
American Research Journal of Computer Science and Information Technology Original Article

Volume 1, Issue1, June-2015

www.arjonline.org 1

PCM- oMaRS Algorithm: Parallel computation of

Median- Omniscient Maximal Reduction Steps

Ammar Suhail Balouch
1

Associate Prof. Dr. Eng.

Database Research Group

Department of Computer Science

University of Rostock

Abstract: The goal of a distributed computation algorithm is to determine the result of a function of numerical

elements, which are distributed in 𝑛 multi sets.It is known that computation of holistic aggregation functions on
distributed multi sets indeed requires more work than non holistic aggregation functions. But with this article we

will prove that the computation of a holistic function, which named exact median, can be computed efficiently by

providing both a candidate finding and a deterministic location algorithms which computes the position of exact

median, dispelling the misconception that solving distributed median computation through parallel aggregation is

infeasible. Some of most important part in Big Data field is to evaluate massive data values. A special case in this

field is the calculation of 𝑘𝑡ℎ smallest values (specially the median) of distributed multi sets containing enormous
data. Many approximation algorithms and algorithms with iterative or recursive steps of determination of median

give solutions for the computation of median. But firstly sometime approximate value is dangerous for some data

evaluation projects or researchs and secondly with other algorithms, the data blocking time is too long through the

iteration or the recursionbetweenglobal node and local nodes. This article focuses on a solution that gives a best

effectively computation for this problem named PCM-oMaRS algorithm. The PCM- oMaRS algorithm guarantees

the maximal reduction steps of the computation of the exact median in distributed multi sets and proves that we

can compute the exact median effectively without needing the usage of recursive or iterative methods at the
global communication level, which reducesthe blocking timemaximally. This algorithm provides more efficient

execution not only in distributed multi sets even in local multi set with enormous data.

Keywords: Median, Parallel Computation, Algorithm, Big Data, Evaluation, Analysis, Distributed Multi sets

I. INTRODUCTION

The parallel execution of aggregations is an interesting area. It be growing recently and plays important roles, thanks

emerging application fields such as, e.g. data mining or sensor networks. The goal of distributed aggregation is to

compute an aggregation function on a multi set of distributed values.Typical aggregation functions are max, sum,

count, average, median, variance, kth smallest, or largest values (median is a special case of kth smallest selection

with 𝑘 =
 𝑛

2
), or combinations thereof.

Depending on the database community classifications there are three categories of aggregation functions:

distributive (max, min, sum, count …), algebraic (plus, minus, average, variance …), and holistic (median, k th
smallest or largest value …). Combinations of these functions are believed to support a wide range of reasonable

aggregation queries. The distributed computations of holistic functions are the most problematic cases, in especially

of distributed enormous data sets. Such data is like streaming data from network-sensors.

 In this article we shed a new light on the problem of distributed computation of exact median for general n

distributed multi sets. In particular, we prove that the median can be calculate in more effective steps than the

previous algorithms. Actually with our computation of the median in distributed multi sets we dare to say that this

computation is no longer referred to as iterative or recursive strategy at the global level. To the best of our

knowledge, there is no other algorithm solve the problem of computation of the exact median in distributed multi

sets with steps without usage of iterations or recursions that have to do with the communications between the nodes

of networks. Therefore we present a novel algorithm PCM- oMaRS that solves this problem without such step and

blocks determinate data only in one time by one step, actually by the last step of our algorithm, and if it is necessary.

1 Corresponding Author: ammar.balouch2@uni-rostock.de

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universität Rostock, Lehrstuhl Datenbank- und Informationssysteme: Dbis Repository

https://core.ac.uk/display/229838512?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 2

This algorithm consists of three major phases and depends on mathematical definition of median. We prove too that

this algorithm is more efficient executed at both the global with distributed multi sets and local level with multi set

containging enormous numeric values.

This article is organized as follows: In section 2 we list related works with a short summary. PCM- oMaRS

algorithm is presented in section 3. The distributed mathematical definition of computation of median and of PCM-

oMaRS algorithm are to find in section 4 and at the end we summarize the most important points of the article in
section 5.

II. RELATED WORK

Actually the research of distributed algorithm to determine the median is for more than 40 years active. This

problem has attracted many researchers. Blum et al. [1] developed in 1973 the first linear algorithm to find the

median. In 1976 developed Schönhage et al. [2] another algorithm which performs fewer comparisons on the worst

case.

Rodeh [3] in 1982 considered on the problem of computing the median ofa bag of 2𝑛 numbers by using

communicating processes, each having some of the numbers in its local memory. The memories are assumed to be

disjoint. This algorithm described the distibutive median problem as a seried of transformations. Its algorithm is
optiomal up to a constant. Marber et al. [4] in 1985 considered the problem of selecting the k’th largest element in a

set of n elements distributed arbitrarily among the processors of a Shout-Echo network. In 1987 developed Chin et

al.

