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Abstract: The goal of a distributed computation algorithm is to determine the result of a function of numerical 

elements, which are distributed in 𝑛 multi sets.It is known that computation of holistic aggregation functions on 
distributed multi sets indeed requires more work than non holistic aggregation functions. But with this article we 

will prove that the computation of a holistic function, which named exact median, can be computed efficiently by 

providing both a candidate finding and a deterministic location algorithms which computes the position of exact 

median, dispelling the misconception that solving distributed median computation through parallel aggregation is 

infeasible. Some of most important part in Big Data field is to evaluate massive data values. A special case in this 

field is the calculation of 𝑘𝑡ℎ  smallest values (specially the median) of distributed multi sets containing enormous 
data. Many approximation algorithms and algorithms with iterative or recursive steps of determination of median 

give solutions for the computation of median. But firstly sometime approximate value is dangerous for some data 

evaluation projects or researchs and secondly with other algorithms, the data blocking time is too long through the 

iteration or the recursionbetweenglobal node and local nodes. This article focuses on a solution that gives a best 

effectively computation for this problem named PCM-oMaRS algorithm. The PCM- oMaRS algorithm guarantees 

the maximal reduction steps of the computation of the exact median in distributed multi sets and proves that we 

can compute the exact median effectively without needing the usage of recursive or iterative methods at the 
global communication level, which reducesthe blocking timemaximally. This algorithm provides more efficient 

execution not only in distributed multi sets even in local multi set with enormous data. 
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I. INTRODUCTION 

The parallel execution of aggregations is an interesting area. It be growing recently and plays important roles, thanks 

emerging application fields such as, e.g. data mining or sensor networks. The goal of distributed aggregation is to 

compute an aggregation function on a multi set of distributed values.Typical aggregation functions are max, sum, 

count, average, median, variance, kth smallest, or largest values (median is a special case of kth smallest selection 

with 𝑘 =
 𝑛

2
), or combinations thereof. 

Depending on the database community classifications there are three categories of aggregation functions: 

distributive (max, min, sum, count …), algebraic (plus, minus, average, variance …), and holistic (median, k th 
smallest or largest value …). Combinations of these functions are believed to support a wide range of reasonable 

aggregation queries. The distributed computations of holistic functions are the most problematic cases, in especially 

of distributed enormous data sets. Such data is like streaming data from network-sensors. 

 In this article we shed a new light on the problem of distributed computation of exact median for general n 

distributed multi sets. In particular, we prove that the median can be calculate in more effective steps than the 

previous algorithms. Actually with our computation of the median in distributed multi sets we dare to say that this 

computation is no longer referred to as iterative or recursive strategy at the global level. To the best of our 

knowledge, there is no other algorithm solve the problem of computation of the exact median in distributed multi 

sets with steps without usage of iterations or recursions that have to do with the communications between the nodes 

of networks. Therefore we present a novel algorithm PCM- oMaRS that solves this problem without such step and 

blocks determinate data only in one time by one step, actually by the last step of our algorithm, and if it is necessary. 
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This algorithm consists of three major phases and depends on mathematical definition of median. We prove too that 

this algorithm is more efficient executed at both the global with distributed multi sets and local level with multi set 

containging enormous numeric values. 

This article is organized as follows: In section 2 we list related works with a short summary. PCM- oMaRS 

algorithm is presented in section 3. The distributed mathematical definition of computation of median and of PCM- 

oMaRS algorithm are to find in section 4 and at the end we summarize the most important points of the article in 
section 5. 

II. RELATED WORK 

Actually the research of distributed algorithm to determine the median is for more than 40 years active. This 

problem has attracted many researchers. Blum et al. [1] developed in 1973 the first linear algorithm to find the 

median. In 1976 developed Schönhage et al. [2] another algorithm which performs fewer comparisons on the worst 

case.  

Rodeh [3] in 1982 considered on the problem of computing the median ofa bag of 2𝑛  numbers by using 

communicating processes, each having some of the numbers in its local memory. The memories are assumed to be 

disjoint. This algorithm described the distibutive median problem as a seried of transformations.  Its algorithm is 
optiomal up to a constant. Marber et al. [4] in 1985 considered the problem of selecting the k’th largest element in a 

set of n elements distributed arbitrarily among the processors of a Shout-Echo network. In 1987 developed Chin et 

al.  

