
Flexible Publication Workflows Using Dynamic
Dispatch

Sebastian Schick, Holger Meyer, and Andreas Heuer

Database Research Group
University of Rostock

{schick,hme,heuer}@informatik.uni-rostock.de

Abstract. Publication processes within Digital Libraries are seldom
supported by a workflow management system (Wfms). Publication work-
flows are often described within the application logic due to its data
dependency — publication processes are data-driven. Though, docu-
ments and the processes should not be treated independently of each
other. Rather, processes should dynamically react to changes of docu-
ment structure and content.
We present an approach for flexible, data-centric publication workflows.
The approach extends the control-flow perspective of a Wfms with con-
cepts for handling process adaption at run-time, depending on a docu-
ment’s structure and its content.

Keywords: Digital Library; Publication Process; Flexible Workflow Mod-
eling

1 Introduction

Nowadays, Digital Libraries (DLs) are used to manage all kind of document
types, e.g. academic articles, handwritings or course materials. A multimedia
document encompasses different kinds of media types, e.g. text, video and au-
dio. These media types are associated with lots of specific operations, which have
to be described and implemented in the DL system. For example, supporting
content based retrieval on each media type requires a complex feature extrac-
tion and indexing process. That’s why the integration of multimedia documents
within DLs is a challenge.

A common solution to control publication processes is the integration of a
Wfms within the DL. Usually, the publication process of a certain document
type is described by a process model. This model consists of activities which
define atomic processing steps within the publication process. Besides this, exe-
cution constraints, resources (e.g. authors or IT services) and workflow relevant
data have to be defined within the scope of a process model. The effort to
maintain these process models increases with each document type added to the
document model. Thus, documents and the processes should not be treated in-
dependently of each other. Processes have to react to document changes in a
flexible way, i.e. often the control flow has to be adapted.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universität Rostock, Lehrstuhl Datenbank- und Informationssysteme: Dbis Repository

https://core.ac.uk/display/229840701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Schick, H. Meyer, and A. Heuer

In this paper we begin with the control flow perspective of the workflow
and extend it with operations to handle dynamic process changes depending on
document structure and content. We introduce a model to define relationships
between a document’s structure and content and dynamically adapted process
structures.

The rest of the paper is organized as follows. In Section 2, we provide a
motivating example together with requirements for publication process modeling
and discuss related work. In section 3, we give a model for dynamic publication
process specification and describe the composition of flexible process parts. The
implementation of the approach using the Yawl [1] workflow engine is shown
afterwards. Finally, in Section 4 we conclude and give an outlook on further
activities.

2 Publication Processes and Digital Libraries

2.1 Running Example

The Publication Process describes the creation of complex structured documents
in digital libraries. In DLs authors often lack support during the creation of
complex multimedia documents, e.g. when they structure and assemble different
media types into one logical document. These systems often assume that this
work was done before. Nevertheless, some processes within the DL depend on the
content type like indexing, which runs differently for media types like text, image
or video. In addition, content creation should not be handled independently of
its usage.

lecture

course

lecture...

body

document

process fragment (feature extraction)

process management system (YAWL)

text

1. key frame
extraction

2. color
histogram

3. sub-title
4. keyword

extraction
5. stemming

6. texture

7. keyword
extraction

8. stemming

video

image
get
docs

YAWL primitives

OR-joinOR-split

header

(a) (b)

AND-joinAND-split Atomic
task

Input
condition

Output
condition

Fig. 1. Workflow for a course management

Fig. 1 (a) shows a simple document for a course management system. A
course document consists of several lectures. Each individual lecture can make
use of different media types, e.g. a slideshow consisting of a sequence of images,
a video shown and discussed in the lecture and the full text of the lecturer’s
notes. In sub-figure (b) the feature extraction part of the document indexing in

Flexible Publication Workflows Using Dynamic Dispatch 3

the DL is depicted. When the document for a specific lecture contains a video,
key-frame extraction takes place first. Then methods for feature extraction for
still image are applied to the sequence of key-frames, e.g. the calculation of the
color histogram for each image. When sub-titles exist, they are extracted and
text indexing takes place afterwards. This can be done in parallel to key-frame
extraction and indexing but only if a video is present in the document.