[5] an improved algorithm for finding the median distributively. He embedded in the first part of its algorithm the

Rodeh’s algorithm, in the second part of its algorithm reduced the problem size by one qurter with three messages

instead of reducing the problem size by half with two messages. With the third part of its algorithm resloved the

problem of choosing the initiator. Santoro et al. [6] minimized with its algorithm the communication activities

among the processors and considered the distributed k-selection problem.

[7] shows the existence of small core-sets for the problems of computing k-median and k-means clustering for points

in low dimension and get an (1+ε)-approximation. Kuhn et al. in 2008 [8] presented a k-selection algorithm and

proved that distibuted selection indeed requires more work than other aggregation function. In this article has shown

that the 𝑘𝑡ℎ smallest element can be computed efficiently by providing both a randomized and a deterministic k-

selection algorithm.

[9] considered the k-median clustering on stream data arriving at distributed sites which communicate through a

routing tree.They proposed a suite of algorithms for computing (1+ε)-approximation k-median clustering over

distributed data streams. The algorithms are able to reduce the data transmission to a small fraction of the orginal

data. In [10], the author shows a unified framework for constructing core-sets and approximate clustering for such

general sets of functions. In [11] has shown an algorithm that produces (1+ε)α- approximation, using any α-

approximation non-distributed algorithm as a subroutine, with total communication cost.

There are many others works in this field, [12] [13] [14] [15] [16]. All of these researches have used the iteration,

recursion or approximation in their steps. For these works we did not have different between approximation and non

approximation algorithms. We consider us in our algorithm on avoiding the iteration and recursion steps for

computing the exact median (Non approximation).

III. PCM- OMARS ALGORITHM

In this section we illustrate firstly the mechanism of PCM- oMaRS algorithm, secondly present its two sub

algorithms, Candidate-Finding and Exact-Median-Computing algorithms and thirdly give an abstract of its

cases.PCM- oMaRS algorithm computes the exact median of distributed multi sets without usage of iterative or
recursive steps. This algorithm calculates a temorary median, then computes the position of the exact median at least

getting the value of exact median from the node in the computed position. An abstract of this idea is illustrated in the

following.

3.1. Illustration of PCM- oMaRS Algorithm Mechanism

Figure 1 shows an abstract of the mechanism of our algorithmcleared by one sequence. In this figure we can see that

the finding of position of exact median depending on the value of sclenD and of sgenD in which will be known to

which direction must the position be moved from the position of the temporary median to achieve the position of

exact median.

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 3

Fig1. Abstract of PCM- oMaRS algorithm mechanism

3.2. Algorithm I: Candidate-Finding Algorithm

Instead to apply a randomized algorithm, we use this algorithm to select the temporary median. The temporary

median in this algorithm is the median of all minimum, maximum and median values of all multi sets.

1- For each Di in Pi;i=1,…,n

 Get MinDi, MaxDi, MedDi;

2- Ordering all MinDi, MaxDi, MedDi

 Ord(MinDi, MaxDi, MedDi);

3- Calculate MedT:

 Median of Ord(MinDi, MaxDi, MedDi);

If the size of the sequenceOrdis an EVEN number then the temorary median value is the first/second value of the

two middle values of Ord instead to compute the average of both middle values. That means,𝑀𝑒𝑑𝑇 must stay one of

the existing values of all multi datasets and not a new calculated value.By step 1 we require the minimum and

maximum values of each data set because with these values we can achieve better assessment of a temporary

median, which we need to compute the exact median in the following steps and plays an important role with the

necessary amount of caclucation values. Now we continue with the Exact-Median-Computing Algorithm.

3.3. Algorithm II: Exact-Median-Computing Algorithm

After getting a temporary median, we start to determine the position of the exact median. Forthat the PCM- oMaRS

algorithms send for all multi sets to send back:

- Number of values that greater than the temporary median𝑀𝑒𝑑𝑇

- Number of values that smaller or equal than the temporary median𝑀𝑒𝑑𝑇

The algorithm summerizes these values in two parameters scgnD and sclenD respectivelly.

4- For each Di do ;i=1,…,n:

 Calculate cgnDi:

 Count all numbers > MedT;

 Calculate scgnD:

 sum (cgnDi);

 Calculate clenDi:

 Count all numbers ≤ MedT

 Calculate sclenD:

 sum (clenDi)-1;

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 4

Now we determine the position of the exact median of all values in all distributed multi sets.