[5] an improved algorithm for finding the median distributively. He embedded in the first part of its algorithm the 

Rodeh’s algorithm, in the second part of its algorithm reduced the problem size by one qurter with three messages 

instead of reducing the problem size by half with two messages. With the third part of its algorithm resloved the 

problem of choosing the initiator. Santoro et al. [6] minimized with its algorithm the communication activities 

among the processors and considered the distributed k-selection problem.  

[7] shows the existence of small core-sets for the problems of computing k-median and k-means clustering for points 

in low dimension and get an (1+ε)-approximation. Kuhn et al. in 2008 [8] presented a k-selection algorithm and 

proved that distibuted selection indeed requires more work than other aggregation function. In this article has shown 

that the 𝑘𝑡ℎ  smallest element can be computed efficiently by providing both a randomized and a deterministic k-

selection algorithm.  

[9] considered the k-median clustering on stream data arriving at distributed sites which communicate through a 

routing tree.They proposed a suite of algorithms for computing (1+ε)-approximation k-median clustering over 

distributed data streams. The algorithms are able to reduce the data transmission to a small fraction of the orginal 

data. In [10], the author shows a unified framework for constructing core-sets and approximate clustering for such 

general sets of functions. In [11] has shown an algorithm that produces (1+ε)α- approximation, using any α-

approximation non-distributed algorithm as a subroutine, with total communication cost. 

There are many others works in this field, [12] [13] [14] [15] [16]. All of these researches have used the iteration, 

recursion or approximation in their steps. For these works we did not have different between approximation and non 

approximation algorithms. We consider us in our algorithm on avoiding the iteration and recursion steps for 

computing the exact median (Non approximation). 

III. PCM- OMARS ALGORITHM 

In this section we illustrate firstly the mechanism of PCM- oMaRS algorithm, secondly present its two sub 

algorithms, Candidate-Finding and Exact-Median-Computing algorithms and thirdly give an abstract of its 

cases.PCM- oMaRS algorithm computes the exact median of distributed multi sets without usage of iterative or 
recursive steps. This algorithm calculates a temorary median, then computes the position of the exact median at least 

getting the value of exact median from the node in the computed position. An abstract of this idea is illustrated in the 

following. 

3.1. Illustration of PCM- oMaRS Algorithm Mechanism 

Figure 1 shows an abstract of the mechanism of our algorithmcleared by one sequence. In this figure we can see that 

the finding of position of exact median depending on the value of sclenD and of sgenD in which will be known to 

which direction must the position be moved from the position of the temporary median to achieve the position of 

exact median. 
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Fig1. Abstract of PCM- oMaRS algorithm mechanism 

3.2. Algorithm I: Candidate-Finding Algorithm 

Instead to apply a randomized algorithm, we use this algorithm to select the temporary median. The temporary 

median in this algorithm is the median of all minimum, maximum and median values of all multi sets. 

1- For each Di in Pi;i=1,…,n 

 Get MinDi, MaxDi, MedDi; 

2- Ordering all MinDi, MaxDi, MedDi 

 Ord(MinDi, MaxDi, MedDi); 

3- Calculate MedT: 

 Median of Ord(MinDi, MaxDi, MedDi); 

If the size of the sequenceOrdis an EVEN number then the temorary median value is the first/second value of the 

two middle values of Ord instead to compute the average of both middle values. That means,𝑀𝑒𝑑𝑇 must stay one of 

the existing values of all multi datasets and not a new calculated value.By step 1 we require the minimum and 

maximum values of each data set because with these values we can achieve better assessment of a temporary 

median, which we need to compute the exact median in the following steps and plays an important role with the 

necessary amount of caclucation values. Now we continue with the Exact-Median-Computing Algorithm. 

3.3. Algorithm II: Exact-Median-Computing Algorithm 

After getting a temporary median, we start to determine the position of the exact median. Forthat the PCM- oMaRS 

algorithms send for all multi sets to send back: 

- Number of values that greater than the temporary median𝑀𝑒𝑑𝑇 

- Number of values that smaller or equal than the temporary median𝑀𝑒𝑑𝑇 

The algorithm summerizes these values in two parameters scgnD and sclenD respectivelly.  

