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PREFACE

This review piece was commissioned by the Population Council as part of its series
published under The Robert H. Ebert Program on Critical Issues in Reproductive Health and
Population. The purpose of these publications is to present new, interesting, and innovative thinking
on neglected and underrepresented topics. 

We believe this paper is one of these important pieces of work that presents a perspective
not previously considered and whose ideas may be integrated into a broader conceptualization of
women's health.  Our goal in presenting it is to expand the boundaries of the discussion on
women's health.

The objective of the paper is to consider from a public health perspective the types of
questions we might be asking about the relationship between menstrual function and women's
health and to evaluate to what extent these questions have, or have not, been addressed by the
scientific community.
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EXECUTIVE SUMMARY

Periodic bleeding—either its presence or its absence—is an integral part of a woman's

experience throughout much of her reproductive life.  In addition to the concern provoked by

unexplained alterations in bleeding patterns, considerable morbidity is directly attributable to

menstrual disturbances.  In the United States, among women 25–54 years of age, 2.9 million office

visits are made annually for disorders of menstruation.  Abnormal bleeding is one of three leading

indications for hysterectomy, the most common nonobstetric major surgery for U.S. women. 

Alterations in menstrual bleeding patterns may also signal potential fertility problems.  In addition to

these relatively obvious and familiar connections between menstruation and women's health,

evidence continues to accumulate which suggests that the endogenous hormonal environment

plays a critical role throughout a woman's life in determining her long-term risk of developing chronic

diseases such as osteoporosis, cancer, and cardiovascular disease.  This report reviews our current

knowledge about the menstrual cycle and its relation to women's physical health and considers

what new questions we ought to be asking about menstruation. 

What is the nature of variation in menstrual cycle characteristics, such as cycle length,

amount of bleeding, probability of ovulation, and hormone profiles, across the reproductive life span?

 Four classic studies provide useful information about changes in population mean cycle length and

in population variance from menarche to menopause (for example, the change in average cycle

length in a population for women of different ages).  These studies describe gross changes in

bleeding patterns a woman might expect as she approaches menopause.  However, none of these

studies provide a detailed picture of menstrual function, nor do they describe the more subtle

changes that occur between the ages of 20 and 40.  Age stratified population averages tell us little

about variability in cycle length as it is experienced by individual women.  Considerably fewer data

are available on population distributions of the duration or amount of menstrual bleeding.  Currently

available data on menstrual cycle length and blood loss lack the detail necessary to enable women

and clinicians to anticipate the specific bleeding changes women are likely to experience at different

life stages, to differentiate potentially pathological alterations from short-term aberrations, and to

identify bleeding patterns that may be risk factors for infertility or for the development of chronic

disease.

Data on the probability of ovulation come principally from four relatively small studies that

provide estimates of the average per-cycle probability of ovulation at different ages.  These studies

leave many questions about the process of ovarian maturation and senescence unanswered. 

Descriptions of within-woman changes in the probability of anovulation over the life course are

scarce and data on pattern differentials by region or by other population subgroups are virtually
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nonexistent.  Only about five articles provide data on variability in length of the follicular and/or luteal

phase.  To the extent that population variability in hormone production has been examined, studies

have exclusively focused on whether estrogen production was sufficient to achieve ovulation and/or

whether progesterone production was sufficient for the retention of pregnancy.  Obtaining more

detailed and quantitative data on population variability in hormonal patterns will be critical to

developing a better understanding of how a woman's endogenous hormonal environment influences

her risk of menstrual dysfunction, infertility, and chronic disease.  Currently, we know very little

about what constitutes meaningful variation in hormone profiles.

In addition to these shortcomings in basic descriptive information on menstrual function,

literature on factors that alter or perturb the menstrual cycle is sparse.  Marked geographic

differences have been reported in the timing of reproductive maturation and, to a lesser extent,

senescence.  Information on other menstrual parameters is more limited, but provocative data do

exist on regional differences in bleeding characteristics.  Nonetheless, our knowledge about

determinants of variability in menstrual function is largely confined to data measuring the effect of

three risk factors (weight, physical activity, and stress) on three menstrual parameters (menstrual

cycle length, the probability of ovulation, and adequacy of luteal function).  Extremes of weight have

been clinically associated with anovulation and amenorrhea, with both absolute weight and change

in weight appearing to influence menstrual function.  Women athletes have a higher frequency of

amenorrhea, anovulation, and luteal phase defects than nonathletes.  Recreational exercise can

also increase mean menstrual cycle length and the probability of anovulation.  Although

psychological stress is generally considered a major determinant of menstrual dysfunction,

scientific investigation of the association between stress and menstrual function is actually quite

limited and consists mainly of studies of the effect of major life changes, of catastrophic events, and

of girls leaving home on the probability of amenorrhea.

Additional studies should be undertaken to assess the effect of physical activity and energy

expenditure on menstrual function in cultures where women typically are occupied in nonaerobic but

energy-intensive tasks such as farming.  Similarly, further investigation of the effects of specific

stressors and of cumulative life stress on menstrual function is needed.  Considerably more

attention should be given to other factors that may influence menstrual function, including diet,

common environmental chemicals such as pesticides, and diverse aspects of the physical and

social environment.

Moving from questions of normal function to the problem of menstrual dysfunction, descriptive

and etiologic studies of menstrual disturbances are noticeably lacking, despite a considerable

literature on medical and surgical treatment of menstrual disorders.  For the more commonly

evaluated dysfunctions of anovulation, amenorrhea, and luteal phase defects, research deficiencies
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are primarily etiological.  Research needs for abnormal bleeding and dysmenorrhea range from

basic issues such as the development of appropriate classification systems and of operational

definitions to the overriding need to identify etiologic risk factors.

Finally, considerable data indicate that hormones play an important role both in normal

physiologic function and in the development of chronic disease such as breast, endometrial, and

ovarian cancer, cardiovascular disease, and osteoporosis.  However, mechanisms relating

menstrual function to women's long-term health profile are not well understood.  Studies of hormonal

risk factors for chronic disease have generally used relatively crude markers of endocrine function—

for example, age at menarche, age at menopause, and pregnancy-related variables such as parity

or age at first birth.  Few studies have examined the role of menstrual history per se or the effect of

the endocrine environment on physiologic risk factors for chronic disease.  The menstrual cycle

appears to modulate several aspects of women's physiology, including heart rate, pulse transit time

and blood pressure, energy metabolism, and various aspects of immune function.  The physiologic

impact of menstrual cyclicity has not been rigorously evaluated.

Based on this review, the need for a comprehensive program of menstrual cycle research is

evident.  Given our lack of knowledge about fundamental aspects of normal menstrual function and

about linkages between the menstrual cycle and other physiologic systems, the importance of

conducting basic research before proposing widespread treatment programs cannot be

underestimated.  Although the National Institutes of Health (NIH) have begun several research

initiatives focused on menopause and the health effects associated with the ending of reproductive

life, considerably more focus needs to be given to the menstrual cycle itself, as its influence

extends over 30 to 40 years of a woman's life.  Specific recommendations for research program

priorities include the following:

1. More population-based studies of the natural variability in menstrual cycle characteristics
across the reproductive life course need to be conducted in ethnically, culturally, and
socially diverse populations, with attention to a wider range of host and environmental
factors that may influence this variability.

2. Epidemiologic studies should be conducted of age-specific incidence and prevalence of
menstrual dysfunction, coupled with case-control studies, to examine etiologic risk
factors.

3. Basic research on changes in physiologic function across the menstrual cycle should be
undertaken for most physiologic parameters, with a priority focus on cyclic changes in
immune function, metabolism, and cardiovascular function.

4. Systematic investigation is needed of the relationship between menstrual cycle
characteristics and risk of chronic disease, including evaluation of hormone profiles and
physiologic risk factors in premenopausal women.
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DEFINITIONS

The term ‘‘menstrual cycle’’ refers to a physiologic process that encompasses at least three

distinct cyclic phenomena: (1) the growth and shedding of the endometrium, which results in

periodic vaginal bleeding; (2) the growth, maturation, and involution of ovarian follicles, which results

in the production of ovarian hormones and in ovulation; and (3) the systemic change in production

and secretion of reproductive hormones.  The term is also used to refer to the global phenomenon

that encompasses all three of these cycles.  This report uses the following terms to facilitate

conceptual distinctions among the different cyclic phenomena. 

· Menstrual cycle is used to refer both to the global physiologic phenomenon and to cyclic
endometrial bleeding.

· Ovarian cycle is used to refer to cyclic ovarian activity, including folliculogenesis, ovulation,
and luteal activity.

· Endocrine cycle is used to refer to the cyclic systemic fluctuations in reproductive hormones,
including gonadotropin-releasing hormone (GnRH), the gonadotropins (luteinizing hormone
[LH] and follicle-stimulating hormone [FSH]), and the estrogen and progesterone hormones
produced by the ovary.

· Menstrual cycle length is the number of days from the start of one menstrual bleeding period
to the start of the next bleeding period. 

· Duration of bleeding is the number of days from the start of menstrual bleeding until the start
of the next bleed-free interval.
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PART I. INTRODUCTION

In 1991, a report in the Lancet (Badwe et al., 1991) confirmed previous findings (Hrushesky et

al., 1989; Ratajczak et al., 1988) that the timing of surgery during the menstrual cycle influenced

breast cancer survival.  Women with node-positive premenopausal breast cancer who had surgery

during the luteal phase (after ovulation, when progesterone is present) were found to have up to 30

percent better survival than similar women who had surgery in the late follicular phase (before

ovulation, when estrogen levels are highest and progesterone is absent) (Badwe et al., 1991; Senie

et al., 1991).  Although not all reports are consistent (see, for example, Low et al., 1991; Goldhirsch

et al., 1991), a meta-analysis indicates that the timing of breast surgery is relevant to survival

(Gregory et al., 1992).  The number of potentially unnecessary deaths has been estimated to be

600 per year in England alone (Badwe et al., 1991).

This finding provides a provocative illustration of the potential physiologic significance of the

menstrual cycle to women's health.  Here, cyclic change in the internal endocrine environment

appears to alter a woman's natural resistance to carcinogenic growth and metastatic spread.  Given

extant data on the influence of estrogen on immunologic function and cellular growth, it cannot be

argued that elucidation of the relationship between timing of surgery and breast cancer survival was

dependent upon a new and important scientific discovery.  Rather, someone needed to begin asking

more penetrating questions about the medical implications of women's cyclic physiology.