5- If scgnD < sclenD then

 Calculate MedLP = ((sclenD - scgnD)/2);

 Move position of Median to left in MedLP Postions;

 Get maximum MedLPlargest numbers from each Di smaller or equal than MedT, differencing{MedT};

 Ordering these values descending in LtD;

 Get MedE = the number in LtD[MedLP];

else If scgnD > sclenD then

 Calculate MedRP = (scgnD – sclenD)/2;

 Move position of Median to rightMedRP Postions;

 Get maximum MedRP smallest numbers From each Di greater than MedT;

 Ordering these ascending in GtD;

 Get MedE = the number in GtD[MedRP];

elseMedE = MedT;

In this step we can find that the best case is if 𝑠𝑐𝑔𝑛𝐷 = 𝑠𝑐𝑙𝑒𝑛𝐷, we don’t need to do anything more in this case.

But in other cases in this step we reached too the maximum reduction of computation steps and maximal reduction

of values, which are needed to calculate the exact median through calculating the position MedLP / MedRP and then
getting maximum MedLP largest / MedRP smallest numbers smaller / greater than the temporary median, only here

in this time point the blocking of required data will be executed, when it is necessary.

PCM- oMaRS algorithm is concerned many cases. An abstract of these cases is represented in the following

section.

3.4. PCM-oMaRS Cases Map

Fig2. Abstract map of PCM-oMaRS cases

In this figure, it was clarified that the best case of our algorithm is executable by the case that the number of values

that greater than the temporary median equal to the number of values that smaller\equal than\to the temporary

median for both cases of total size of all multi sets. If the toal size of all mulit sets is an even number and the

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 5

difference equal to 1 then this case is too a best case of PCM- oMaRS algorithm because in this case the temporary

median is one of the two middle values of exact median.In these cases, the PCM-oMaRS algorithm does not need

more to apply algorithm II completely, because the temporary median in this case is the required exact median. In

other words that means, after computing the position of the exact median we do not need to apply any operation

anymore to achieve the required result. We are working on increasing the cases of best case in the framework of the

optimization of our algorithm.

IV. MATHEMATICAL FORM OFPCM- OMARS

Before we present the mathematical definition of PCM- oMaRS algorithm, we give firstly the definition of a median

of a multi set 𝐷 and secondly continue with definition of a median of distributed multi sets depending of the idea of

PCM- oMaRS.

4.1. Median of a Multi Set

Let 𝐷 = 𝑥1 , 𝑥2 ,… , 𝑥𝑛 , … , 𝑥𝑚 be a sorted multi set containing numerical values and A, B, C, E be sub multi sets of

D. If its size is an ODD number then the definition of the median of this multi set is shown as following:

𝑀𝑒𝑑 𝐷 = 𝜇

Where

𝜇 ∈ 𝐷 ∧ 𝐶 ∪ 𝐴\ 𝜇 = 𝐵 ;

𝐵 = 𝑥𝑗 |𝑥𝑗 ∈ 𝐷 ∧ 𝑥𝑗 > 𝜇 ; 𝑗 = 1,… ,𝑚 ∧

∧ 𝐴 = 𝑥𝑖 |𝑥𝑖 ∈ 𝐷 ∧ 𝑥𝑖 ≤ 𝜇 ; 𝑖 = 1,… ,𝑚 ∧

∧ 𝐶 = 𝐴 𝜇 = 𝑥𝑙 | 𝑥𝑙 ∈ 𝐷 ∧ 𝑥𝑙 = 𝜇 ; 𝑙 = 1,… ,𝑚 − 1

Note:𝐴 𝜇 = 𝑛 gives us how many duplicat (n) of 𝜇 allowed in the set A. E.g. 𝐶 = 𝐴 5 = 3 = 5,5,5 .

If its size is an EVEN number then the definition of the median of this multi set is shown as following:

𝑀𝑒𝑑 𝐷 =
𝜇1 + 𝜇2

2

Where

𝜇1 , 𝜇2 ∈ 𝐷 ∧ 𝐶 ∪ 𝐴\ 𝜇1 = 𝐸 ∪ 𝐵\ 𝜇2 ;
𝐴 = 𝑥𝑖 |𝑥𝑖 ∈ 𝐷 ∧ 𝑥𝑖 > 𝜇 ; 𝑖 = 1,… ,𝑚 ∧

∧ 𝐶 = 𝐴 𝜇1 = 𝑥𝑙 |𝑥𝑙 ∈ 𝐷 ∧ 𝑥𝑙 = 𝜇1 ; 𝑙 = 1, … ,𝑚 − 1 ∧

∧ 𝐵 = 𝑥𝑗 |𝑥𝑗 ∈ 𝐷 ∧ 𝑥𝑗 ≥ 𝜇2 ; 𝑗 = 1,… ,𝑚 ∧

∧ 𝐸 = 𝐵 𝜇2 = 𝑥𝑘 |𝑥𝑘 ∈ 𝐷 ∧ 𝑥𝑘 = 𝜇2 ; 𝑘 = 1, … ,𝑚 − 1

4.2. Median of Multi Sets

Now let us distribute values in different ordered multi sets, as following:

𝐷𝑖 = 𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛
𝑖 ,… , 𝑥𝑚

𝑖 ; 𝑖 = 1,… , 𝑝

If the size of all distributed multi sets is an ODD number then the exact median 𝑴𝒆𝒅𝑬 of these distributed multi

sets is defined as following:

𝑀𝑒𝑑𝐸 = 𝜇 | 𝜇 ∈ 𝐷𝑖

𝑝

𝑖=1

 ∧ 𝐶 ∪ 𝐿𝑆\ 𝜇 = 𝑅𝑆

Where 𝐿𝑆 is the multiset of all values of each distributed multi sets smaller or equal than the median

𝐿𝑆 = 𝑙𝑠𝐷1 ∪ 𝑙𝑠𝐷2 ∪ …∪ 𝑙𝑠𝐷𝑝

𝐶 = 𝐿𝑆 𝜇 = 𝐴 − 1 ;

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 6

𝐴 = 𝑥𝑙 | 𝑥𝑙 ∈ 𝐷𝑖

𝑝

𝑖=1

 ∧ 𝑥𝑙 = 𝜇 ; 𝑙 = 1,… ,𝑚

Where

𝑙𝑠𝐷𝑖 = 𝑥𝑗
𝑖 | 𝑥𝑗

𝑖 ∈ 𝐷𝑖 ∧ 𝑥𝑗
𝑖 ≤ 𝜇 ∧ 𝑗 = 1, … ,𝑚 ; 𝑖 = 1, … , 𝑝

And 𝑅𝑆 is the set of all values greater than the median

𝑅𝑆 = 𝑟𝑠𝐷1 ∪ 𝑟𝑠𝐷2 ∪…∪ 𝑟𝑠𝐷𝑝

Where

𝑟𝑠𝐷𝑖 = 𝑥𝑘
𝑖 |𝑥𝑘

𝑖 ∈ 𝐷𝑖 ∧ 𝑥𝑘
𝑖 > 𝜇 ∧ 𝑘 = 1, … ,𝑚 ; 𝑖 = 1, … , 𝑝

Then the size of 𝐿𝑆 and 𝑅𝑆 is defined as following

 𝐶 ∪ 𝐿𝑆\ 𝜇 = 𝑙𝑠𝐷1 + 𝑙𝑠𝐷2 + ⋯+ 𝑙𝑠𝐷𝑝 − 1

 𝑟𝑠 = 𝑟𝑠𝐷1 + 𝑟𝑠𝐷2 +⋯+ 𝑟𝑠𝐷𝑝

Respectively. It is simple now to find that if 𝑅𝑆 > 𝐿𝑆 then

 𝑅𝑆 = 𝐷𝑖

𝑝

𝑖=1

− 𝐶 ∪ 𝐿𝑆\ 𝜇

And if 𝑅𝑆 < 𝐿𝑆 then

 𝐶 ∪ 𝐿𝑆\ 𝜇 = 𝐷𝑖

𝑝

𝑖=1

− 𝑅𝑆

Let 𝑛𝑟𝑠 = 𝑅𝑆 and 𝑛𝑙𝑠 = 𝐶 ∪ 𝐿𝑆\ 𝜇 for further use.

Analogously for the mathematical definition of median of a multi set in case the size is an EVEN number, we can

form the mathematical defintion of median of distributed multi sets for this case.

4.3. Mathematical Definition of PCM- oMaRS

Now to show that we can calculate the exact median with PCM-oMaRS algorithm depending on the computation of

the position of exact median after finding a temporary one, we give the following mathematical proof and then we

clear it by an example:

Let us have n multi sets. In the first step we have to get a temporary medina𝑴𝒆𝒅𝑻 after orering each multi set

local.𝑴𝒆𝒅𝑻is the median of 𝑂𝑟𝑑-set in which contains ordering all Minimal, Maximal and Median values of each

Multi set.

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷𝑖 = 𝑀𝑖𝑛𝑖 ,𝑀𝑎𝑥𝑖 ,𝑀𝑒𝑑𝑖|𝑖 = 1, . . . , 𝑃

Then we sort all these values in one multi set 𝑂𝑟𝑑.