4- For each Di do ;i=1,…,n: 

         Calculate cgnDi:  

              Count all numbers > MedT; 

         Calculate scgnD:  

     sum (cgnDi); 

         Calculate clenDi:  

    Count all numbers ≤ MedT 

         Calculate sclenD:  

  sum (clenDi)-1; 
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Now we determine the position of the exact median of all values in all distributed multi sets.  

5- If scgnD < sclenD then  

     Calculate MedLP = ((sclenD - scgnD)/2); 

     Move position of Median to left in MedLP Postions; 

     Get maximum MedLPlargest numbers from each Di smaller or equal than MedT, differencing{MedT}; 

     Ordering these values descending in LtD; 

     Get MedE = the number in LtD[MedLP]; 

else If scgnD > sclenD then 

 Calculate MedRP = (scgnD – sclenD)/2;  

 Move position of Median to rightMedRP Postions; 

 Get maximum MedRP smallest numbers From each Di greater than MedT; 

 Ordering these ascending in GtD; 

 Get MedE = the number in GtD[MedRP]; 

elseMedE = MedT; 

In this step we can find that the best case is if 𝑠𝑐𝑔𝑛𝐷 =  𝑠𝑐𝑙𝑒𝑛𝐷, we don’t need to do anything more in this case. 

But in other cases in this step we reached too the maximum reduction of computation steps and maximal reduction 

of values, which are needed to calculate the exact median through calculating the position MedLP / MedRP and then 
getting maximum MedLP largest / MedRP smallest numbers smaller / greater than the temporary median, only here 

in this time point the blocking of required data will be executed, when it is necessary.  

PCM- oMaRS algorithm is concerned many cases.  An abstract of these cases is represented in the following 

section. 

3.4. PCM-oMaRS Cases Map 

 

Fig2. Abstract map of PCM-oMaRS cases 

In this figure, it was clarified that the best case of our algorithm is executable by the case that the number of values 

that greater than the temporary median equal to the number of values that smaller\equal than\to the temporary 

median for both cases of total size of all multi sets. If the toal size of all mulit sets is an even number and the 
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difference equal to 1 then this case is too a best case of PCM- oMaRS algorithm because in this case the temporary 

median is one of the two middle values of exact median.In these cases, the PCM-oMaRS algorithm does not need 

more to apply algorithm II completely, because the temporary median in this case is the required exact median. In 

other words that means, after computing the position of the exact median we do not need to apply any operation 

anymore to achieve the required result. We are working on increasing the cases of best case in the framework of the 

optimization of our algorithm. 

IV. MATHEMATICAL FORM OFPCM- OMARS 

Before we present the mathematical definition of PCM- oMaRS algorithm, we give firstly the definition of a median 

of a multi set 𝐷 and secondly continue with definition of a median of distributed multi sets depending of the idea of 

PCM- oMaRS. 

4.1. Median of a Multi Set 

Let 𝐷 =  𝑥1 , 𝑥2 ,… , 𝑥𝑛 , … , 𝑥𝑚   be a sorted multi set containing numerical values and A, B, C, E be sub multi sets of 

D. If its size is an ODD number then the definition of the median of this multi set is shown as following: 

𝑀𝑒𝑑 𝐷 =  𝜇  

Where 

𝜇 ∈ 𝐷 ∧  𝐶 ∪  𝐴\  𝜇   =  𝐵  ; 

𝐵 =  𝑥𝑗  |𝑥𝑗 ∈ 𝐷 ∧ 𝑥𝑗 > 𝜇 ; 𝑗 = 1,… ,𝑚   ∧ 

∧ 𝐴 =    𝑥𝑖  |𝑥𝑖 ∈ 𝐷 ∧ 𝑥𝑖 ≤ 𝜇 ; 𝑖 = 1,… ,𝑚 ∧ 

∧ 𝐶 =  𝐴 𝜇 =   𝑥𝑙  | 𝑥𝑙 ∈ 𝐷 ∧ 𝑥𝑙 = 𝜇 ; 𝑙 = 1,… ,𝑚  − 1  

Note:𝐴 𝜇 = 𝑛 gives us how many duplicat (n) of 𝜇 allowed in the set A. E.g. 𝐶 =  𝐴 5 = 3 =  5,5,5 . 