Whether the problem lies in a trivialization of menstrual morbidity or in a failure to recognize

the impact of women's reproductive biology on nonreproductive disease processes, scientific

investigation of the menstrual cycle has been limited and disjointed.  Until recently, the possibility

that menstrual function could influence various disease processes seldom penetrated scientific

paradigms for research on women.  All too often, the menstrual cycle is viewed solely as a

mechanism to achieve pregnancy.  Recent initiatives within the National Institutes of Health to

describe the natural history of menopause and concurrent changes in metabolism, immune

function, and cardiovascular function indicate that new paradigms of women's health are emerging. 

However, such efforts focus primarily on the cessation of menstruation.

Recognizing the relevance of menstrual function to women's physiology is not the same as

assuming that women's health is wholly determined by their reproductive hormones.  Certainly,

medical science has also erred in its tendency to accept that certain diseases—for example,

premenstrual syndrome—are wholly caused by hormonal imbalances.  Nonetheless, the continued

failure to perceive and investigate linkages between menstruation and women's health carries a

great cost.

Periodic bleeding, whether in its presence or absence, is an integral part of a woman's
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experience throughout much of her reproductive life.  In addition to the concern provoked by

unexplained alterations in bleeding patterns, considerable morbidity is directly attributable to

menstrual disturbances.  In the United States, among women 25–54 years of age, 2.9 million office

visits are made annually for disorders of menstruation, of which 1.9 million are for heavy bleeding,

menorraghia, or dysfunctional uterine bleeding (National Ambulatory Care Survey, 1985,

unpublished data).  Among women 35–44 years of age, the annual visit rate for abnormal bleeding is

7.2 visits per 100 women.  Abnormal bleeding is also one of three leading indications for

hysterectomy, the most common nonobstetric major surgery for U.S. women, totaling over 500,000

operations annually (Graves, 1992; Bernstein et al., 1992).  A recent study in India has shown that

menstrual disturbances also appear to be a common complaint in nonindustrialized countries,

although such problems are often not brought to medical attention (Bang et al., 1989).  As a primary

marker of ovarian function, menstruation is also an important signpost of a woman's reproductive

health.  Altered ovarian function, including anovulation and luteal phase defects, is a major cause of

female infertility, and alterations in menstrual bleeding patterns may signal potential fertility

problems.  Despite this considerable clinical morbidity, neither the nature of normal variability in

menstrual function nor the etiology of menstrual dysfunction are well understood.

Separate from these relatively obvious and familiar connections between menstruation and a

woman's health, the menstrual cycle also defines and reflects a woman's internal endocrine

environment.  Evidence continues to accumulate which suggests that this endogenous hormonal

environment plays a critical role throughout a woman's life in determining her long-term risk of

developing chronic diseases such as osteoporosis, cancer, and cardiovascular disease (Sherman et

al., 1982; La Vecchia et al., 1985; Olsson et al., 1983; Parazzini et al., 1989; Gao et al., 1987;

Sowers et al., 1990, Barrett-Connor and Bush, 1991).  However, limited data are available on how

the hormonal environment differs from woman to woman, and mechanisms that relate hormonal

variation to a woman's disease risk are not well defined.  One important area requiring further

investigation is the role of the menstrual cycle in modulating normal physiologic function.  For

example, systematic fluctuations in lymphocyte counts across the menstrual cycle have been

demonstrated (Mathur et al., 1979) and a woman's risk of developing a Candida infection appears to

differ in the follicular and luteal phases (Kalo-Klein and Witkin, 1989).  Yet, even though a vast

literature exists about the in vitro effects of estrogen and progesterone on immune function,

changes in immune response across the menstrual cycle have never been systematically

evaluated.  Ultimately, evaluation of the health consequences of hormonal contraception and

hormone replacement therapy (HRT) and identification of ‘‘optimal’’ treatment regimens will require a

better understanding of the complex relationship between menstrual function, women's physiology,

and women's disease risk.
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The objectives of this report are to review our current knowledge about the menstrual cycle and

its relation to women's physical health, to consider what new questions we ought to be asking, and

to develop recommendations for a program of epidemiologic research on menstruation.  Although

the focus is on the endogenous menstrual cycle, the importance of linking research about the

endogenous endocrine environment with research on the health implications of pharmacologic

interventions is discussed.  The report is organized into six major sections.  Following this

Introduction, Part II describes what we know about biologic variability in menstrual bleeding patterns

and ovarian activity across the reproductive life course.  Part II is followed by a review of the

literature on host and environmental factors that perturb menstrual function, and proposals for new

avenues for etiologic research.  The next section, Part IV, considers menstrual morbidity, focusing

specifically on problems in defining menstrual dysfunction.  Part V addresses the relationship

between menstrual cycling, the endocrine environment, and women's physiology.  Implications for

women's long-term health and for epidemiologic studies of women's health are also considered.  The

final section proposes a research agenda.  

The strategy of this report is not to provide a detailed compendium of the scientific literature. 

Rather, the aim is to outline the dimensions (or limitations) of our knowledge and, thereby, to inspire

a vision of a comprehensive research program on the menstrual cycle.
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PART II. THE NATURE OF VARIATION IN MENSTRUAL CYCLES FROM MENARCHE TO

MENOPAUSE

The medical textbook image of the 28-day menstrual cycle is an idealized model of the

hormonal changes that occur during an ovulatory menstrual cycle.  The majority of women, however,

neither consistently experience 28-day cycles nor ovulate precisely on day 14, and most women

experience numerous changes in their menstrual cycle patterns during their reproductive life span. 

In order to gain a better understanding of menstrual function and dysfunction, we must first

understand how women's cycles depart from this idealized medical model.  Since most biologic

systems exhibit some amount of noise, it is important to differentiate this biologic noise from

variation attributable to perturbation of the system.  As is shown here, however, the way in which

these two distinct sources of variability influence length of the menstrual cycle, follicular phase and

luteal phase, duration of menstrual bleeding, or level of hormone production is not well described.

Consider, for example, what is known about variation in the length of the menstrual cycle.  We

know something about the frequency with which a cycle of 24, or 32, or 29 days will occur within a

population of women and about changes in the frequency of very long and very short cycles that

occur after menarche and before menopause.  However, few quantitative data are available to

explain how cycle length or bleeding duration varies from cycle to cycle within a woman over time,

or how that pattern of variation may differ from woman to woman, or how these patterns change as

women age.  Similarly, some data are available about the range of variability in length of the

follicular and luteal phases and about how luteal phase length is related to reproductive function. 

However, descriptions of changes in phase length from cycle to cycle within a woman as she ages

are scant.  The variability in patterns of hormone production, metabolism, and excretion remain

virtually unexplored. 

Menstrual Cycle Length, Duration of Bleeding, and Amount of Flow

Cycle Length 

Information on the length and variability of the menstrual cycle throughout a woman's

reproductive life comes predominantly from the seminal works of Matsumoto et al. (1962), Treloar et

al. (1967), Chiazze et al. (1968), and Vollman (1977), who investigated menstrual bleeding patterns

among white U.S. (Treloar), U.S. and Canadian (Chiazze), Swiss (Vollman), and Japanese

(Matsumoto et al.) women.  Participants in these studies kept menstrual diaries for varying lengths

of time; both the Treloar and Vollman studies include records of bleeding patterns throughout a

woman's reproductive life.  More recently, the World Health Organization (WHO) has published data

from a series of studies that followed women for short periods of time but included women from both
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industrialized and nonindustrialized countries (WHO, 1981, 1983, 1986).  A scattering of other small

studies provide data on menstrual function in, for example, adolescent Swiss (Flug et al., 1984) and

Nigerian (Thomas et al., 1990) girls, and in young adult Mexican women (Alvarado et al., 1988).  For

the most part these studies corroborate previous findings on age-related variation in menstrual cycle

length.  With few exceptions, they are not sufficiently detailed to enable evaluation of regional

differences in menstrual cycle characteristics.  (See Part III of this report.)

The large-scale prospective studies summarized data on menstrual cycle length across the

reproductive life span by describing the distribution of cycle lengths within each age strata in what is

essentially a series of cross-sectional analyses (see Table 1).  The picture is fairly consistent

across studies.  Population variability in menstrual cycle length is greatest immediately after

menarche and shortly before menopause, with the menarcheal and menopausal transitions lasting

two to five years.  Both periods are characterized by an increased frequency of both very long and

very short cycles, as well as by an increased range of cycle lengths.  For example, in the Treloar et

al. (1967) data, during the first year of menstruation, cycle lengths span 65 days—ranging from 18

to 83 days—when 95 percent of all cycles are considered.  By the fifth year post-menarche this

range drops to 19 days.  Two years before the onset of menopause this range once again increases

to 65 days.  Cycle length from age 20 to age 40 exhibits considerably less variability, although the

observed population mean cycle length gradually shortens by two to three days over the course of

these two decades.  

These classic studies have provided extensive and useful information about changes in

population mean cycle length and in population variance from menarche to menopause.  In other

words, these data tell us what the average cycle length would be in a population of women of a

given age.  They also provide information about the type of gross changes in bleeding patterns a

woman might expect as she approaches menopause.  However, they do not provide a very detailed

picture of menstrual function.  The more subtle changes that occur between the ages of 20 and 40

are not well described and the significance of the gradual shortening of population mean cycle

length for an individual woman is unclear.  The same cross-sectional data would be generated if

each woman's cycle length gradually changed with age or if each woman's cycle length abruptly

changed over a relatively short period and different women experienced this change at slightly

different ages.  Findings from one study suggest that the abrupt-change scenario may be a more

accurate description of the experience of individual women, as a sudden increase in long menstrual

cycles was observed in women at the start of perimenopause (Metcalf, 1979, 1983).  A more

precise understanding of the subtler changes occurring during these decades may give a better

insight into age-related changes in fertility and help women predict their expected time of

menopause.
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An allied problem is that prior analyses have focused solely on population-averaged changes;

menstrual cycle length variations from cycle to cycle within a woman are not addressed.  To

understand this point, consider the following simple example.  Suppose we have two ‘‘populations’’

of three women each.  We have observed the length of three consecutive menstrual cycles in each

woman, as shown below.  In population A, each woman maintains a stable cycle length over time. 

In population B, cycle length varies within each woman over time.

Menstrual cycle lengths for three consecutive cycles
in two hypothetical populations

Number of days per cycle, for three consecutive cycles
Population A Population B

Variable 1 2 3 1 2 3
Woman #1 20 20 20 20 30 40
Woman #2 30 30 30 40 20 30
Woman #3 40 40 40 30 40 20

Population mean 30 30 30 30 30 30
Population median 30 30 30 30 30 30
Population variance 67 67 67 67 67 67

The population mean, median, and variance describe the distribution of cycle lengths in each

population at each of the three time points.  In the example shown above, the population statistics

are the same in both groups of women despite the fact that the experiences of the individual women

are very different.  Age-stratified population averages tell us nothing about variability in cycle length

as it is experienced by individual women.  The classic studies discussed above provide excellent

descriptions of the average menstrual experience of a population; however, they provide very little

information about the dynamics of menstrual cycling within individual women.