𝑂𝑟𝑑 = 𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷𝑖

𝑝

𝑖=1

We make the median of this sorted multi set as our temporary median 𝑴𝒆𝒅𝑻which locatedat the
 3∗𝑃 +1

2
 th position

if 3 ∗ 𝑃 is an Odd number or located at the two
 3∗𝑃

2
 ,

 3∗𝑃 +2

2
 th positions if 3 ∗ 𝑃 is Even. For the last case

we mean,if the size of 𝑂𝑟𝑑 is an even number, instead to calculate the average of two middle values, we take the

first or second value of the both middle values and let it be𝑴𝒆𝒅𝑻. That means, always𝑀𝑒𝑑𝑇 ∈ 𝐷𝑖
𝑝
𝑖=1

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 7

Now we get 𝑳𝑺 and 𝑹𝑺 depending on 𝑴𝒆𝒅𝑻 and calculate the size 𝑛𝑙𝑠 and 𝑛𝑟𝑠 of both multi sets 𝑳𝑺 and 𝑹𝑺

respectively as defined in section 4.2.

In the following we difference between three cases depending on𝑴𝒆𝒅𝑻

The first case is if 𝒏𝒍𝒔 < 𝒏𝒓𝒔then we calculate the position 𝑃 of exact median of all multi sets.

𝑃 =
 𝑛𝑟𝑠 − 𝑛𝑙𝑠

2

This value tells us that the exact median exists in the right side (right side is a sequence contains values greater than

the temporary median) of temporary median in P position, because the value of 𝒏𝒓𝒔 greater than the other one.

Very important advantage: Until this step of PCM- oMaRS, the algorithm does not need to block any change of

the data in the local nodes. All transactions and changes of local data can be continued performed without any

disadvantages of the efficiency of PCM- oMaRS algorithm.

To get the exact median we must get now maximum Psmallest values greater than 𝑴𝒆𝒅𝑻 from each sorted multi

set and order them in 𝐺𝑡𝐷

𝐺𝑡𝐷 = 𝑠𝑃𝑣𝑔1 ∪ 𝑠𝑃𝑣𝑔2 ∪…∪ 𝑠𝑃𝑣𝑔𝑝

So that

𝑠𝑃𝑣𝑔𝑖 =
𝑥𝑗
𝑖 | 𝑥𝑗

𝑖 ∈ 𝐷𝑖 ∧ 𝑥𝑗
𝑖 > 𝑀𝑒𝑑𝑇

∧ 𝑗 = 1,… , P
 ; 𝑖 = 1,… , 𝑝

Important Note: Transactions and changes of data of local nodes are blocked only in this step.

Now get the exact median𝑀𝑒𝑑𝐸from the𝐺𝑡𝐷

𝑀𝑒𝑑𝐸 = 𝐺𝑡𝐷[𝑃]

In the second case, we study if 𝒏𝒍𝒔 > 𝒏𝒓𝒔 (This case process is analogously for the first one) then we calculate the

position 𝑃 of exact median of all multi sets.

𝑃 =
 𝑛𝑙𝑠 − 𝑛𝑟𝑠

2

From this value we know that the exact median exists in the left side (side contains the values smaller than or equal

the temporary median) of temporary median in P position, because the value of 𝒏𝒍𝒔 greater than the other one.

Get maximum Pgreatest values smaller than 𝑴𝒆𝒅𝑻 from each sorted multi set and order them in 𝐿𝑡𝐷

𝐿𝑡𝐷 = 𝑔𝑃𝑣𝑠1 ∪ 𝑔𝑃𝑣𝑠2 ∪ …∪ 𝑔𝑃𝑣𝑠𝑝

So that

𝑔𝑃𝑣𝑠𝑖 =
𝑥𝑗
𝑖 | 𝑥𝑗

𝑖 ∈ 𝐷𝑖 ∧ 𝑥𝑗
𝑖 ≤ 𝑀𝑒𝑑𝑇

∧ 𝑗 = 1,… , P
 ; 𝑖 = 1,… , 𝑝

We get the exact median from the 𝐿𝑡𝐷

𝑀𝑒𝑑𝐸 = 𝐿𝑡𝐷[𝑃]

The last case is the simplest case and the best case because if 𝒏𝒍𝒔 = 𝒏𝒓𝒔then the temporary median is the exact

median𝑀𝑒𝑑𝐸 = 𝑀𝑒𝑑𝑇.

Finally we get the exact median for all values in all distributed multi sets and it is 𝑴𝒆𝒅𝑬. This prove is correct for

the both case when the total size is odd or even, because the difference is in the computation’s step of both

temporary median and the position.