If its size is an EVEN number then the definition of the median of this multi set is shown as following: 

𝑀𝑒𝑑 𝐷 =
𝜇1 + 𝜇2

2
 

Where 

𝜇1 , 𝜇2 ∈ 𝐷 ∧  𝐶 ∪  𝐴\ 𝜇1   =  𝐸 ∪  𝐵\ 𝜇2    ; 
𝐴 =    𝑥𝑖  |𝑥𝑖 ∈ 𝐷 ∧ 𝑥𝑖 > 𝜇 ; 𝑖 = 1,… ,𝑚 ∧ 

∧ 𝐶 =  𝐴 𝜇1 =   𝑥𝑙  |𝑥𝑙 ∈ 𝐷 ∧ 𝑥𝑙 = 𝜇1  ; 𝑙 = 1, … ,𝑚  − 1 ∧ 

∧ 𝐵 =  𝑥𝑗  |𝑥𝑗 ∈ 𝐷 ∧ 𝑥𝑗 ≥ 𝜇2  ; 𝑗 = 1,… ,𝑚   ∧ 

∧ 𝐸 =  𝐵 𝜇2 =   𝑥𝑘  |𝑥𝑘 ∈ 𝐷 ∧ 𝑥𝑘 = 𝜇2  ; 𝑘 = 1, … ,𝑚  − 1  

4.2. Median of Multi Sets 

Now let us distribute values in different ordered multi sets, as following: 

𝐷𝑖 =  𝑥1
𝑖 , 𝑥2

𝑖 , … , 𝑥𝑛
𝑖 ,… , 𝑥𝑚

𝑖  ; 𝑖 = 1,… , 𝑝 

If the size of all distributed multi sets is an ODD number then the exact median 𝑴𝒆𝒅𝑬 of these distributed multi 

sets is defined as following: 

𝑀𝑒𝑑𝐸 =  𝜇 | 𝜇 ∈   𝐷𝑖

𝑝

𝑖=1

  ∧  𝐶 ∪  𝐿𝑆\ 𝜇   =  𝑅𝑆   

Where 𝐿𝑆 is the multiset of all values of each distributed multi sets smaller or equal than the median 

𝐿𝑆 = 𝑙𝑠𝐷1 ∪ 𝑙𝑠𝐷2 ∪ …∪ 𝑙𝑠𝐷𝑝  

𝐶 =  𝐿𝑆 𝜇 =  𝐴 − 1 ; 
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𝐴 =   𝑥𝑙  | 𝑥𝑙 ∈   𝐷𝑖

𝑝

𝑖=1

  ∧ 𝑥𝑙 = 𝜇 ; 𝑙 = 1,… ,𝑚  

Where 

𝑙𝑠𝐷𝑖 =  𝑥𝑗
𝑖  | 𝑥𝑗

𝑖 ∈ 𝐷𝑖 ∧ 𝑥𝑗
𝑖 ≤  𝜇 ∧  𝑗 = 1, … ,𝑚 ;  𝑖 = 1, … , 𝑝 

And 𝑅𝑆 is the set of all values greater than the median 

𝑅𝑆 = 𝑟𝑠𝐷1 ∪ 𝑟𝑠𝐷2 ∪…∪ 𝑟𝑠𝐷𝑝  

Where 

𝑟𝑠𝐷𝑖 =  𝑥𝑘
𝑖  |𝑥𝑘

𝑖 ∈ 𝐷𝑖 ∧ 𝑥𝑘
𝑖 >  𝜇 ∧  𝑘 = 1, … ,𝑚 ;  𝑖 = 1, … , 𝑝 

Then the size of 𝐿𝑆 and 𝑅𝑆  is defined as following 

 𝐶 ∪  𝐿𝑆\ 𝜇   =  𝑙𝑠𝐷1 +  𝑙𝑠𝐷2 + ⋯+  𝑙𝑠𝐷𝑝 − 1 

 𝑟𝑠 =  𝑟𝑠𝐷1 +  𝑟𝑠𝐷2 +⋯+  𝑟𝑠𝐷𝑝  

Respectively.  It is simple now to find that if 𝑅𝑆 > 𝐿𝑆 then   

 𝑅𝑆 =   𝐷𝑖 

𝑝

𝑖=1

−  𝐶 ∪  𝐿𝑆\ 𝜇    

And if 𝑅𝑆 < 𝐿𝑆 then 

 𝐶 ∪  𝐿𝑆\ 𝜇   =   𝐷𝑖 

𝑝

𝑖=1

−  𝑅𝑆  

Let 𝑛𝑟𝑠 =  𝑅𝑆 and 𝑛𝑙𝑠 =  𝐶 ∪  𝐿𝑆\ 𝜇    for further use. 