So, some of the activities can be carried out in parallel, e.g. key-frame extrac-
tion in parallel to sub-title analysis, but others can take place only in a certain
order, e.g. sub-title extraction before full text indexing. Some activities can only
take place if the related media type is present in the document. There are other
sub-tasks omitted here which must be executed in dependence of certain docu-
ment parts. For example different metadata extractors are used for different file
formats.

2.2 Requirements and Publication Process Modeling

There is a strong need for the description of both the content specific and the
application-specific parts of the publication process. This is reflected by depen-
dencies between documents or certain document parts (based on their structure
and/or content) and instances of workflow tasks. As shown in the example above,
different document parts need different indexing techniques, which are performed
by sophisticated sub-workflow sometimes. This poses different requirements on
the overall process modeling part of a DL. We list some of them which can be
tackled by our approach:

Req. 1 Avoid complex process specifications. Moreover, the process speci-
fication should concentrate on the application-specific parts of the publication
process in a comprehensive manner. Req. 2 Decouple the application-specific
from the content specific part of the process specification. Ideally, a high level de-
scription of the publication process concentrates on the individual, application-
specific phases. Req. 3 Support the reuse of process parts. Req. 4 Allow for run-
time adaption of document specific process parts. Each process instance should
only contain process parts which are directly related to the active documents it
processes. Req. 5 Document changes have to be associated with process parts.
Editing operations (e.g. insert, delete, . . .) on documents influence process spec-
ifications at run-time.

2.3 State of the Art

Within the Digital Library Community different approaches are discussed. Sup-
porting authors by defining flexible interfaces is proposed in [3] and [7]. We
propose the use of a Wfms that can control all processes within a digital li-
brary, because of supporting authors through flexible user interfaces does not
consider technical services such as indexing of different document types.

SCOPE [6] is a framework for generic publication processes. It uses publica-
tion components as part of the publication chain which transforms documents
from one state to another state. However, the described publication process refers

4 S. Schick, H. Meyer, and A. Heuer

only to publication of documents e.g. MS Word or Latex. Flexible building of
collections or complex document structures is not considered.

Greenstone [2] is a Framework for building digital library collections. The
architecture is divided into seven parts which represents phases within the pub-
lication process. Within these parts different plug-ins are managed to process
documents in the right way. Nevertheless, the publication process is restricted
to seven phases and a dynamical adaption of publication process is also not
possible. Flexibility is supported only by the choice of various plug-ins.

Current Wfms offer different approaches to support flexibility. A common
solution to manage different publication processes are process variants [4, 5]. Ap-
plied to DLs, process variants are produced by using a reference process model
(e.g. publication process) which is configured according to different requirements,
e.g. different document types. The intention is to avoid choices within pro-
cess models where decisions can be predicted. Since the publication process is
highly dynamic during runtime, the model’s configuration has only a small ef-
fect. Content-related process parts must still be completely modeled (Req. 2,4,5
are not met).

Pockets of flexibility [8] uses the concept of open instances. Within the process
model pockets of flexibility are defined within a core process. A pocket is a special
build activity which composes activities depending on different constructs (e.g.
fork sequence, etc.). This approach is very similar to ours regarding the choice
of the late modeling concept [10]. However, the composition is left to the user
and only restricted afterwards by conditions. Constraints related to external
environment are not considered at all (Req. 5 is violated).

3 Flexible Document Aware Workflows

To illustrate our approach for dynamic publication processes Fig. 2 outlines the
newly introduced concepts. On the left side of Fig. 2 the dynamic process model
is depicted together with the related logical document model underneath. The
two models will be discussed in more detail in Sec. 3.1. The dynamic parts of
the approach, the process composition and execution, are shown in the center
and right part of Figure 2. The details will be discussed in Sec. 3.2.