In fact, virtually no information exists on how cycle length varies from one cycle to the next in

individual women.  If, for example, a woman had a 48-day menstrual cycle this month, what is the

probability that next time her cycle would be 23 days, or 29 days, or 48 days again?  Would that

probability be the same when she is 45 years old as it was when she was 35, or 25 years old? 

Data from the only two studies (Matsumoto et al., 1962; Harlow and Zeger, 1991) that provide

quantitative estimates of such probabilities are summarized in Tables 2 and 3.  Both studies show

that, regardless of the length of the previous cycle, most cycles will fall in the midrange of cycle

lengths (approximately 26–34 days).  Very long cycles and very short cycles do tend to recur, but

the probability of such recurrence is low.  Given the existence of age-related changes in menstrual

cycle length and variability, one might expect that age-related changes in transition probabilities

also occur, although available data do not permit us to evaluate such age effects.  Better



7

descriptions of the dynamics of menstrual cycling would not only be useful clinically in evaluating

menstrual morbidity, but may also be important in identifying subgroups at risk of developing

chronic disease.

Finally, the classic studies provide only a limited understanding of menstrual function because

descriptions that solely examine changes in the mean and spread about the mean can never fully

explain the phenomenon of menstrual variability (Harlow and Zeger, 1991).  Harlow and Zeger (1991)

have argued that the distribution of cycle lengths comprises two salient features: an approximately

symmetric unimodal part and a very long right tail.  Part of the problem with the current medical

model of a 28-day menstrual cycle is that it is not clear how to extend this model to incorporate the

phenomenon of very long cycles or amenorrhea (that is, cycles that fall in the tail of the distribution).

 Both Treloar et al. (1967) and Vollman (1977) noted that in the years approaching menopause, they

observed an increased frequency of both very long and very short cycles.  Exercise and certain

stressors have also been shown to increase the number of observations in the right tail and shift the

mode in the symmetric part of the distribution to the left (Bernstein et al., 1987; Bullen et al., 1985;

Dale et al., 1979; Harlow and Matanoski, 1991).  These two changes occurring simultaneously may

leave the mean unchanged.  Similarly, a change in the mean could reflect either a true shift in the

modal value or an increased probability of having cycles in the tail of the distribution.  Further

analysis of the shape of the population distribution of menstrual cycle lengths and of changes in the

shape of this distribution over age could provide us with a better understanding of ovarian biology

and, therefore, help us develop clearer definitions of menstrual abnormality.  At the very least, a

medical model of ovarian function should portray ovarian activity for the entire range of menstrual

cycle lengths (see Variability in the Ovarian Cycle). 

Duration of Bleeding and Amount of Flow

Despite the shortcomings of information on menstrual cycle length, considerably more data

are available about cycle length than exist about population distributions of the duration or amount

of menstrual bleeding.  Among the large population-based studies cited above, only Matsumoto et

al. (1962) reported on length of the bleeding episode and subjective amount of flow (that is, a

woman's perception of her flow as scanty, moderate, or profuse).  In this study, duration of bleeding

after ovulatory cycles ranges from two to twelve days, with 80 percent of bleeds lasting from three to

six days (mode=5, mean=4.6, standard deviation [SD]=1.3) and the heaviest flow usually reported

on the second day.  Long menstrual periods (more than eight days) were associated with ovarian

dysfunction, being more common in anovulatory cycles and in cycles with an inadequate luteal

phase. 

The most comprehensive information on actual blood loss comes from a population-based
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study conducted in Sweden (Hallberg et al., 1966) (see Table 4).  Mean volume of blood loss per

bleeding episode was 43.4 milliliters, with blood loss ranging from 10 to 84 milliliters in 80 percent of

the episodes.  Among women who considered their bleeding to be normal, mean blood loss was

somewhat lower (38.5 milliliters), while the mean for women with subjectively normal blood loss who

also had adequate iron levels was 10 milliliters lower (33.2 milliliters).  After comparing data from

women with and without adequate iron levels and from women who did and did not consider their

menstruation to be ‘‘abnormal,’’ these investigators defined the upper limit of normal blood loss to

be 80 milliliters.

As is true for menstrual cycle length, bleed characteristics apparently vary during the

reproductive life course, with the greatest extremes occurring during the menarcheal and

menopausal transitions.  Women over the age of 35 appear to bleed about half a day less than

women aged 20–24 (Matsumoto et al., 1962), to experience fewer bleeds longer than seven days

(Collett et al., 1954), and to subjectively report lighter flow (Matsumoto et al., 1962).  After

menarche, and presumably before menopause, menstrual periods are more frequently extremely

long or extremely short (WHO, 1986).  In terms of actual blood flow, 15-year-old girls bled 1–2

milliliters less and 50-year-old women bled about 6 milliliters more than women aged 20–45

(Hallberg et al., 1966).  Women approaching menopause were more likely to experience very heavy

bleeding (90th percentile=133 milliliters in women aged 50) than were younger women (for example,

90th percentile=86-88 milliliters for women aged 30–45).  Although the general boundaries of normal

blood flow are identified by these few extant studies, no detailed picture of expected changes in

blood flow over the reproductive life span, or of bleeding changes from menstruation to menstruation

within a woman, is provided. 

The absence of data that characterize bleeding changes as women approach and pass

through the menopause is of particular concern given the high rate of medical visits for abnormal

bleeding and the prevalence of hysterectomies after age 35.  Given the importance of learning more

about patterns of blood loss, the fact that subjective reports of amount of blood flow are only

moderately correlated with measured blood volume presents an important methodologic and public

health problem.  Although mean blood loss for women who report heavy bleeding is greater than

mean loss for women who report light or moderate bleeding, many women who experience

considerable blood loss do not report excessive bleeding (Hallberg et al., 1966; Fraser et al., 1984,

1985).  Hallberg et al. found that 37 percent of women with more than 80 milliliters of blood loss

reported their bleeding as moderate.  Conversely, 14 percent of those who lost less than 20

milliliters of blood considered their bleeding to be heavy.  These data suggest that, although on

average women have some idea of how their blood flow compares on a scale of light to heavy

bleeding, at the individual level women have no real criterion on which to grade the severity of their
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own blood loss.  Perceptions of blood loss are likely to depend on a woman's own previous

experience and self-report appears to be both fairly accurate in describing relative changes within

the individual and predictive of ovulation (Campbell and Gray, 1993).  However, the high degree of

misclassification of actual blood loss by subjective report indicates that self-reports are not

sufficient for clinical diagnosis of pathological conditions such as menorraghia (Fraser et al., 1984).

 Obviously, better clinical and research tools for the measurement of menstrual blood loss are

needed.  However, the fact that no common popular conception exists about how much bleeding

constitutes ‘‘too much’’ suggests that public education campaigns are also needed in order to

create a better awareness of what constitutes menstrual dysfunction in the community.  Objective

criteria will need to be developed by which women can self-rate their daily blood loss in order to gain

a better appreciation of the qualitative and quantitative changes that they will experience over their

reproductive life span.

Summary 

Available data on population distributions of menstrual cycle length and blood loss, though

useful, lack the detail necessary to enable women and clinicians to anticipate the specific bleeding

changes women are likely to experience at different life stages, to differentiate potentially

pathological alterations from short-term aberrations, and to identify bleeding patterns that may be

risk factors for infertility or for the development of chronic disease.  Our ability to more clearly define

menstrual dysfunction and to relate menstrual function to fertility or long-term risk of chronic

disease will require more precise information on these patterns of variation and the dynamics of

menstrual cycling.

Variability in the Ovarian Cycle: Ovulation, the Follicular and Luteal Phases, and Periods

of Follicular Suppression

Descriptions of the ovarian cycle are generally oriented toward the critical event of ovulation,

with the ovarian cycle depicted as a two-phase phenomenon—the follicular phase corresponding to

the pre-ovulatory period of gonadotropin-dependent follicular growth, and the luteal phase

corresponding to the post-ovulatory follicular luteinization and regression.  Investigations into the

population variability in ovarian function thus focus on these three phenomena: the probability of

ovulation, the length of the follicular phase, and the length of the luteal phase.

The Probability of Ovulation 

Data on population distributions of the probability of ovulation come principally from four

studies.  In their longitudinal studies, Vollman (1977) and Matsumoto et al. (1962) both obtained
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basal body temperatures (BBTs) on subsamples of women.  Doring (1969) charted BBTs and

Metcalf (1983) assayed urine for pregnanediol (a metabolite of progesterone) in age-stratified

samples of German women and New Zealand women of European descent, respectively.  Table 5

summarizes these data on the probability of ovulation by age and menstrual cycle length.

As can be seen from the table, anovulation is associated with menstrual cycle length: short

and long cycles are 10–30 percent more likely to be anovulatory than are cycles of about 25–35

days.  Given this association, it is not surprising that the probability of anovulation is greatest during

the postmenarcheal and premenopausal years, when long and short cycles are also more common.

 From about age 25 to 39, the years of relative stability in menstrual function, approximately 2–7

percent of cycles are anovulatory.  In contrast, 50–60 percent of cycles in 10–14-year-old girls and

about 34 percent of cycles in women over age 50 are anovulatory.

In fact, much of the age-related change in the probability of ovulation appears to be directly

associated with the corresponding age-related variability in menstrual cycle length.  Among women

approaching menopause, an increased frequency of anovulation was apparent only in those women

who had also experienced the onset of episodes of oligomenorrhea (an increased frequency of

cycles longer than 35 days).  Among women aged 40–55, 95 percent of those with no recent

change in menstrual cycle length ovulated consistently, compared with only 34 percent of those

who reported a recent history of oligomenorrhea (Metcalf, 1979).  However, the data also indicate

that age has an independent influence (Metcalf, 1983), as the probability of anovulation differs

between adolescents and older women for any given range of cycle lengths.  A more precise

understanding of how the coupling of ovarian and endometrial function changes with age may

provide important insights as to why the frequency of menorraghia (heavy or prolonged bleeding)

increases in older women.  As was true for menstrual characteristics, simple population estimates

of the average per-cycle probability of ovulation leave many questions about the process of ovarian

maturation and senescence unanswered.  Descriptions of within-woman changes in the probability

of anovulation over the life course are scarce, as are data on how these patterns may differ by

region or by other population subgroups. 