Analogously for the mathematical definition of median of a multi set in case the size is an EVEN number, we can 

form the mathematical defintion of median of distributed multi sets for this case. 

4.3. Mathematical Definition of PCM- oMaRS 

Now to show that we can calculate the exact median with PCM-oMaRS algorithm depending on the computation of 

the position of exact median after finding a temporary one, we give the following mathematical proof and then we 

clear it by an example:  

Let us have n multi sets. In the first step we have to get a temporary medina𝑴𝒆𝒅𝑻 after orering each multi set 

local.𝑴𝒆𝒅𝑻is the median of 𝑂𝑟𝑑-set in which contains ordering all Minimal, Maximal and Median values of each 

Multi set. 

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷𝑖 =  𝑀𝑖𝑛𝑖 ,𝑀𝑎𝑥𝑖 ,𝑀𝑒𝑑𝑖|𝑖 = 1, . . . , 𝑃  

Then we sort all these values in one multi set 𝑂𝑟𝑑. 

𝑂𝑟𝑑 =   𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷𝑖

𝑝

𝑖=1

  

We make the median of this sorted multi set as our temporary median 𝑴𝒆𝒅𝑻which locatedat the  
 3∗𝑃 +1

2
 th position 

if  3 ∗ 𝑃  is an Odd number or located at the two  
 3∗𝑃 

2
 ,  

 3∗𝑃 +2

2
 th positions if  3 ∗ 𝑃  is Even. For the last case 

we mean,if the size of 𝑂𝑟𝑑 is an even number, instead to calculate the average of two middle values, we take the 

first or second value of the both middle values and let it be𝑴𝒆𝒅𝑻. That means, always𝑀𝑒𝑑𝑇 ∈   𝐷𝑖
𝑝
𝑖=1   
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Now we get 𝑳𝑺 and 𝑹𝑺  depending on 𝑴𝒆𝒅𝑻  and calculate the size 𝑛𝑙𝑠  and 𝑛𝑟𝑠  of both multi sets 𝑳𝑺  and 𝑹𝑺 

respectively as defined in section 4.2. 

In the following we difference between three cases depending on𝑴𝒆𝒅𝑻 

The first case is if 𝒏𝒍𝒔 < 𝒏𝒓𝒔then we calculate the position 𝑃 of exact median of all multi sets. 

𝑃 =
 𝑛𝑟𝑠 − 𝑛𝑙𝑠 

2
 

This value tells us that the exact median exists in the right side (right side is a sequence contains values greater than 

the temporary median) of temporary median in P position, because the value of 𝒏𝒓𝒔 greater than the other one.  

Very important advantage: Until this step of PCM- oMaRS, the algorithm does not need to block any change of 

the data in the local nodes. All transactions and changes of local data can be continued performed without any 

disadvantages of the efficiency of PCM- oMaRS algorithm.   

To get the exact median we must get now maximum Psmallest values greater than 𝑴𝒆𝒅𝑻 from each sorted multi 

set and order them in 𝐺𝑡𝐷 

𝐺𝑡𝐷 =  𝑠𝑃𝑣𝑔1 ∪ 𝑠𝑃𝑣𝑔2 ∪…∪ 𝑠𝑃𝑣𝑔𝑝  

So that 

𝑠𝑃𝑣𝑔𝑖 =  
𝑥𝑗
𝑖  | 𝑥𝑗

𝑖 ∈ 𝐷𝑖 ∧ 𝑥𝑗
𝑖 > 𝑀𝑒𝑑𝑇

∧ 𝑗 = 1,… , P
 ; 𝑖 = 1,… , 𝑝 

Important Note: Transactions and changes of data of local nodes are blocked only in this step. 