The PCM- oMaRS algorithm consists actually of two algorithms named candidate-Finding and Exact-Median-

Computing Algorithms. The most important two steps in this algorithm are the computation of the position of exact

median and its value (two values) after the finding a candidate median.

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 8

Before we present an example to clarify this mathematical definition of our algorithm, we give a proof of the

validation of our algorithm.

4.4. Validation of PCM- oMaRS

To prove that the definition of exact median of distributed multi sets is correct, show the following:

We definea multi set𝝆which containing the first 𝑷 − 𝟏 elements of 𝐺𝑡𝐷 and sort it. Then we see

𝑛𝝆 = 𝜌 = 𝑃 − 1

Now let we have the new 𝑅𝑆′and 𝐿𝑆′depending on 𝑴𝒆𝒅𝑬and𝑴𝒆𝒅𝑻, so that

𝑅𝑆′ = 𝑅𝑆 \ 𝜌 ∪ 𝑀𝑒𝑑𝐸

𝐿𝑆′ = 𝐶 ∪ 𝐿𝑆\ 𝜇 ∪ 𝜌 ∪ 𝑀𝑒𝑑𝑇

Then

𝑛𝑟𝑠 = 𝑛𝑟𝑠 − 𝑛𝜌 + 1 = 𝑛𝑟𝑠 − 𝑃 − 1 + 1

𝑛𝑙𝑠 = 𝑛𝑙𝑠 + 𝑛𝜌 + 1 = 𝑛𝑙𝑠 + 𝑃 − 1 + 1

In the following we give mathematical forms to prove that the relationship𝑃 =
 𝑛𝑟𝑠−𝑛𝑙𝑠

2
guaranteed this validation.

𝑃 =
 𝑛𝑟𝑠 − 𝑛𝑙𝑠

2
 2𝑃 = 𝑛𝑟𝑠 − 𝑛𝑙𝑠

 𝑃 − 1 + 𝑃 − 1 = 𝑛𝑟𝑠 − 1− 𝑛𝑙𝑠 − 1

𝑛𝑙𝑠 + 1 + 𝑃 − 1 = 𝑛𝑟𝑠 − 1− 𝑃 − 1

𝑛𝑙𝑠 + 𝑃 − 1 + 1 = 𝑛𝑟𝑠 − 𝑃 − 1 + 1 𝑛𝑙𝑠′ = 𝑛𝑟𝑠′

The Definition of exact median of distributed multi sets is valid. These expressions are valid for the fist case in

section 4.3 (𝒏𝒍𝒔 < 𝒏𝒓𝒔). Analogically for the first case are steps calculated for the second one.

Getting the mulit set 𝝆, containing the first 𝑷 − 𝟏 elements of 𝐿𝑡𝐷, so that𝑛𝝆 = 𝑃 − 1

Now we have the new 𝐿𝑆′and 𝑅𝑆′depending on 𝑴𝒆𝒅𝑬and𝑴𝒆𝒅𝑻, so that

𝐿𝑆′ = 𝐶 ∪ 𝐿𝑆\ 𝜇 \ 𝜌 ∪ 𝑀𝑒𝑑𝐸

𝑅𝑆′ = 𝑅𝑆 ∪ 𝜌 ∪ 𝑀𝑒𝑑𝑇

Then

𝑛𝑙𝑠′ = 𝑛𝑙𝑠 − 𝜌 + 1 = 𝑛𝑙𝑠 − 𝑃 − 1 + 1

𝑛𝑟𝑠′ = 𝑛𝑟𝑠 + 𝑛𝜌 + 1 = 𝑛𝑟𝑠 + 𝑃 − 1 + 1

We know that

𝑃 =
 𝑛𝑙𝑠 − 𝑛𝑟𝑠

2
 2𝑃 = 𝑛𝑙𝑠 − 𝑛𝑟𝑠

 𝑃 − 1 + 𝑃 − 1 = 𝑛𝑙𝑠 − 1− 𝑛𝑟𝑠 − 1

𝑛𝑟𝑠 + 1 + 𝑃 − 1 = 𝑛𝑙𝑠 − 1− 𝑃 − 1

𝑛𝑟𝑠 + 𝑃 − 1 + 1 = 𝑛𝑙𝑠 − 𝑃 − 1 + 1 𝑛𝑟𝑠′ = 𝑛𝑙𝑠′

The Definition of Median is in this case valid too.