Variability in the Length of the Follicular and Luteal Phases

Only about five articles provide data on variability in length of the follicular and/or luteal phase

(see Table 6) and, as is true for other menstrual cycle characteristics, the data are limited to cross-

sectional population averages.  Since estimation of phase length requires determination of the

timing of ovulation, differences in methods used to assess ovulatory status and in rules used to

define the start of the luteal phase create some disparities in phase length estimates.  Differences

in eligibility criteria also have a marked effect on follicular phase estimates.  The term ‘‘follicular
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phase’’ actually refers to gonadotropin-dependent follicular growth, and it is not at all clear to what

extent such growth is taking place at the beginning of very long or anovulatory menstrual cycles. 

Since the start of this gonadotropin-dependent growth is not easily measured, several investigators

restricted their samples to ovulatory cycles within a defined range of menstrual cycle lengths

(WHO, 1983; Landgren et al., 1980; Lenton et al., 1984a,b) and thus limited the potential length of

the follicular phase, a priori. 

The World Health Organization (WHO) characterized the distribution of ovarian-phase lengths

among women participating in ‘‘natural’’ family planning trials in five countries, estimating day of

ovulation by the peak day of cervical mucus (WHO, 1983).  Three studies characterized phase

length based on daily hormonal profiles from volunteer samples of Swedish and English women with

‘‘regular’’ ovulatory menstrual cycles (Landgren et al., 1980; Lenton et al., 1984a,b).  In contrast

with other investigators, Lenton et al. (1984a) do not include the day of presumed ovulation in their

calculation of the length of the follicular phase.  Vollman (1977) and Matsumoto et al. (1962) also

report information about population distributions of ovarian-phase lengths with timing of ovulation

determined by basal body temperatures.  Neither of these latter investigators restricted menstrual

cycle length and, consequently, their estimated range of ‘‘follicular’’-phase lengths differs from the

other three studies.

Although the luteal phase is generally described as being considerably less variable than the

follicular phase (see, for example, Speroff et al., 1983), this belief is not borne out by the data, if the

definition of the follicular phase is limited to the presumable period of gonadotropin-dependent

folliculogenesis.  As can be seen in Table 6, in the three studies that exclude long menstrual

cycles, the follicular phase varies in length from approximately 10 to 23 days (mean=13–15 days),

while the luteal phase varies from 8 to 17 days (mean=13–14 days).  Inclusion of longer menstrual

cycles yielded larger estimates of mean length of the follicular phase (17–18 days) (Matsumoto et

al., 1962; Vollman, 1977); however, the 10th to 90th percentiles (13–24 days) are roughly consistent

with the other studies.  Estimates of luteal phase length are fairly consistent across studies. 

Length of the follicular and length of the luteal phase are each positively correlated with menstrual

cycle length in ovulatory menstrual cycles (r = 0.55 and 0.62, respectively) and negatively correlated

with each other (r = –0.31) (WHO, 1983).

As is true for other menstrual cycle characteristics, length of the ovarian phases, especially

the follicular phase, changes across the reproductive life span.  Mean length of the follicular phase

declines from about 14 days at ages 18–24 to about 10.5 days at ages 45–60.  Short luteal phases

(less than 11 days) are more frequent in both younger and older women (Lenton et al., 1984a,b), but

Vollman's data (1977) suggest that once reproductive maturity is attained luteal-phase length

remains relatively constant through menopause.  From about age 23 through menopause,
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approximately 15 percent of menstrual cycles had short luteal phases.  Thus, the increased

frequency of very short menstrual cycles at the end of the reproductive life span appears to be due

primarily to the increased frequency of short follicular phases (see also Sherman et al., 1979).

However, having reviewed this literature on the probability of ovulation and length of the

follicular and luteal phases, it is important to point out that these three phenomena, derived from the

classic two-phase model of the ovarian cycle, do not encompass the full range of ovarian function,

and thus do not allow for a comprehensive description of the interlinkages between endometrial and

ovarian activity.  The limitations of the classic two-phase model of ovarian activity become readily

apparent in the discrepant definition of the ‘‘follicular’’ phase noted above.  Amenorrhea and long

cycles correspond to menstrual cycle lengths that fall in the long right tail of the distribution of

menstrual cycle lengths.  These menstrual phenomena are not explicitly incorporated into the

classic two-phase model of ovarian function.

Harlow and Zeger (1991) have argued that a simple extension of the current ovarian model

could provide a more complete description of the menstrual cycle.  The new model would add a lag

time between the end of one ovarian cycle and the successful initiation of the next ovarian cycle. 

This lag time, referred to as the ‘‘waiting period,’’ could reflect an extended period of follicular

suppression during which the appropriate conditions for recruitment of a new cohort of follicles are

not met (Baird, 1987).  Alternative hypotheses of the ovarian events that may underlie this lag

period, such as repeated early death of the dominant follicle, are also possible.  More information

about the hormonal patterns that underlie long menstrual cycles will be needed before specific

hypotheses can be definitively evaluated.  Nonetheless, an explicit extension of the current two-

phase model of ovarian cycling to what might be considered a three-phase model offers the

possibility of evaluating ovarian activity consistent with both normal menstrual cycling and with

delayed menstruation or amenorrhea within a single conceptual framework.

The literature on population variability in ovarian function generally ignores this ‘‘waiting period’’

or phase of follicular suppression.  As was noted above, investigators either explicitly restrict their

study populations to women with ovulatory menstrual cycles of less than 35–40 days or they define

all activity prior to ovulation as ‘‘follicular’’ regardless of the time elapsed from start of menses to

ovulation.  More clarity about this ‘‘third’’ phase of ovarian function might help elucidate the nature

and etiology of menstrual dysfunction as well as the timing of menopause.  The literature on

lactational amenorrhea offers an interesting model for understanding the phenomenon of follicular

suppression and provides some extended series of daily hormonal data (see, for example, Shaaban

et al., 1987).  Similar data on hormonal parameters in nonpostpartum, nonconception menstrual

cycles that last longer than about 40 days are more limited (Matsumoto et al., 1979; Sherman et

al., 1979; Metcalf et al., 1982), although recent epidemiologic studies on early pregnancy loss
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should contribute to this literature.  These limited data suggest that follicular suppression does

occur in many long menstrual cycles but aborted folliculogenesis or otherwise incomplete ovarian

cycles also are evident.

Summary

The literature on variability in ovarian function is sufficient to provide estimates of the average

probability of ovulation by age and menstrual cycle length and of the range of variation in the length

of the follicular and luteal phases.  However, it does not provide a complete picture of ovarian

function.  No data exist on within-woman variability in ovarian function from cycle to cycle over the

reproductive life course.  Considerably more investigation is obviously needed to define and describe

the ovarian activity underlying the ‘‘follicular’’ phase in long menstrual cycles.  An even more

important consideration, however, is that evaluation of phase length and the probability of ovulation

for the most part begs the question of variability in ovarian hormone production.  To the extent that

hormone production has been examined, investigations have focused on whether estrogen

production was sufficient to achieve ovulation or whether progesterone production was sufficient for

the retention of a pregnancy.  Although some data exist about changes in the height of the

progesterone peak under certain conditions and on changes in estrogen levels with age, few

quantitative data exist on population or within-woman variability in hormonal patterns.  Substantive

evaluation of hormonal patterns is important, not only because such evaluation may lead to a better

understanding of menstrual and reproductive dysfunction, but also because it will elucidate how the

hormonal environments of women differ.  In the final analysis, it is these differences in women's

endogenous endocrinologic environments that should explain differences in disease risk. 

Variability in the Endocrine Cycle: Production, Secretion, and Metabolism of Steroid and

Other Reproductive Hormones

Most studies on reproductive hormones have focused primarily on explaining the general

pattern of ‘‘normal’’ function (that is, mean and peak levels and shape of the curve) as opposed to

describing the variability in hormonal profiles.  One of the few investigations of the population

distribution of hormonal levels is the study by Landgren and colleagues (1980) mentioned above. 

Table 7 presents the range of mean and peak levels for each of the four major reproductive

hormones observed in 68 ovulatory menstrual cycles with lengths from 25 to 36 days.  In addition to

describing the range of hormonal values, this study also provides preliminary observations on the

relationships between hormone levels and quality of the ovarian cycle (as measured by cycle and

phase lengths) and on the nature of variability in hormonal patterns.

As is summarized in Table 8, levels of estrogen production and LH secretion appear to be
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important determinants of the quality and function of the entire ovarian cycle, while progesterone

production is relevant only to the quality of luteal function.  High levels of estrogen during the first six

cycle days were associated with a shorter follicular phase (r = –0.53) and a shorter menstrual cycle

(r = –0.44).  High preovulatory peak estrogen levels were correlated with shorter follicular phases (r

= –0.32).  On the other hand, high levels of LH three to seven days before the LH peak were

associated with both a longer follicular phase (r = 0.43) and longer menstrual cycles (r = 0.45); high

peak levels of LH were also correlated with long menstrual cycles.  High peak progesterone levels

were associated with a long luteal phase (r = 0.27).  FSH, though clearly critical to folliculogenesis

and the selection of a dominant follicle, was less predictive of the quality of a given ovarian cycle, as

FSH levels were not associated with length of ovarian phase or menstrual cycle.  These findings

provide some of the first data about the interrelationship between various hormonal, ovarian cycle,

and menstrual cycle parameters.  Further exploration of these relationships may help in defining

menstrual dysfunction, in understanding the etiology of menstrual dysfunction, and in identifying a

more parsimonious and meaningful set of parameters to use in epidemiologic research.

In regard to hormonal patterns, these data suggest that a given ovarian cycle tends to have

consistently high or consistently low LH and estrogen levels relative to other cycles (that is, one LH

parameter will sort cycles into the same relative groupings as any other LH parameter), whereas the

relative magnitude of FSH values tends to vary across a given ovarian cycle.  It would be of interest

to know whether this relative sorting by LH and estrogen levels is consistent across successive

cycles for a given woman.  We might expect that an individual woman would tend to have ovarian

cycles with consistently high or low LH values, but in order to understand menstrual dysfunction, it

is also of interest to learn more about variability in levels from ovarian cycle to ovarian cycle. 

Understanding more about the relative patterns of hormone production from woman to woman is

critical to understanding how differences in women's endogenous hormonal milieu influence their

risk of menstrual dysfunction, infertility, and chronic disease.  Currently, we know very little about

what constitutes meaningful variation in hormonal patterns.

Given interest in the processes of ovarian maturation at puberty and senescence at

menopause, some information is available about how hormone levels change with age (Table 9). 