Now get the exact median𝑀𝑒𝑑𝐸from the𝐺𝑡𝐷 

𝑀𝑒𝑑𝐸 = 𝐺𝑡𝐷[𝑃] 

In the second case, we study if 𝒏𝒍𝒔 > 𝒏𝒓𝒔 (This case process is analogously for the first one) then we calculate the 

position 𝑃 of exact median of all multi sets. 

𝑃 =
 𝑛𝑙𝑠 − 𝑛𝑟𝑠 

2
 

From this value we know that the exact median exists in the left side (side contains the values smaller than or equal 

the temporary median) of temporary median in P position, because the value of 𝒏𝒍𝒔 greater than the other one. 

Get maximum Pgreatest values smaller than 𝑴𝒆𝒅𝑻 from each sorted multi set and order them in 𝐿𝑡𝐷 

𝐿𝑡𝐷 =  𝑔𝑃𝑣𝑠1 ∪ 𝑔𝑃𝑣𝑠2 ∪ …∪ 𝑔𝑃𝑣𝑠𝑝  

So that 

𝑔𝑃𝑣𝑠𝑖 =  
𝑥𝑗
𝑖  | 𝑥𝑗

𝑖 ∈ 𝐷𝑖 ∧ 𝑥𝑗
𝑖 ≤ 𝑀𝑒𝑑𝑇

∧ 𝑗 = 1,… , P
 ; 𝑖 = 1,… , 𝑝 

We get the exact median from the 𝐿𝑡𝐷 

𝑀𝑒𝑑𝐸 = 𝐿𝑡𝐷[𝑃] 

The last case is the simplest case and the best case because if 𝒏𝒍𝒔 = 𝒏𝒓𝒔then the temporary median is the exact 

median𝑀𝑒𝑑𝐸 = 𝑀𝑒𝑑𝑇. 

Finally we get the exact median for all values in all distributed multi sets and it is 𝑴𝒆𝒅𝑬. This prove is correct for 

the both case when the total size is odd or even, because the difference is in the computation’s step of both 

temporary median and the position.  

The PCM- oMaRS algorithm consists actually of two algorithms named candidate-Finding and Exact-Median-

Computing Algorithms. The most important two steps in this algorithm are the computation of the position of exact 

median and its value (two values) after the finding a candidate median.  
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Before we present an example to clarify this mathematical definition of our algorithm, we give a proof of the 

validation of our algorithm. 

4.4. Validation of PCM- oMaRS 

To prove that the definition of exact median of distributed multi sets is correct, show the following:  

We definea multi set𝝆which containing the first 𝑷 − 𝟏 elements of 𝐺𝑡𝐷 and sort it. Then we see  

𝑛𝝆 =  𝜌 = 𝑃 − 1 

Now let we have the new 𝑅𝑆′and 𝐿𝑆′depending on 𝑴𝒆𝒅𝑬and𝑴𝒆𝒅𝑻, so that  

𝑅𝑆′ = 𝑅𝑆 \  𝜌 ∪  𝑀𝑒𝑑𝐸   

𝐿𝑆′ = 𝐶 ∪  𝐿𝑆\ 𝜇  ∪ 𝜌 ∪  𝑀𝑒𝑑𝑇  

Then  

𝑛𝑟𝑠 = 𝑛𝑟𝑠 −  𝑛𝜌 + 1 = 𝑛𝑟𝑠 −   𝑃 − 1 + 1  

𝑛𝑙𝑠 = 𝑛𝑙𝑠 + 𝑛𝜌 + 1 = 𝑛𝑙𝑠 +  𝑃 − 1 + 1 

In the following we give mathematical forms to prove that the relationship𝑃 =
 𝑛𝑟𝑠−𝑛𝑙𝑠 

2
guaranteed this validation.   

𝑃 =
 𝑛𝑟𝑠 − 𝑛𝑙𝑠 

2
 2𝑃 = 𝑛𝑟𝑠 − 𝑛𝑙𝑠  

 𝑃 − 1 +  𝑃 − 1 = 𝑛𝑟𝑠 − 1− 𝑛𝑙𝑠 − 1 

𝑛𝑙𝑠 + 1 +  𝑃 − 1 = 𝑛𝑟𝑠 − 1−  𝑃 − 1  

𝑛𝑙𝑠 +  𝑃 − 1 + 1 = 𝑛𝑟𝑠 −   𝑃 − 1 + 1  𝑛𝑙𝑠′ = 𝑛𝑟𝑠′ 

The Definition of exact median of distributed multi sets is valid. These expressions are valid for the fist case in 

section 4.3 (𝒏𝒍𝒔 < 𝒏𝒓𝒔). Analogically for the first case are steps calculated for the second one. 