4.5. PCM- oMaRS Example

Let us have the following three multi sets after ordering:

𝐷1 = 2,7,10,13,15 ,

𝐷2 = 13,14,15,16,20,21,25 ,

𝐷3 = 2,4,11,16,70

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 9

The minimal, maximal and median values for each sorted multi set is as following:

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷1 = 2,15,10

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷2 = 13,25,16

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷3 = 2,70,11

Then the ordered set of them is

𝑂𝑟𝑑 = 2,2,10,11,13,15,16,25,70

And the median of 𝑂𝑟𝑑 is the temporary median 𝑴𝒆𝒅𝑻 and equal to 13.

𝑀𝑒𝑑𝑇 = 13

Now we get 𝑳𝑺 and 𝑹𝑺 depending on 𝑴𝒆𝒅𝑻

𝑅𝑆 = 𝑟𝑠𝐷1 ∪ 𝑟𝑠𝐷2 ∪ 𝑟𝑠𝐷3

𝑟𝑠𝐷1 = 15 ,𝑟𝑠𝐷2 = 14,15, 16, 20,21,25 ,𝑟𝑠𝐷3 = 16,70

 𝑟𝑠𝐷1 = 1, 𝑟𝑠𝐷2 = 6, 𝑟𝑠𝐷3 = 2

→ 𝑛𝑟𝑠 = 𝑟𝑠 = 1 + 6 + 2 = 9

𝐿𝑆 = 𝑙𝑠𝐷1 ∪ 𝑙𝑠𝐷2 ∪ 𝑙𝑠𝐷3;

𝑙𝑠𝐷1 = 2,7,10,13 , 𝑙𝑠𝐷2 = 13 , 𝑙𝑠𝐷3 = 2,4,11

 𝑙𝑠𝐷1 = 4, 𝑙𝑠𝐷2 = 1, 𝑙𝑠𝐷3 = 3

→ 𝐿𝑆 = 2,7,10, 13,13,2,4,11

But we have that

𝐿𝑆\ 𝜇 = 𝐿𝑆\ 13 = 2,7,10,2,4,11
𝐶 = 𝐿𝑆 𝜇 = 2 − 1 = 𝐿𝑆 13 = 1 = 13

That means, the value 13 should be contained in the multi set LS only one time.

𝐶 ∪ 𝐿𝑆\ 𝜇 = 2,7,10,2,4,11,13

𝑛𝑙𝑠 = 𝐶 ∪ 𝐿𝑆\ 𝜇 = 7 = 4 + 1 + 3 − 1

Now we get that 𝑛𝑟𝑠 = 9 and 𝑛𝑙𝑠 = 7and we see that this case meets the first case in section 4.3 then we have to

calculate the position 𝑃 as following:

𝑃 =
 𝑛𝑟𝑠 − 𝑛𝑙𝑠

2
=
 9 − 7

2
= 1

That means the exact median exists in the right side of the 𝑴𝒆𝒅𝑻 in 1 position.

Now we have to get smallest 1 values of each Multi set greater than 13 (Getting 𝐺𝑡𝐷)

𝑠𝑃𝑣𝑔1 = 15 , 𝑠𝑃𝑣𝑔2 = 14 , 𝑠𝑃𝑣𝑔3 = 16

 𝐺𝑡𝐷 = 14, 15,16

Then the exact median is

𝑀𝑒𝑑𝐸 = 𝐺𝑡𝐷 1 = 14

Note: In step of choosing a temporary median we may remark here, if we have calculated the median of medians, we

would have taken the value 11 as temporary median. This makes more effort into the calculation of the position of

exact median. It would have required maximum 3 smallest values of each Multi set greater than11. That means the

computation of temporary median depending on maximal, minimal and meidan values give better estimation than

the median of medians technology. Now we continue with the validation of median definition for our example:

𝑛𝝆 = 𝜌 = 1 − 1 = 0

𝜌 = ∅ , 𝑛𝜌 = 0

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 10

For our example:

𝑅𝑆 = 14,15,15,16,16,20,21,25,70 \ ∅ ∪ 14 = 15,15,16,16,20,21,25,70

𝐿𝑆 = 2,2,4,7,10,11,13 ∪ ∅ ∪ 13 = 2,2,4,7,10,11,13,13

For our example:

𝑛𝑟𝑠 = 9− 1 = 8 , 𝑛𝑙𝑠 = 7 + 1 = 8

That means the definition of exact median is valid in the value 14.

V. CONCLUSION

The research points of this field “median computing of distributed multi sets” divided into two main directions. The

first one cares on the approximation methods. The other one focuses on the computation of the exact median with

usage of iterative or recursive steps. We have shown that we can compute the exact median with clever steps

depending on the calculation of the position of the exact median without needing to apply iterations or recursions at

global level depending on communications to get the value of the exact median. That means, PCM-oMaRS

algorithm guarantees the maximum reduction of median computation steps. Too, instead applying blocking of the

required data by the beginning an execution of an algorithm, the data may be blocked only in one non iterative or

recursive step with the execution of our algorithm and if it is necessary.