3.1 Dynamic Process Specification

The dynamic publication process model (cf. Fig. 2) will be adapted in depen-
dency of the current document instances during runtime using a dynamic dis-
patch of activities. Therefore, our approach observes document changes and spec-
ifies where corresponding changes in the workflow should take effect, i.e. where
dynamically generated sub-processes are executed. We use a notation of a core
process which is extended with special observer and generator tasks. In order
to achieve flexibility within the publication process the full specification of the
process model is completed at runtime.

Flexible Publication Workflows Using Dynamic Dispatch 5

lo
gi

ca
l d

o
cu

m
en

t
st

ru
ct

u
re

p
h

ysical d
o

cu
m

en
ts

d
yn

am
ic

 p
ro

ce
ss

 m
o

d
el

p
ro

cess in
stan

ce
Composition ExecutionModeling

M
r

1,
2

Ot2
Gt41t 3t

4actset

Mr
2,

2

2b3b4b 1b

Data Access Framework

a

b1

b3

a

4actset

SN4

CR 4

4refset

...

211,4 bbr
312,4 ||bbr

Fig. 2. Supporting Dynamic Publication Processes

Bricklets bi are the building blocks for re-using specific activities which are
bundled into sub-processes (Req. 3). They are not directly part of the process
specification but will be executed at well-defined points. The bricklets are a mean
for separating the application-specific process from data specific parts which rely
on current document structures (Req. 2).

Definition 1 (Bricklet). Let B = {b1, b2, · · · , bi} with i ∈ N be the set of
bricklets. A bricklet bi is a valid process model, which contains at least one task
definition. Bricklets will be assembled into subnets SNi.

Observer tasks tOi define points within the dynamic process model where
the status of documents to be published should be investigated. Usually, they are
inserted after activities which cause major changes of the document. The task
tO2 in Fig. 2 denotes an observer task which makes use of the matching rule set
(RM

2). The rules (rM2,1, r
M
2,2) specify which activities should be added or removed

from the process if there are certain parts in document or if they are absent.

Definition 2 (Observer Task). Let TO denote the set of observer tasks
tOi = (RM

i ,match) with i ∈ N . Then:

– RM
i = {rMi,1, rMi,2, · · · , rMi,j} with j ∈ N is a set of matching rules.

– rMi,j : match(pexprj) 7→ (op, tGm, Bj , pfragj) is a matching rule.
– pexprj is used to specify data parts expected within the data. It is basically

a XPath expression.
– op = {add, delete,merge, undo} is the set of change operations.
– tGm ∈ TG is a generator task.
– Bj ⊆ refsetm is a set of predefined bricklets.

6 S. Schick, H. Meyer, and A. Heuer

– pfragj contains the resulting XPath 1.0 node-set using pexprj.

Whether a document fragment exists or not is determined using the path ex-
pression pexprj and the function match(pexprj). Using our Data Access Frame-
work (DAF), each expression is evaluated directly on the documents within the
appropriate repositories [9]. If the expression gets evaluated true corresponding
bricklets are added to or removed from the construction set actset4 of generator
tasks tG4 . Furthermore, the selected fragments are returned as pfragj .

Matching rules RM
i associate parts of a document (based on content and/or

structure) with a set of bricklets (activities) and define points in the control
flow where the activities should be scheduled (Req. 2 & 4). As an consequence,
an XPath expression will describe the parts within document instances which
should (not) match and trigger activities in the subsequent workflow. Sometimes
the existence or absence of a document fragment will not only add but remove
also scheduled activities depending whatever the default behavior may be. If for
example sub-titles are added to a video then their fulltext can be indexed and
content based analysis of key-frames can be omitted.

Each pexprj within a matching rule rMi,j is closely associated with an operation
op. Where an operation op may only use bricklets from set refseti.

Definition 3 (Change Operation). Let op = {add, delete,merge, undo} de-
note the set of possible operations to manipulate the construction set actseti
(hereinafter actset) of generator tasks tGi .

The add operation appends the set of activated bricklets Bj to the activation
set actset. The merge operation appends a set of predefined bricklets Bj only into
actset if they are not member of it. And the delete operation removes bricklets
from actset. B−1

j is the compensation of Bj and the undo operation appends a set

of compensating bricklets B−1
j to the activation set actset to rollback operations

Bj after a data fragment was removed from the document.