Sherman et al. (1979) compared mean plasma LH, FSH, estradiol, and progesterone levels in

women aged 18–30 who had ovulatory menstrual cycles and no evidence of luteal phase

inadequacy with plasma hormone levels in women aged 40–45 and 46–56.  Metcalf and colleagues

(Metcalf, 1979; Metcalf and MacKenzie, 1980; Metcalf and Livesey, 1985) compared LH, FSH, and

the urinary progesterone metabolite pregnanediol in weekly urine samples in a larger sample of

women between the ages of 20 and 55 over multiple cycles.  Neither group of investigators found

differences in progesterone levels with age.  The reported decreases in estrogen and increases in
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FSH observed in older women are now commonly understood phenomena.  LH levels also appear to

increase slightly with age: although in the Sherman et al. study this increase was not statistically

significant, their sample size was quite small. 

Metcalf and colleagues have tried to distinguish the effect of age from the effect of approaching

menopause on hormone production.  Although no significant differences are observed in the

magnitude of the pregnanediol peak in menstrual cycles of 21–35 days duration as women age

(Metcalf, 1979; Metcalf and MacKenzie, 1980), pregnanediol levels do appear to decrease during

the menopausal transition.  Women aged 40–55 who experienced anovulatory menstrual cycles

also had significantly lower pregnanediol levels in their ovulatory cycles (mean = 8.7 µmols/24

hours).  This finding—that progesterone production varies little with age until the onset of the

menopausal transition—is consistent with the fact that length of the luteal phase is relatively age-

invariant.  On the other hand, FSH and, to a lesser extent, LH levels do appear to exhibit age-

dependent changes that are unrelated to the proximity of menopause (Table 9) (Metcalf and

Livesey, 1985).  However, the change in gonadotropin levels in women over 40 who have entered

perimenopause is considerably more marked (60.6 percent excreted more than 5 International

Units/24 hours, compared with 31.5 percent of women over 40 who were not in perimenopause). 

Metcalf and Livesey postulate that the age-related change in FSH secretion reflects changes in the

pituitary's sensitivity to estrogen feedback.  The more pronounced and abrupt change in pituitary

function that occurs at the onset of the menopausal transition is not, they argue, as easily

explained by a similar alteration in feedback sensitivity. 

Actual menopause, interestingly, is not associated with any specific, or predictive, hormonal

change (Metcalf et al., 1982).  Although transition into perimenopause is usually marked by a

sudden increase in the occurrence of long menstrual cycles and anovulation, an increase in the

probability of observing high levels of FSH, and a decrease in mean estrogen levels, the last

menstrual cycle in a woman's life can nonetheless be ovulatory with normal luteal function (Metcalf

et al., 1982).  The only change Metcalf and colleagues noted at menopause was that after

menopause no evidence of luteal development could be detected.  No clear alteration was observed

in LH, FSH, or estrogen secretion, although slight, but barely significant, increases were noted in

levels of FSH and LH 15–20 weeks after the last bleed.  Thus, the characteristic low estrogen and

high gonadotropin levels of older women appear to evolve gradually after the last bleed.

Despite these relatively scant data, sufficient evidence indicates that, in addition to the abrupt

hormonal alterations associated with the menarcheal and menopausal transitions, potentially

meaningful alterations may also occur in a woman's endogenous hormonal environment throughout

her reproductive life.  For example, although mean estrogen levels do not seem to vary dramatically

during the reproductive life cycle, the fact that menstrual cycles tend to be shorter after age 30-35,



16

that shorter menstrual cycles are associated with shorter follicular phases, and that shorter follicular

phases are associated with higher estrogen levels suggests that hormonal patterns across the

menstrual cycle probably do alter as a woman ages.  It is this latter line of questioning, which

begins to look for variation in hormonal patterns and to consider the implications of this variation for

the endogenous hormonal milieu, that is critical to elucidating the relationship between the

endogenous hormonal environment and women's health.

Two very important dimensions of the hormonal environment that require further investigation

are pathways of hormonal metabolism and fundamental genetic differences in hormone response. 

It has long been observed that women tend to have somewhat various bleeding patterns: some

women usually have relatively short menstrual cycles while others usually have relatively long

cycles.  Some women seem prone to amenorrhea while others never experience amenorrhea. 

Heterogeneous risk in the probability of having a spontaneous abortion has also been described

(Wilcox and Gladen, 1982).  These basic differences in menstrual bleeding patterns and

reproductive behavior suggest that within the population of women meaningful genetic differences in

menstrual function exist.  More systematic and directed investigation into genetic heterogeneity in

menstrual function is needed.

Evidence is also accumulating to indicate that hormone metabolism may play an important

role in defining the internal endocrine environment (see, for example, Ball et al., 1975; Fishman,

1981; Kappas et al., 1983; MacLusky et al., 1981).  The classic pathway of endogenous estrogen

metabolism includes oxidation of estradiol to estrone and subsequent hydroxylation at the 16α-

position of the D ring to produce 16α-hydroxyestrone and estriol.  For many years these three

classic estrogens (estradiol, estrone, and estriol) were thought to be the only endogenous

estrogens of significance (Fishman, 1981).  However, over the past 10–15 years, the quantitative

and biologic importance of hydroxylation of the A ring at the 2- position, and to a lesser extent at

the 4- position, has become evident: 2-hydroxyestrone is excreted in approximately equal amounts

to estriol (Ball et al., 1975; Fishman, 1981; MacLusky et al., 1981).  These 2- and 4-substituted

estrogens are known as ‘‘catechol estrogens’’ because their additional hydroxyl group creates a

catechol structure that enables these compounds to interact with both estrogen and catecholamine

receptors.

The estrogenic properties of the metabolites produced by the 16α- and 2- pathways appear to

differ markedly; 16α-hydroxyestrone is a potent estrogen, while 2-hydroxyestrone is relatively weak.

 Although the data are still limited, the proportional distribution of 16- versus 2- hydroxylated

metabolites appears to differ substantially among individuals, while total estrogen excretion remains

relatively invariant (reviewed in MacLusky et al., 1981).  The relative partitioning of estrogen

metabolism along one versus the other metabolic pathway may substantially influence the
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estrogenic quality of a woman's endogenous environment.  Again, few population-based data exist

that describe the relative probabilities of women using one versus another metabolic pathway, and

considerably more basic work remains to be done to validate methods for measuring these

metabolites.  Nonetheless, two small but provocative studies demonstrating that the

pharmacokinetics (Goldzieher et al., 1980) and metabolism (Williams and Goldzieher, 1980) of

orally administered ethynyl estrogens differ by geographic region point to the importance of pursuing

this line of research.  After a single oral dose of ethynylestradiol, plasma levels in Nigerian women

were consistently lower, and levels in Thai women were consistently higher, than in U.S., Sri

Lankan, or Singapore women.  Although total urinary excretion did not vary, Nigerian, Sri Lankan,

and U.S. women did differ in the relative proportions of 3-, 17-, and 3,17-glucuronides that they

excreted: Oxidative metabolism at the 2-, 6-, and 16- positions was substantially more common in

U.S. women, less common in the Sri Lankan women, and infrequent in the Nigerian women. 

Physiologic factors, pathologic conditions, and environmental chemicals have been found to

influence the proportional distribution of urinary metabolites (MacLusky et al., 1981).  Obese women

and men have decreased levels of hydroxylation at the 2- position (Schneider et al., 1983), while

persons with systemic lupus erythematous and their family members have increased levels of

hydroxylation at the 16α- position (Lahita et al., 1982).  It has been hypothesized that decreased 2-

hydroxylation may be one of the mechanisms through which obesity places women at increased

risk of estrogen-dependent tumors such as endometrial cancer (Schneider et al., 1983).  On the

other hand, increased 2- hydroxylation may promote carcinogenic activity (possibly through the

generation of free radicals) and women at high risk for developing nonfamilial breast cancer have

been shown to have higher levels of catechol estrogen excretion (Lemon et al., 1992).  Cigarette

smoke is an example of an environmental chemical that has been shown to substantially increase

2- hydroxylation (Michnovicz et al., 1986).

The major site for peripheral metabolism of estrogens by 2- hydroxylation is the liver. 

Metabolism of estrogen along the 2- pathway is an enzyme-catalyzed reaction associated with the

microsomal fraction of the cell and dependent on particular groups of enzymes referred to as

cytochrome P-450s.  Cytochrome P-450s are important because they facilitate metabolism of many

compounds and because they are an inducible system.  In other words, utilization of a given

cytochrome P-450 system makes that system function more rapidly, such that the rate of

metabolism of any substance using that particular P-450 system will increase.  The liver is also a

major site for the metabolism of drugs and environmental chemicals, many of which are also

metabolized by, and therefore capable of inducing, the same cytochrome P-450–dependent

systems responsible for endogenous estrogen metabolism.  Synthetic estrogens are also

metabolized by some of the same P-450 enzymes (Guengerich, 1988).  Consequently,
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environmental exposures such as cigarette smoke, which influence the expression of this system,

are potentially important determinants of endogenous estrogen function and of efficacy and side-

effects of exogenous estrogens.  Unfortunately, very little work has ever been done on illuminating

the effect of environmental exposures on endocrine production or metabolism, and this area

represents a major gap in our scientific understanding of menstruation.

Summary

Generation of data on population variability in the endocrine cycle is a task that, for the most

part, has yet to be undertaken.  Additional data need to be generated on basic differences in

hormonal patterns, on how these patterns change with age, and on variability in hormone

metabolism.  In particular, the fact that our systemic internal hormonal environments are perturbable

by environmental exposures underlines the need to place substantially more scientific emphasis on

determining how differences in metabolism influence both reproductive function and a woman's

health profile.
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PART III. BEYOND AGING: OTHER HOST AND ENVIRONMENTAL FACTORS THAT

DETERMINE MENSTRUAL FUNCTION

Describing variation is an essential first step in defining normal function and in distinguishing

minor perturbations from pathologic alterations.  This section moves from the question of how

menstrual cycles vary to the question of why they vary.  Age is obviously a major biologic

determinant of variability in menstrual characteristics.  Moving beyond the effects of aging, regional

variations in menstrual function are of particular interest because they can offer clues as to how

social and environmental conditions affect menstrual function.  Evaluation of regional differences is

also critical to understanding how risks of hormone-related disease and response to hormonal

interventions might differ among populations. 

In fact, marked geographic differences have been reported in the timing of reproductive

maturation and, to a lesser extent, senescence (see the review by Gray and Doyle, 1983), with

much of the variability in age at menarche attributable to nutritional factors.  Regional data for other

menstrual parameters are much more limited.  With the notable exception of Matsumoto et al.'s

work on Japanese women, all of the large prospective studies described previously were conducted

on women of European descent.  The World Health Organization has published data from studies of

women participating in ‘‘natural’’ family planning trials (WHO, 1983) and on adolescents (WHO,

1986) that include women from lesser industrialized countries, and a few scattered studies provide

country-specific estimates of average menstrual cycle length (Alvarado et al., 1988; Baanders-Van

Halewijn and DeWaard, 1968; Odujinrin and Ekunwe, 1991; Thomas et al., 1990).  However, most of

these analyses have focused on similarities in menstrual cycle characteristics across regions and

have done little to tease out potential differences. 