Getting the mulit set 𝝆, containing the first 𝑷 − 𝟏 elements of 𝐿𝑡𝐷,  so that𝑛𝝆 = 𝑃 − 1 

Now we have the new 𝐿𝑆′and 𝑅𝑆′depending on 𝑴𝒆𝒅𝑬and𝑴𝒆𝒅𝑻, so that  

𝐿𝑆′ = 𝐶 ∪  𝐿𝑆\ 𝜇   \  𝜌 ∪  𝑀𝑒𝑑𝐸   

𝑅𝑆′ = 𝑅𝑆 ∪ 𝜌 ∪  𝑀𝑒𝑑𝑇  

Then  

𝑛𝑙𝑠′ = 𝑛𝑙𝑠 −  𝜌 + 1 = 𝑛𝑙𝑠 −   𝑃 − 1 + 1  

𝑛𝑟𝑠′ = 𝑛𝑟𝑠 + 𝑛𝜌 + 1 = 𝑛𝑟𝑠 +  𝑃 − 1 + 1 

We know that  

𝑃 =
 𝑛𝑙𝑠 − 𝑛𝑟𝑠 

2
 2𝑃 = 𝑛𝑙𝑠 − 𝑛𝑟𝑠  

 𝑃 − 1 +  𝑃 − 1 = 𝑛𝑙𝑠 − 1− 𝑛𝑟𝑠 − 1 

𝑛𝑟𝑠 + 1 +  𝑃 − 1 = 𝑛𝑙𝑠 − 1−  𝑃 − 1  

𝑛𝑟𝑠 +  𝑃 − 1 + 1 = 𝑛𝑙𝑠 −   𝑃 − 1 + 1  𝑛𝑟𝑠′ = 𝑛𝑙𝑠′ 

The Definition of Median is in this case valid too. 

4.5. PCM- oMaRS Example 

Let us have the following three multi sets after ordering: 

𝐷1 =  2,7,10,13,15 ,   

𝐷2 =  13,14,15,16,20,21,25 ,   

𝐷3 =  2,4,11,16,70  
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The minimal, maximal and median values for each sorted multi set is as following:  

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷1 =  2,15,10  

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷2 =  13,25,16  

𝑀𝑖𝑛𝑀𝑎𝑥𝑀𝑒𝑑𝐷3 =  2,70,11  

Then the ordered set of them is 

𝑂𝑟𝑑 =  2,2,10,11,13,15,16,25,70  

And the median of 𝑂𝑟𝑑 is the temporary median  𝑴𝒆𝒅𝑻 and equal to 13. 

𝑀𝑒𝑑𝑇 = 13 

Now we get 𝑳𝑺 and 𝑹𝑺 depending on 𝑴𝒆𝒅𝑻 

𝑅𝑆 = 𝑟𝑠𝐷1 ∪ 𝑟𝑠𝐷2 ∪ 𝑟𝑠𝐷3 

𝑟𝑠𝐷1 =  15 ,𝑟𝑠𝐷2 =  14,15, 16, 20,21,25 ,𝑟𝑠𝐷3 =  16,70  

 𝑟𝑠𝐷1 = 1,  𝑟𝑠𝐷2 = 6,  𝑟𝑠𝐷3 = 2 

→ 𝑛𝑟𝑠 =  𝑟𝑠 = 1 + 6 + 2 = 9 

𝐿𝑆 = 𝑙𝑠𝐷1 ∪ 𝑙𝑠𝐷2 ∪ 𝑙𝑠𝐷3; 

𝑙𝑠𝐷1 =  2,7,10,13 , 𝑙𝑠𝐷2 =  13 , 𝑙𝑠𝐷3 =  2,4,11  

 𝑙𝑠𝐷1 = 4,  𝑙𝑠𝐷2 = 1,  𝑙𝑠𝐷3 = 3 

→ 𝐿𝑆 =  2,7,10, 13,13,2,4,11  

But we have that  

𝐿𝑆\ 𝜇 = 𝐿𝑆\ 13 =  2,7,10,2,4,11  
𝐶 =  𝐿𝑆 𝜇 = 2 − 1 =  𝐿𝑆 13 = 1 =  13  

That means, the value 13 should be contained in the multi set LS only one time.  