Generator tasks1 tGi specify points within the flow of control where brick-
lets are combined at run-time to build up a subnet of activities, e.g. SN4 in Fig.
2. The resulting subnet is then deployed and executed. Essentially, the generator
tasks are responsible for the dynamic dispatching of the activities/bricklets like
selecting and executing method calls in object-oriented systems (Req. 4 & 5). To
build up the subnets a set of composition rules (RC

i) and set of scheduled activ-
ities (actset4) is used. The scheduled activities must belong to a set of allowed
activities (refset4) per distinct generator task. If a generator task is executed
within the process, it has to compose a valid execution order for the activated
bricklets. The generator tasks provide flexibility into the process instance using
a late modeling, descriptive approach and under-specification [10].

Definition 4 (Generator Task). Let TG be the set of generator tasks
tGi : (RC

i , actseti, refseti) 7→ SNi with i ∈ N . Then:

– SNi is a valid subnet executed if tGi is processed within the control flow.

1 It resembles the idea of pockets of flexibility introduced in [8].

Flexible Publication Workflows Using Dynamic Dispatch 7

– RC
i = {rCi,1, rCi,2, · · · , rCi,j} with j ∈ N defines a set of construction rules.

– actseti is a set of active bricklets (bk) and corresponding number of data
fragments (f(bk)) chosen by different observer tasks tOm.

– refseti defines all bricklets allowed for tGi .

Construction rules RC
i define relationships between bricklets and how they

are combined into a resulting control flow. If a bricklet is a pre-requisite for
another, a sub-sequent order can be specified. Further, a bricklet can be executed
sequential or parallel n-times. If not stated otherwise, bricklets can be executed
arbitrarily and in parallel.

Definition 5 (Construction Rules). Let RC
i be the set of construction rules

rCi,j. A construction rule rCi,j ∈ {bk ≺ bl, bk
n
≺, bk

n

||} defines how a bricklet bk is
inserted into the subnet SNi iff bk ∈ actseti.

– bk ≺ bl: Iff bricklet bl ∈ actseti, bl is immediately executed after bk.

– bk
n
≺: The bricklet bk will be inserted sequentially n times.

– bk
n

‖: The bricklet bk will be inserted n times in parallel.

By using these concepts, we avoid complex process structures (Req. 1). The
primary process specification is a model of the application’s point of view. Wher-
ever message-specific activities have to be carried out, they are hidden by genera-
tor tasks and descriptive matching and composition rules. These rules determine
the dynamic execution of a re-usable set of message-specific activities.

3.2 Composing Sub-processes

After the activation of bricklets, which is done by the observer tasks, the com-
position of a valid sub-process has to be controlled by the generator task (cf.
center and right part of Fig. 2) . Therefore, we provide an algorithm for com-
bining bricklets bk into a sub-process using the construction rule set RC

i . The
composition is done during runtime to offer a flexible generation of sub-processes.

Since actseti changes during runtime, SNi only needs to be generated when
tGi is activated. This is a two-step procedure. First a directed acyclic graph is
created with all activated bricklets bn ∈ actseti. In the second step we transform
the graph into a valid sub-process (Yawl subnet).

Definition 6. Let GC
i = (V,E) be a digraph. V is the set of vertices and E

is the set of directed edges. The graph GC
i contains only one starting vertex

”start” ∈ V and one ending vertex ”end” ∈ V .

Definition 7. The indegree deg−(bk) is the number of head endpoints for brick-
let bk. The outdegree deg+(bk) is the number of tail endpoints for bk.

Listing 1 shows a simple algorithm to calculate SNi. Since the subnet is
composed during runtime no deferred choice is needed and no composition rule

8 S. Schick, H. Meyer, and A. Heuer

is mapped to OR-splits, either. We avoid cycles in the constructed subnet graph
by enforcing acyclicity of the construction rule set RC

i at modeling time2.

