and its variants as used in Fibonacci or in (Gottlob et al., 1994).
Note that our algorithm can be used for role-specific behaviour, too; we simply start with
fCjC � Rg for a role R instead of the full set Classes.

 We do not restrict the kind of refinement as TROLL does, and do not have to care for order-
dependencies. Also, we need not prescribe algorithms to combine sets of single results as in
(Gottlob et al., 1994).

 Unlike (Wieringa et al., 1994), our approach avoids the combinatorial explosion of sets of
subclasses: only necessary derived classes are added.



 Intersection classes are intuitive, and already supported by EXTREM; we do not need an
additional concept in EXTREM just to cope with lookup conflict resolution.

However, there are still some open points:

 Since the placement of arbitrary derived classes in the class hierarchy is undecidable, we
restricted our view to schema classes. Other derived classes can be ignored as long as they
do not redefine methods; if they do, we revert to static binding (see (Schlegelmilch, 1992)
for details).

 Once the algorithm has terminated, the generated intersection classes are not distinguishable
from those intersection classes that belong to the application domain. However, all resolved
conflicts have their counterpart in the application domain, so the algorithm can be seen as a
consistency check: in a behaviourally consistent model it will not have to add classes.

The work presented in this article deals with single dispatch methods, i.e. implementation selection
based on a single receiver object; we intend to include multi-dispatch methods in EXTREM and
will extend the algorithm to handle this case as well.

References

[Ahad and Dedo, 1992] R. Ahad, D. Dedo. OpenODB from Hewlett-Packard: a commercial
object-oriented database management system. Journal of Object-Oriented Programming,
5(1):31–35. 1992.

[Albano et al., 1995] A. Albano, G. Ghelli, R. Orsini. Fibonacci: A Programming Language for
Object Databases. VLDB journal, 4(3). 1995.

[Bowen and Hall, 1993] T. D. Bowen, K. M. Hall. Towards a Better Understanding of Dylan.
Technical report, Laboratory for Applied Logics, University of Idaho. 1993.

[Chambers, 1993] C. Chambers. Predicate Classes. In ECOOP ’93 Conference Proceedings,
Universität Kaiserslautern, Institut für Informatik, Kaiserslautern, Germany. 1993.

[Goldberg and Robson, 1983] A. Goldberg, D. Robson. Smalltalk 80: The language and its im-
plementation. Addison-Wesley. 1983.

[Gottlob et al., 1994] G. Gottlob, M. Schrefl, B. Röck. Extending Object-Oriented Systems with
Roles. ACM Transactions on Information Systems. 1994.

[Hartmann et al., 1994] T. Hartmann, G. Saake, R. Jungclaus, P. Hartel, et al. Revised Version
of the Modelling Language TROLL (Version 2.0). Informatik-Bericht 94–03, Technische
Universität Braunschweig. 1994.

[Heuer et al., 1990] A. Heuer, J. Fuchs, U. Wiebking. OSCAR: An object-oriented database sys-
tem with a nested relational kernel. In Proc. of the 9th Int. Conf. on Entity-Relationship
Approach, Lausanne, pp. 95–110. Elsevier. 1990.



[Heuer and Sander, 1991] A. Heuer, P. Sander. Classifying object-oriented query results in a
class/type lattice. In Proceedings of the 3rd Symposium on Mathematical Fundamentals
of Database and Knowledge Base Systems, Rostock, MFDBS 91, vol. 495 of Lecture Notes
in Computer Science, pp. 14–28, Berlin. Springer-Verlag. 1991.

[Hörner and Heuer, 1991] C. Hörner, A. Heuer. EXTREM — The structural part of an object-
oriented database model. Informatik-Bericht 91/5, TU Clausthal. 1991.

[Keene, 1989] S. Keene. Object-Oriented Programming in Common LISP — A Programmer’s
Guide to CLOS. Addison-Wesley, Reading, MA. 1989.

[Meyer, 1993] B. Meyer. Eiffel: The Language. International Series in Computer Science.
Prentice-Hall, Englewood Cliffs. 1993.

[Reiser and Wirth, 1992] M. Reiser, N. Wirth. Programming in OBERON — steps beyond Pascal
and Modula. acm press. Addison-Wesley, New York. 1992.

[Schlegelmilch, 1992] J. Schlegelmilch. Inheriting Methods in OSCAR. Master’s thesis, Com-
puter Science Dept., TU Clausthal, Erzstraße 1, D-38678 Clausthal–Zellerfeld, Germany.
1992. Available only in german.

[Ungar and Smith, 1991] D. Ungar, R. B. Smith. SELF: The Power of Simplicity. LISP and
Symbolic Computation, 4(3). 1991.

[Wieringa et al., 1994] R. Wieringa, W. de Jonge, P. Spruit. Roles and dynamic subclasses: A
modal logic approach. In M. Tokoro, R. Pareschi (eds.), Proceedings of the 8th European
Conference on Object-Oriented Programming (ECOOP’94), Bologna, Italy, vol. 821 of Lec-
ture Notes in Computer Science, pp. 31–59, Berlin. Springer-Verlag. 1994.