Some provocative data do exist on regional differences in bleed characteristics (WHO, 1981;

WHO; 1986; Belsey et al., 1988; Ji et al., 1981); see Table 10.  Mexican and Latin American

women report shorter bleeding episodes (with a mean of 4 days) while European women report

longer episodes (with a mean of 5.9 days) than women in other regions.  Data from two studies

suggest that Chinese women experience both longer and heavier bleeds (WHO, 1986; Ji et al.,

1981).  Given the narrow range of variation in length of a bleeding episode (approximately 2–12

days), rather significant shifts in the population distributions of bleed characteristics must be

occurring to yield such marked differences.

Although one would not expect major differences in ovarian function from region to region,

subtle differences in the timing of age-related changes, or systematically different probabilities of

ovulation across the reproductive life cycle, may exist.  Two reports have suggested that not only

the age of menarche but also the timing of ovarian maturation differs in Dutch as compared with
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Bantu girls (Baanders-Van Halewijn and De Waard, 1968) and in Nigerian girls as compared with

girls from industrialized countries (Odujinrin and Ekunwe, 1991).  In contrast, Ellison et al. (1989)

found that the timing of age-related changes in ovulatory frequency was similar among the Lese of

Zaire and European women; however, the Lese ovulate considerably less frequently overall

(frequency of ovulatory cycles is 56 percent).  The shorter bleeds observed in Mexican women may

be attributable to differences in the timing of follicular growth (WHO, 1983), as the follicular phase is

significantly shorter and the luteal phase significantly longer in Mexican women compared with

women from other countries (13.6 versus 15.0 days and 14.5 versus 13.5 days, respectively). 

Important regional differences have also been reported in hormone metabolism (Goldzieher et al.,

1980; Williams and Goldzieher, 1980). 

These data, though highly provocative, are clearly insufficient to evaluate regional differences in

menstrual patterns.  Furthermore, the biologic mechanisms that underlie the observed differences

have never been seriously explored.  Knowledge about determinants of variability in menstrual

function is in fact largely confined to data measuring the effect of three risk factors (weight, physical

activity, and stress) on three menstrual parameters (menstrual cycle length, the probability of

ovulation, and adequacy of luteal function).  Although these three factors dominate the literature,

several other environmental factors—including drugs, chemicals, and diet—may also be critical

determinants.  This section reviews the data on what we know about why menstrual cycles vary. 

Weight, Physical Activity, and Life Stress

Weight

Extremes of weight have been clinically associated with anovulation and amenorrhea, with

both absolute weight and change in weight appearing to influence menstrual function.  For the most

part, studies of the relationship between weight and menstrual dysfunction have been limited to

examinations of clinical populations who presented with amenorrhea or of athletes in industrialized

countries.

Extreme environmental or pathological conditions, such as famine and anorexia nervosa,

which result in starvation and severe weight loss, are known to provoke amenorrhea (Stein and

Susser, 1978; Drew, 1961; Warren, 1983; Pirke et al., 1983; Warren et al., 1975).  Amenorrhea

associated with weight loss has also been reported in women without other evidence of physical or

mental illness.  In both cases, weight loss is substantial.  Women present at 20 percent to 30

percent below their ideal weight (Vigersky et al., 1977; Falk and Halmi, 1982) with a loss of more

than 10 percent of premorbid weight or between 5 and 20 kilograms (Knuth et al., 1977; Graham et

al., 1979; Wentz, 1980; Nakamura et al., 1985).  In such cases menstruation generally resumes

after a mean weight gain of 4 kilograms or gain to within 5–15 percent of ideal weight.
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The impact of weight on menstrual function is also observed in healthy, well-nourished

individuals.  Studies of female athletes (Dale et al., 1979; Frisch et al., 1980; Carlberg et al., 1983),

U.S. college students (Bachmann and Kemmann, 1982), and the general population in Scandinavia

(Fries et al., 1974) have demonstrated that individuals with highly variable menstrual cycle lengths

or amenorrhea tend to weigh less, to have a lower percentage of body fat, and to report more weight

loss than women with regular menstrual cycles.  In the only population-based case-control study of

risk factors for amenorrhea, cases reported weight loss of 5 or more kilograms and recent dieting

more frequently than age-matched controls (Fries et al., 1974). 

Ellison and colleagues (Ellison et al., 1989) have conducted several detailed studies of ovarian

function among Lese women of the Ituri Forest in Zaire and among women living in the Boston area

in the United States.  When the Lese women were observed during a period of seasonal food

shortages the probability of ovulation and peak level of progesterone production were correlated with

both weight-for-height at the start of the study and with amount of weight lost during the study

period.  Moderate weight loss among normal-weight Boston women resulted in similar patterns of

ovarian suppression (Lager and Ellison, 1987).  Other studies of ovarian function have demonstrated

an increase in the percentage of menstrual cycles with inadequate luteal phases when women lost

just 5 percent of their initial weight (Schweiger et al., 1987) and experienced a loss of, on average,

only 1 kilogram (Pirke et al., 1989).  Ellison argues that both acute and moderate weight loss lead

to alterations in ovarian function, the degree of ovarian suppression depending on the severity and

duration of weight loss.  He also argues that weight stabilization will precipitate a return toward

clinically normal ovarian function, even before significant weight gain occurs (Ellison and Cabot,

1990), suggesting that cognitive factors may help mediate the effects of weight on menstrual

function.

This more complex model of an interplay among cognition, weight loss, and menstrual

function helps resolve some apparent inconsistencies in the literature.  Recovery of weight after

severe weight loss is not always associated with a return to normal menstrual function (Falk and

Halmi, 1982; Nakamura et al., 1985; Kohmura et al., 1986), and up to one-third of women with

anorexia nervosa stop menstruating before significant weight loss occurs (Warren, 1983).  Even in

the situation of famine, it has been argued, the onset of amenorrhea could reflect a physiologic

response to severe emotional stress (Mencken et al., 1981), and dietary restraint independent of

actual weight loss has been shown to alter ovarian function (Schweiger et al., 1992) and menstrual

cycle length (Harlow and Matanoski, 1991).

The association between weight and menstrual function is not confined to the lower end of the

weight spectrum; however, considerably fewer data are available on women who are heavy as

opposed to thin.  Obesity has been associated with amenorrhea and polycystic ovarian disease
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(Friedman and Kim, 1985; Harlass et al., 1984).  One population-based study of U.S. college

women found that women at the upper end of the weight spectrum had the highest probability of

having long menstrual cycles (Harlow and Matanoski, 1991).  Obese women with infrequent menses

have reduced serum hormone-binding globulin and increased serum estrogen concentrations

(Friedman and Kim, 1985), and obesity is also associated with increased metabolism of estrogen

along the 16α- pathway.  All of these hormonal changes tend to yield a more potent estrogen

environment. 

The precise mechanism through which weight may be related to menstrual function has not

been definitively established and it is probable that more than one mechanism is operative.  First,

reproductive function may depend on nutritional status, with either direct caloric energy balance or

food composition being the relevant nutritional factor.  The potential connection between nutrition

and reproductive function has long been suggested by observations that girls of lower

socioeconomic status and girls from less industrialized countries have a later age of menarche

(Drew, 1961; Frisch and McArthur, 1974; Stein and Susser, 1978; Gray and Doyle, 1983).  Ellison

and Cabot (1990) argue that the data are more consistent with a theory of negative energy balance

than of nutritional thresholds.  Only a few studies have examined the role of food composition (see

Additional Host and Environmental Factors, below; Hill et al., 1984; Pirke et al., 1986; Schweiger et

al., 1987). 

Second, body fat may directly influence endocrine function, as fat tissue is a reservoir for

steroid hormones and a site of estrogen production (Grodin et al., 1973; Fishman et al., 1975;

Nimrod and Ryan, 1975; Perel and Killinger, 1979; Deslypere et al., 1985; Longcope et al., 1986;

Friedman and Kim, 1985).  Estrogen has been shown to stimulate the growth and replication of fat

cells (Roncari and Van, 1978) and obesity appears to influence the concentration of sex hormone-

binding globulin and estrogen metabolism (Schneider et al., 1983; Friedman and Kim, 1985). 

Abdominal fat accumulation may also indirectly influence sex hormone levels by increasing cortisol

levels, altering feedback signals to the pituitary (Bjorntorp, 1991).  

Finally, both weight and reproductive function may be affected by a third factor, such as

underlying disease (for example, anorexia nervosa) or concomitant environmental exposure (for

example, stress).  The evidence cited above—that cognitive factors associated with dietary restraint

can influence menstrual function—argues that more complex models of the determinants of

menstrual function are probably needed.



23

Physical Activity

High and moderate levels of physical activity can alter menstrual function, although the

reported rate of menstrual disturbance among athletes varies considerably from study to study. 

Women athletes, particularly ballet dancers and runners, have a higher frequency of amenorrhea,

anovulation, and luteal phase defects than nonathletes (Abraham et al., 1982; Malina et al., 1978). 

Recreational exercise has also been found to increase mean menstrual cycle length, the probability

of having a long menstrual cycle, and the probability of anovulation in school girls.  Data on the

effect of training intensity are inconsistent, but the reported frequency of amenorrhea is generally

higher in studies of collegiate or national athletes than in studies of recreational runners.  Many of

the apparent discrepancies in the literature are largely attributable to divergent definitions of

dysfunction (for example, definitions of amenorrhea range from delayed menses to no menses for

two, three, four, or six months) or to failure to control for age (Speroff and Redwine, 1980; Baker et

al., 1981; Glass et al., 1987).

Initially the high frequency of amenorrhea and delayed menses was attributed to low body

weight and/or low body fat among athletes, and a number of investigators examined this hypothesis.

 In general, amenorrheic runners weigh less, have lower weight-to-height ratios, have less body fat,

and report more weight loss than other runners or nonrunner controls (Dale et al., 1979; Speroff and

Redwine, 1980; Schwartz et al., 1981; Shangold and Levine, 1982; Galle et al., 1983; Glass et al.,

1987; Feicht et al., 1978; Ouellette et al., 1986).  The most definitive study used hydrostatic

methods to compare the body composition of 14 athletes who had had no menses for three months

with 28 athletes who had menstrual cycles of 23–35 days (Carlberg et al., 1983).  All weight

parameters were lower in amenorrheic athletes, including total weight, percent of ideal weight,

percent fat, fat weight, and lean body weight.