Listing 1. Algorithm to calculate subnets

1 initialize G with G.V = {start, end} ∪ actseti and G.E = {}
2 foreach rCi,j ∈ RC

i {

3 if rCi,j equals bk ≺ bl and {bk, bl} ⊆ actseti {

4 add directed edge (bk, bl) }}

5 foreach rCi,j ∈ RC
i {

6 // expand replaces bk by n nodes bk.m of type bk ∧m ∈ {1, . . . , n}

7 if rCi,j equals bk
n
≺ and bk ∈ actseti {

8 n = actseti.f(bk); expand(bk, n);

9 add directed edge between successive bk.m }

10 if rCi,j equals bk
n

|| and bk ∈ actseti {

11 n = actseti.f(bk); expand(bk, n)
12 if ∃rCi,m ∈ RC

i ∧ ri,m equals bk ≺ bl ∧ bl ∈ actseti {

13 foreach bk.o ∈ {bk.1, . . . , bk.n} { add directed edge (bk.o, bl) }}

14 if ∃rCi,m ∈ RC
i ∧ ri,m equals bl ≺ bk ∧ bl ∈ actseti {

15 foreach bk.o ∈ {bk.1, . . . , bk.n} { add directed edge (bl, bk.o) }}}}

16 foreach bk ∈ G.V {

17 if deg−(bk) = 0 { add directed edge (start, bk) }

18 if deg+(bk) = 0 { add directed edge (bk, end) }}

The digraph for subnet SNi is not executable within Yawl, therefore it is
transformed into a valid Yawl net. The transformation is based on rules R1...6:

R1 maps the start node to a Yawl Input Condition where the process starts.
R2 maps the end note to an Output Condition where the process ends.
R3 maps a sequential path from node bi and bj to corresponding tasks bi, bj .
R4 maps the split of node bk to a And-Split task bk. Nodes bi, bj are mapped to

corresponding tasks bi, bj . Node bn is mapped to a And-Join task bn.
R5 if the start node start is part of a parallel execution, start is mapped to an

Input Condition together with an And-Split task a. The dummy task a will
be connected with the following tasks bi . . . bj .

R6 if the end node end is part of a parallel execution, end is mapped to a Output
Condition together with a dummy And-Join task a. The dummy task a will
be connected with the incoming tasks bi . . . bj .

Example 1. In Fig. 3 (a) the process from Fig. 1 is realized using our approach.
Task t1 (get docs) is modeled as an observer task which controls the dynamic
dispatch of activities in generator task t2 (feature extraction). Task t2 provides
the set of selectable bricklets refset2 = {b1, b2, b3, b4, b5, b6}, which correspond
to the tasks (1. . . . 6.) in Fig. 1. The observer task t1 uses a set of matching rules
RM

1 = {rM1,1, rM1,2, rM1,3} with rM1,1 = add(t2, b6, ”//course[../doctype=’image’

]”), rM1,2 = add(t2, {b1, b2, b3, b4, b5}, ”//course[../doctype=’video’]”) and

2 This can be done by applying RC
i on refseti

Flexible Publication Workflows Using Dynamic Dispatch 9

indexget docsO

b1 b4 b5start end

start end

(a)

(b)

b1a

b3

a

(d) start end

b1 b2

b4

(c)

},,{ 3,12,11,11
MMMM rrrR },,,,{ 5,24,23,22,21,22

CCCCCC rrrrrR },,,,,{ 6543212 bbbbbbactset

},,,,,{ 6543212 bbbbbbrefset

feature
extractionG

(e)

t1 t2
t3

b2 b3 b6

b1 b4 b5b2 b3 b6

b1

b4
b5

b2

b3

b6

b1

b4

b6

b4

b5

b6

b6

Fig. 3. Digraph construction and transformation into a Yawl subnet

rM1,3 = add(t2, {b4, b5}, ”//course[../doctype=’text’]”)3. For the sub-process

construction in t2, the rule set RC
2 = {b1 ≺ b2, b3 ≺ b4, b4 ≺ b5, b1

2
≺, b4

2

‖, b6
2

‖}
is used, which reflects the order of the activities in Fig. 1. The observer task t1
activates the bricklets in actset2 = {b1, b2, b3, b4, b5, b6} due to matching rules
rM1,1, rM1,2, rM1,3.