In this article we would not to go on the cost of our algorithm, but we would to say that the most computation of our
algorithm is calculated in the local nodes (computers), basic operations and operation with effcient complexity will

be executed in the master computer (global one). That means in other word, the costs of complexity of our

algorithm is computed through the common communication costs and local execution costs like all other algorithms

in addition only the cost of an efficent sort algorithm in step 5. In our experiments we have proved that the execution

of our algorithm can be more effective in the local execution too, if we divided the local multi set that contains

enourmuous values in many local multi sets.

We have implemented this algorithm by C++ with two different input possibilities. The first one is with manually

targeted inputs to test extreme cases of values distributations and the other one is random inputs to be able to check

all possible cases with the passage of time. We have tested the implementation of our algorithm with more than

40000 cases, some of these depended on the manually targeted inputs and the rest were in relation to the random

inputs. In each case, the number of multi sets is different, and each multi set includes many different values.
Currently we are working at the optimization of this algorithm and its implementation, then we will calculate the

cost of the complexity of PCM- oMaRS algorithm in details.

VI. ACKNOWLEDGMENT

We would like to thank our colleague in Database and information systems department for their notes. Moreover, we

would like to express our gratitude to Mr. Prof. Riedewald, Mr. Prof. Van Bang Le and Mr. Math. Soheil Baloush

for providing valuable feedback, which helped us greatly to improve the mathematical definition of our algorithm.

At the same time I thank the IIE-SRF organization for its support scientists at risik and its scholarships.

REFERENCES

[1] Blum, M.; Floyd, R; Pratt, V.; Rivest, R.; Tarjan, R.: Time bounds for selection. In J. Comput. System Sci 7. 1973; S. 448-
461.

[2] Schönhage, A.; Paterson, M.; Pippenger, N.: Finding the median. In J. Comput. System Sci 13. 1976; S. 184-199.

[3] Rodeh, M.: Finding the median distibutively. In J. Comput. System Sci. 24. 1982; S. 162-166.

[4] Marberg, J; Gafi, E.: An Optimal Shout-Echo Algorithm for selection in distributed Sets. In CSD-850015. 1985.

[5] Chin, F.; Ting, H.: An Improved Algorithm for Finding the median distributively. In Algorithmica 2. 1987; S. 235-249.

[6] Santoro, N.; Sidney, J. ; Sidney, S.: A distributed selection algorithm and its expected communication complexity. In
Theoretical Computer Science 100. 1992; S. 185-204.

[7] Har-Peled, S.; Mazumdar, S.: On coresets for k-means and k-median clustering. In Proceedings of the Annual ACM
Symposium on Theory of Computing. 2004.

[8] Zhang, Q.; Liu, J.; Wang, W. : Approximate clustering on distributed data streams. In Proceedings of the IEEE International
Conference on Data Engineering. 2008. S. 1131 – 1139.

American Research Journal of Computer Science and Information Technology, Volume 1, Issue 1, June 2015

www.arjonline.org 11

[9] Kuhn, F.; Locher, T. ; Wattenhofer, R.: Distributed Selection: A missing Piece of Data Aggregation. In Communications of
The ACM 51. 2008; S. 93-99.

[10] Feldman, D.; Langberg, M. : A unified framework for approximating and clustering data. In Proceedings of the Annual
ACM Symposium on Theory of Computing. 2011.

[11] Yingyu L.: Distributed k-median/k-means Clustering on General Topologies. In NIPS 2013. 2013.W.-K. Chen, Linear
Networks and Systems. Belmont, Calif.: Wadsworth, pp. 123-135, 1993. (Book style)

[12] Jia, L.; Lin, G.; Noubir, G.; Rajaraman, R.; Sundaram, R.: Universal approximations for TSP, Steiner Tree and set cover. In
37th Annoul ACM Symposium on Theory of Computing (STOC).2005; S. 386-395.

[13] Negro, A.; Samtoro, N.; Urrutia, J.: Efficient distributed selection with bounded messages. In IEEE Transactions of Parallel
and Distributed Systems.8 (4). 1997. S. 397-401.

[14] Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. In SIAM Monographs on Dicrete Mathematics and
Applications. 2000.

[15] Santoro, N.; Scheutzow, M.; Sidney, J. B.: On the expected complexity of distributed selection. In Journal of Parallel and
distributed Computing 5 (2). 1988. S. 194-203.

[16] Yao, Y.; Gehrke, J.: The Cougar approach o in-network query processing in sensor network. In ACM SIGMOD Record, 31
(3). 2002. S. 9-18