Evidence that halting training without weight gain restores normal menses suggests, however,

that physical training also has an effect independent of weight (Warren, 1980).  Four prospective

studies support this hypothesis (Prior et al., 1982; Bullen et al., 1985; Ellison and Lager, 1986;

Bernstein et al., 1987).  In a classic study, Bullen et al. (1985) monitored ovarian function in 28

women with ovulatory menstrual cycles prior to and during a five-week intensive training program. 

Training provoked abnormal luteal function and anovulation in all but 5 of 53 observed menstrual

cycles.  Anovulation was most frequent in women fed a diet that ensured weight loss but also

occurred in women who maintained their pretraining weight.  In another study, U.S. high school girls

who engaged in two or more hours of hard exercise per week had a twofold elevation in risk of

anovulation, and menstrual cycles were 2.4 days shorter in women who were above the 50th

percentile of activity level than in less active women (Bernstein et al., 1987).

The specific mechanism by which physical activity induces change in menstrual function is
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unclear.  The probable hormonal pathway is inhibition of GnRH and gonadotropin activity

accompanied by a decline in serum estrogen levels (Cumming et al., 1994).  Cumming and

colleagues hypothesize that these documented hormonal alterations reflect a physiologic response

to stress that, in the presence of additional risk factors, may be sufficient to affect menstrual

function.  Some data do support this theory that physiologic and emotional stress play an etiologic

role in exercise-associated amenorrhea.  Amenorrheic athletes are significantly more likely than

other runners to perceive running as stressful (Schwartz et al., 1981) and to report higher levels of

emotional distress (Galle et al., 1983) and subjective stress (Schweiger et al., 1988).  Higher mean

serum (Glass et al., 1987; Ding et al., 1988) and urinary (Loucks et al., 1989) cortisol levels have

also been demonstrated in amenorrheic compared with eumenorrheic runners.  However, since

moderate levels of aerobic activity also alter ovarian function and are less consistent with a stress

model (Ellison and Lager, 1986; Bernstein et al., 1987; Harlow and Matanoski, 1991), alternative

mechanisms such as negative energy balance remain plausible (Ellison and Cabot, 1990;

Schweiger et al., 1988).

Women who experience menstrual alterations after intense physical activity may be more

susceptible to menstrual dysfunction.  Amenorrheic athletes tend to have a later menarche (Feicht

et al., 1978; Wakat et al., 1982; Baker et al., 1981; Oian et al., 1984) and to report a history of

highly variable or long menstrual cycles (Speroff and Redwine, 1980; Schwartz et al., 1981;

Shangold and Levine, 1982).  Moderate exercise is also more likely to provoke long cycles among

women with a propensity for such cycles (Harlow and Matanoski, 1991).  However, little is

understood about differential susceptibility to menstrual dysfunction, and more information is

needed about the nature of variability in menstrual patterns (see Part II) before such susceptibility

can be adequately described.

Stress

Although psychological stress is generally acknowledged to affect menstruation and is often

considered the principal cause of menstrual dysfunction (Drew, 1961; Fries et al., 1974; Green,

1977; Kreiger and Hughes, 1980), scientific investigation of the association between stress and

menstrual function is actually quite limited.  The literature consists mainly of studies of major life

changes, of catastrophic events such as incarceration and war, and of girls leaving home to go to

school or the army (Drew, 1961; Osofsky and Fisher, 1967; Boehm and Salerno, 1973; Metcalf and

Mackenzie, 1980; Tudiver, 1983).  In a review of the extant literature, Drew (1961) concluded that

the amenorrhea observed in these studies was attributable to psychological stress characterized by

separation from home and family, hopelessness, and threat to the individual.

Although clearly significant when they occur, catastrophic events such as incarceration in a
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concentration camp are rare events.  Their importance in explaining the prevalence of menstrual

dysfunction in the general population is limited.  Studies of more common events such as leaving

home to go to school (Wilson et al., 1984; Osofsky and Fisher, 1967; Matsumoto et al., 1979), to

the military (Boehm and Salerno, 1973), or to work (Metcalf and Mackenzie, 1980) lend support to

Drew's theory of an association between the experience of separation and amenorrhea.  However,

the designs of most of these studies are seriously flawed.  Some lack comparison groups and

present rates of amenorrhea that differ little from rates observed in the general population (Boehm

and Salerno, 1973; Osofsky and Fisher, 1967).  Others compare menstrual history with prospective

observations of cycle length (Matsumoto et al., 1979; Wilson et al., 1984).  Nonetheless, in a well-

designed cross-sectional study, Metcalf and Mackenzie (1980) have shown that young women who

live at home ovulate more frequently than do women who live in flats or hostels.  Five to eight years

after menarche, 72 percent of girls living at home ovulated, compared with only 40 percent of women

who lived away from home.  The living environment had a minimal effect in women whose

reproductive systems were more mature.

Data from the few extant population-based studies are inconsistent.  In a cross-sectional

survey of U.S. college women, history of perceived emotional upset, history of death or separation

from close relatives, and self-perceived excessive physical or mental workload did not differ between

women with and without amenorrhea (Bachmann and Kemmann, 1982).  Psychological state and

life events were also found to be unrelated to excessive bleeding (Gath et al., 1987).  On the other

hand, a population-based case-control study in Scandinavia did find that stressful life events and the

consumption of tranquilizers were more common among amenorrheic cases (Fries et al., 1974).  A

case-control study of dysfunctional uterine bleeding found that the dysfunctional cases reported

more stressful life events within the past month and a higher level of perceived stress associated

with these events than did the controls (Tudiver, 1983).  The discrepancy in findings may be due to

differences in the types of life events examined, to the focus on rare events such as deaths, or to

failure to specify an appropriate risk period.  (For example, life events in the past month may affect

current menstrual cycle length, while events in the past year may not.)

A prospective study that focused on the acute effects of stress during a given menstrual cycle

(Harlow and Matanoski, 1991) found that major life events associated with loss and separation did

not influence cycle length, but events associated with gain or newness—such as starting a new job,

starting college, and starting a new relationship— increased the probability of having a long cycle. 

Additionally, minor events that marked an increased demand for performance, such as exams or

competitions, and having a high level of perceived stress also increased the risk of having a long

cycle.  These authors hypothesize that life situations involving an increased demand for

performance while coping with new circumstances or an increased burden may be a more relevant
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construct than are loss or separation to explain the occurrence of menstrual dysfunction in the

general population. 

As is true for physical activity, the mechanism through which stress influences menstrual

function remains uncertain.  Central psychogenic disturbances may be mediated through the

hypothalamus via changes in prolactin or the endogenous opiates (Kreiger and Hughes, 1980;

Warren, 1983).  Systemic changes in the hormonal environment, such as elevation in basal cortisol

levels, which represent the body's physiologic response to stress, may provoke alterations in

hypothalamic response.  However, relatively few data are available on gonadotropin and steroid

hormone changes that occur during stress-associated amenorrhea.

Summary

All three of these factors—weight, exercise, and life stress—influence menstrual function. 

Fairly extensive data are available on the effects of weight and physical activity as well as on the

mechanisms that underlie these effects.  The presence of multiple risk factors may either potentiate

impairment of function or possibly moderate the impact of specific risk factors (Ellison and Cabot,

1990).  Weight loss combined with hard exercise is more likely to produce alterations in ovarian

function than is hard exercise alone (see, for example, Bullen et al., 1985).  Physical exercise may

have a stronger impact on menstrual function when training conditions are more stressful (see

Schwartz et al., 1981; Loucks et al., 1989) or moderate the impact of stressful life conditions when

exercise acts as a stress-reduction behavior (Harlow and Matanoski, 1991).

Repetition of studies documenting the presence of weight and exercise effects is not generally

necessary.  Rather, more focus should be placed on examining the influence of weight at the upper

end of the weight spectrum and of recreational activity in gynecologically mature women (Bonen,

1992), on understanding the role of hard physical activity when it occurs in the context of women's

daily work life as opposed to occurring in the context of exercise, and on evaluating the interaction

of low weight and physical activity on reproductive function in less industrialized countries, where

women typically are occupied in nonaerobic but energy-intensive tasks.  Additional attention to the

potentially beneficial effects of moderate exercise in mediating the impact of stress is also

warranted.  Data from more broad-based population surveys and from cross-cultural studies will be

critical to understanding the relative importance of weight and physical activity in explaining the level

of menstrual dysfunction in different populations.  One study suggests that exercise-associated

amenorrhea may not occur as frequently in Nigerian athletes (Okonofua et al., 1990).  In order to

clarify the mechanisms through which weight influences menstrual function, a more systematic

investigation of the role of fat in endocrine production, metabolism, storage, and clearance is

needed.  In particular, given that the site of fat deposition is relevant to both a woman's endocrine
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profile and her disease risk (Bjorntorp, 1991), studies of the role of fat distribution in menstrual

function should also be initiated. 

Research needs in the area of stress are much more fundamental.  Given the widely accepted

belief that stress is a major determinant of menstrual function and a significant cause of pathology,

the paucity of scientific investigations and the poorly developed conceptual framework for defining

relevant constructs of stress are quite notable.  A wider literature clearly indicates that stress is an

important determinant of reproductive function more generally (see, for example, Mamelle et al.,

1984, 1989).  Further investigation of the acute effects of specific stressors and the chronic effects

of cumulative life stress, development of more precise and relevant stress constructs, and evaluation

of physiologic mechanisms are obviously needed.

Additional Host and Environmental Factors that May be Important Determinants of

Menstrual Function

Weight and physical activity are clearly relevant to menstrual function.  However, if we know

anything about reproductive function, we know that it is a system responsive to multiple

environmental signals.  A major problem to date has been the lack of systematic attention paid to

these other signals.  Table 11 presents a list of environmental factors for which some evidence

currently exists suggesting their probable impact on menstrual function.  In the case of many

factors (for example, sound, light, and electromagnetic-fields), considerable data from the animal

literature provide a biologic rationale for investigating potential effects on human menstrual function.

 For other factors (for example, smoking), the biologic rationale is provided by epidemiologic

evidence of an impact on other reproductive endpoints and on the endocrine environment.  Yet,

adequate population-based studies quantifying the impact of these factors on menstrual, ovarian, or

endocrine function have generally not been undertaken.  Exceptions include some investigations on

the interplay between specific drug consumption and metabolism of steroid contraceptives, a small

and conflicting body of literature on menstrual synchrony, and some preliminary data on smoking. 