Fig. 3 (b)–(d) depict the construction of digraph G. First, all activated brick-
lets (b1, b2, b3, b4, b5, b6) will be inserted into G.V (Fig. 3 (b)). The application of
rules b1 ≺ b2 (edge from b1 to b2), b3 ≺ b4 (edge from b3 to b4) and b4 ≺ b5 (edge
from b4 to b5) is shown in (c). The application of the other rules is shown in (d):

b1
2
≺ (edge from first b1 to second b1), b4

2

‖ and b6
2

‖ (both b4 and b6 are dupli-
cated). The final step (d) connects all vertices with deg−(bi) = 0 or deg+(bi) = 0
with the ”start” and ”end” nodes. The Yawl subnet (e) results from transform-
ing digraph G into Yawl. This subnet gets deployed and executed at runtime
by generator task t2.

The approach presented above was exemplified using Yawl [1] and the cor-
responding Wfms. Two Custom Component Services for the observer and gen-
erator task types were implemented. We have extended the Yawl editor to
describe the matching and construction rule sets. This allows for modeling ev-
erything within the standard Yawl environment. The bricklets are implemented
as Yawl nets which contain always a start and an end condition.

3 Tasks for keyword extraction(4.) and stemming (5.) are reusable for tasks 7. and 8.

10 S. Schick, H. Meyer, and A. Heuer

4 Conclusion and Future Work

The publication of multimedia documents in DLs is a field that bears much
practical relevance. We provided an approach for a flexible publication process
of multimedia documents in DLs. In contrast to other approaches, we achieve the
flexibility by monitoring document changes and specifying at which part in the
control flow corresponding changes should take effect. This is done by extending
a Wfms with observer tasks to monitor the document changes. Generator tasks
allow for flexible construction and execution of process instances. Our technique
presented here can be described as a late modeling, descriptive approach using
under-specification [10]. The main contribution of our approach is that both
context conditions on external data and the resulting changes of the process
instances are described within one process model. Additionally, all components of
our approach are provided and executed by extensions of the Wfms Yawl. The
prototype implementation finally allows for a detailed case study and evaluation.

Future work will extend the construction rule mechanism to provide more
freedom in combining bricklets (process fragments) into sub-processes. The con-
struction of sub-processes should take data dependencies between bricklets into
account, e.g. based on data flow analysis. Additionally a library of bricklets is
built, which offers a set of generic operations for different media types, e.g. ex-
tracting metadata, for converting file formats, thumbnail generation, and others.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language.
Information Systems 30(4), 245–275 (2005)

2. Buchanan, G., Bainbridge, D., Don, K.J., Witten, I.H.: A new framework for build-
ing digital library collections. In: JCDL. pp. 23–31 (2005)

3. Davis, S., II, P.L.B., Cifuentes, L., Francisco-Revilla, L., Furuta, R., Hubbard, T.,
Karadkar, U., Pogue, D., III, F.M.S.: Template-based authoring of educational
artifacts. In: JCDL. pp. 242–243 (2006)

4. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M.H., Rosa, M.L.: Config-
urable workflow models. Int. J. Cooperative Inf. Syst. 17(2), 177–221 (2008)

5. Hallerbach, A., Bauer, T., Reichert, M.: Managing process variants in the process
life cycle. In: ICEIS (3-2). pp. 154–161 (2008)

6. Müller, U., Klatt, M.: Scope — a generic framework for xml based publishing
processes. In: ECDL. pp. 104–115 (2005)

7. Park, Y., Karadkar, U., Furuta, R.: Component-based authoring of complex, petri
net-based digital library infrastructure. In: ECDL. pp. 22–29 (2010)

8. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. Inf. Syst. 30(5), 349–378 (2005)

9. Schick, S., Meyer, H., Heuer, A.: Enhancing workflow data interaction patterns by
a transaction model. In: ADBIS Research Communications (2011), (Accepted for
Publication)

10. Weber, B., Sadiq, S., Reichert, M.: Beyond rigidity — dynamic process lifecycle
support. Computer Science — Research and Development 23, 47–65 (2009)