𝐶 ∪  𝐿𝑆\ 𝜇  =  2,7,10,2,4,11,13  

𝑛𝑙𝑠 =  𝐶 ∪  𝐿𝑆\ 𝜇   = 7 = 4 + 1 + 3 − 1 

Now we get that 𝑛𝑟𝑠 = 9 and 𝑛𝑙𝑠 = 7and we see that this case meets the first case in section 4.3 then we have to 

calculate the position 𝑃 as following: 

𝑃 =
 𝑛𝑟𝑠 − 𝑛𝑙𝑠 

2
=
 9 − 7 

2
= 1 

That means the exact median exists in the right side of the 𝑴𝒆𝒅𝑻 in 1 position. 

Now we have to get smallest 1 values of each Multi set greater than 13 (Getting 𝐺𝑡𝐷)  

𝑠𝑃𝑣𝑔1 =  15 ,   𝑠𝑃𝑣𝑔2 =  14 ,   𝑠𝑃𝑣𝑔3 =  16  

 𝐺𝑡𝐷 =  14, 15,16  

Then the exact median is  

𝑀𝑒𝑑𝐸 = 𝐺𝑡𝐷 1 = 14 

Note: In step of choosing a temporary median we may remark here, if we have calculated the median of medians, we 

would have taken the value 11 as temporary median. This makes more effort into the calculation of the position of 

exact median. It would have required maximum 3 smallest values of each Multi set greater than11. That means the 

computation of temporary median depending on maximal, minimal and meidan values give better estimation than 

the median of medians technology. Now we continue with the validation of median definition for our example: 

𝑛𝝆 =  𝜌 = 1 − 1 = 0 

𝜌 = ∅ ,  𝑛𝜌 = 0 
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For our example: 

𝑅𝑆 =  14,15,15,16,16,20,21,25,70  \  ∅ ∪  14  =  15,15,16,16,20,21,25,70  

𝐿𝑆 =  2,2,4,7,10,11,13 ∪ ∅ ∪  13 =  2,2,4,7,10,11,13,13  

For our example:  

𝑛𝑟𝑠 = 9− 1 = 8 ,   𝑛𝑙𝑠 = 7 + 1 = 8 

That means the definition of exact median is valid in the value 14. 

V. CONCLUSION 

The research points of this field “median computing of distributed multi sets” divided into two main directions. The 

first one cares on the approximation methods. The other one focuses on the computation of the exact median with 

usage of iterative or recursive steps. We have shown that we can compute the exact median with clever steps 

depending on the calculation of the position of the exact median without needing to apply iterations or recursions at 

global level depending on communications to get the value of the exact median. That means, PCM-oMaRS 

algorithm guarantees the maximum reduction of median computation steps. Too, instead applying blocking of the 

required data by the beginning an execution of an algorithm, the data may be blocked only in one non iterative or 

recursive step with the execution of our algorithm and if it is necessary. 

In this article we would not to go on the cost of our algorithm, but we would to say that the most computation of our 
algorithm is calculated in the local nodes (computers), basic operations and operation with effcient complexity will 

be executed in the master computer (global one).  That means in other word, the costs of complexity of our 

algorithm is computed through the common communication costs and local execution costs like all other algorithms 

in addition only the cost of an efficent sort algorithm in step 5. In our experiments we have proved that the execution 

of our algorithm can be more effective in the local execution too, if we divided the local multi set that contains 

enourmuous values in many local multi sets.  

We have implemented this algorithm by C++ with two different input possibilities. The first one is with manually 

targeted inputs to test extreme cases of values distributations and the other one is random inputs to be able to check 

all possible cases with the passage of time. We have tested the implementation of our algorithm with more than 

40000 cases, some of these depended on the manually targeted inputs and the rest were in relation to the random 

inputs. In each case, the number of multi sets is different, and each multi set includes many different values. 
Currently we are working at the optimization of this algorithm and its implementation, then we will calculate the 

cost of the complexity of PCM- oMaRS algorithm in details. 
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