The importance of expanding theoretical constructs of what constitutes a relevant stressor was

emphasized in the preceding section, and could include consideration of the multiple dimensions of

work stress, family interactions, chronic psychological stress, and tension between multiple social

roles.  This section reviews some of the more promising clues in the literature on diet, chemicals,

and the physical and social environment that might serve as priority foci for future research.

Diet

As noted above, much of the regional variability in age at menarche is attributed to differences

in nutritional status, and negative energy balance is thought to be one mechanism through which
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both weight and physical activity influence menstrual function.  In addition to absolute caloric

consumption, some provocative studies suggest that diet composition—the amount of meat,

protein, or fat consumed—might also influence menstrual function.  Vegetarian diets have been

associated with anovulation, decreased pituitary responsiveness, and infrequent cycling (fewer than

10 menstrual cycles per year) (Hill et al., 1984; Pirke et al., 1986; Pedersen et al., 1991). 

Amenorrheic runners report consuming fewer calories, less red meat, and less fat than

menstruating runners (Kaiserauer et al., 1989).  In an experimental study, women had slightly

longer menstrual cycles and slightly longer bleeding periods while consuming a low-fat (20 percent)

diet than while consuming a high-fat (40 percent) diet (Jones et al., 1987).  Preliminary data suggest

that both dietary fat and the indoles present in cruciferous vegetables may influence estrogen

metabolism (Longcope, 1994), although the data are somewhat inconsistent (Kappas et al., 1983). 

If dietary macronutrients are proven to influence estrogen metabolism, the public health implications

would be enormous: diet is a pre-eminently modifiable risk factor. 

Environmental Chemicals

Induction of the cytochrome P-450 metabolizing system by drugs or environmental chemicals

and the consequent effects on metabolism and clearance of steroid hormones deserves

considerably more attention.  Anticonvulsants such as phenobarbitone, some antibiotics, and

rifampicin appear to reduce contraceptive efficacy (Back and Orme, 1994; Back et al., 1981).  The

data for these specific drug–contraceptive interactions are fairly extensive, but data for other drugs

and most antibiotics remain sketchy.  Evaluation of the impact of these drugs on normal

menstruation is practically nonexistent, although minimal information is available on the effects of

phenobarbital (Levin et al., 1968), and more extensive data are available on the effects of various

chemotherapeutic agents.  Cytotoxic drugs induce ovarian failure (Warne et al., 1973; Chapman et

al., 1979; Rose and Davis, 1977), although return of normal menstrual function after completing

treatment occurs in at least some women (Horning et al., 1981; Gershenson, 1988).  Knowledge

about interactions between pharmaceutical drugs and menstrual function is clearly important for

clinical populations during periods of treatment.  However, studies are also needed to evaluate the

potential effects of recreational drugs (for example, tobacco, marijuana, cocaine, and alcohol),

environmental chemicals (for example, pesticides), and industrial chemicals (for example, solvents),

which affect large numbers of women, often for extended periods of time. 

One chemical that has received considerable attention and serves as a good model of the

broad range of potential chemical effects on menstrual and reproductive function is tobacco smoke

(Mattison, 1982).  Tobacco smoke is metabolized by some of the same cytochrome P-450s as is

estrogen, has been shown to alter estrogen metabolism (Michnovicz et al., 1986), and is associated
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with follicular-phase plasma estrogen and progesterone levels (Zumoff et al., 1990).  Smoking is

also associated with various estrogen-dependent diseases such as osteoporosis and endometrial

cancer (Baron, 1984), is a risk factor for infertility (Baird and Wilcox, 1985; Howe et al., 1985;

Phipps et al., 1987), and has been associated with an earlier menopause (Baron, 1984).  In a few

preliminary studies, smoking has been suggested as a risk factor for dysmenorrhea, infrequent

menstrual cycles, and heavy or prolonged bleeding (Sloss and Frerichs, 1983; Brown et al., 1988).

Despite this rather impressive evidence that chemicals alter endocrine function, no other

chemical has been seriously evaluated.  A few authors have pointed to the potential implications of

chemical induction of liver metabolism (Kappas et al., 1983; Harlow, 1986; Guengerich, 1988) and

early reports have suggested the potential for pesticides such as DDT (Heinrichs et al., 1971; Duby

et al., 1971) and solvents such as para-xylene (Ungvary et al., 1981) to alter liver endocrine

metabolism.  Anecdotal evidence from as early as the 1940s suggests that xylene exposure

produces bleeding disruptions and menorraghia (Varney, 1944), and one small study in Colorado

reported menstrual alterations in farm laborers (Chase et al., 1973).  More recent reports that DDT

may be associated with increased risk of breast cancer and that dioxin may promote the

development of endometriosis underline the necessity of placing more focus on the question of how

chemicals alter women's hormonal environment.

The Physical Environment

Variations in the length of the day have long been known to regulate the timing of estrus in

animals that are seasonal breeders.  Over the past decade, researchers have demonstrated that

these photoperiod effects are mediated through melatonin excretion from the pineal gland and that

melatonin helps regulate the hypothalamic-pituitary-ovarian axis in seasonal breeders (Karsch et al.,

1984, 1986).  More recent studies have demonstrated that sheep actually have an endogenous

circannual estrus cycle (that is, they will undergo estrus in the absence of any environmental clues)

and that daylight entrains this endogenous cycle to synchronize seasonal reproduction (Karsch et

al., 1989).  Alterations in melatonin secretion were subsequently noted in women with hypothalamic

amenorrhea (Berga et al., 1988), and patterns of melatonin secretion appear to differ between

athletes with and without amenorrhea (Laughlin et al., 1991).  These results suggest that more

attention to the influence of environmental signals such as daylight on human endocrine function

and to the impact of factors such as electromagnetic fields on melatonin secretion (Wilson, 1989)

are warranted.  In addition to the effect of light, consideration should be given more generally to how

data from animal studies might be applicable to understanding determinants of human menstrual

dysfunction.  Some very intriguing data exist, for instance, on the negative impact of loud and

continuous noise on ovarian function (Singh and Rao, 1970; Singh, 1972; Zondek and Tamari, 1967;



30

Beardwood et al., 1975), and further thought might be given to the potential impact of noise pollution

on human reproductive function.

The Social Environment

The question of whether women who work or live together start ‘‘cycling’’ together is one that

always generates considerable interest; however, studies of this phenomenon have produced

inconsistent results and many are methodologically weak (Graham and McGrew, 1980; McClintock,

1971; Skandhan et al., 1979; Wilson et al., 1991; Little et al., 1989).  Nonetheless, evidence from

both animal and human studies do suggest that social interactions can modify endocrine function

(Faulkes et al., 1990), although a simple theory of social proximity is probably not sufficient to

explain menstrual synchrony.  Some studies suggest that pheromones driven by same-sex contact

(Cutler et al., 1986) or opposite-sex contact (Preti et al., 1986) will entrain menstrual cycles,

reducing variability in cycle length and synchronizing the onset of menses.  Others argue that a

range of common environmental clues are the relevant mechanism (Little et al., 1989).  Whatever

the underlying mechanisms, further consideration of the role of social factors such as social

networks, increasing social violence, and social crowding is warranted.

Conclusion

This discussion of the potential determinants of menstrual function has not been exhaustive;

however, it has illustrated the spectrum of factors that deserve further evaluation.  More attention is

particularly warranted for those factors, such as diet, that are amenable to public health

interventions.  Given the widespread use of pesticides and the increasing participation of women in

industrial production throughout the world, investigation of the impact of chemical exposures on

menstrual function and on contraceptive efficacy should also be a priority.  Finally, only one study

to date has explicitly examined variation in menstrual function by socioeconomic status (Munster et

al., 1992).  Since the probability of exposure to most risk factors (for example, diet, work

environment, environmental chemicals) will differ by socioeconomic status, studies of the effect of

social status on the prevalence of menstrual complaints are also a priority.
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The Importance of Considering Environmental Impacts on Menstrual Endpoints Other than

Ovulation and Cycle Length

In addition to evaluating a broader range of potential risk factors, a need exists to assess the

impact of these risk factors on a broader spectrum of menstrual endpoints.  Most of the extant

literature focuses on the ways in which various exposures affect the probability of ovulation and the

length of the menstrual cycle.  Ellison and Cabot (1990), for example, have made significant

empirical and conceptual contributions to our understanding of how weight and exercise influence

ovarian function.  Their explicit interest is in observing the ovarian cycle as a sensitive indicator of

environmental insults to human reproductive potential.  Although, clearly, reproduction is an

important outcome of menstrual function, this focus has not advanced our understanding of

abnormal bleeding or of hormonal influences on chronic disease risk.  Virtually no data exist on

environmental determinants of bleeding duration and amount of flow (Belsey et al., 1988; Harlow and

Campbell, 1994) or dysmenorrhea.  A narrow focus on the ovary can also produce a conceptual

blindness that limits our ability to identify environmental influences on ovarian function specifically

and menstrual function more generally.  Although the data are sparse, it is apparent that hepatic

metabolism is a significant pathway through which the endocrine environment can be altered.  The

potential importance of chemicals and drugs becomes increasingly evident when one considers how

these substances might interact with hepatic metabolism and alter hormonal feedback.  More focus

should therefore be placed on understanding determinants of variability in hormonal patterns and

endocrine metabolism.
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PART IV. POPULATION PREVALENCE OF MENSTRUAL DYSFUNCTION

Heretofore, this report has focused on describing population variability without explicitly

differentiating normal from abnormal function.  Data on the population prevalence of menstrual

dysfunction are scant, and evaluation of potential risk factors has generally focused on three

aspects of menstrual dysfunction: anovulation, inadequate luteal phase, and amenorrhea.  Research

on other types of menstrual morbidity is much more limited.

Historically, menstrual dysfunction was defined primarily in terms of disruptions in bleeding

patterns—that is, menorraghia (heavy or prolonged bleeding), oligomenorrhea (infrequent

menstruation), and amenorrhea (cessation of menses).  Definitions based on ovarian function—

anovulation and luteal deficiency—are now more predominant.  These functional disturbances may

or may not manifest as alterations in bleeding patterns.  Excessive or prolonged uterine bleeding

may be referred to as dysfunctional uterine bleeding when associated with anovulation, while

amenorrhea is commonly subclassified by type of underlying hormonal alteration (hyperpituitary—

hypogonadism).  An entirely separate construct of menstrual dysfunction stems from a

consideration of pain and other symptomatology associated with the onset of menses

(dysmenorrhea).

Both bleeding disturbances and functional disturbances are clearly relevant constructs.  The

former may be pathological to the extent that they disrupt activities of daily living, are indicative of

ovarian alterations incompatible with pregnancy or of underlying pathology such as fibroids or

cancer, or are associated with significant blood loss.  Functional disturbances may be considered

pathological to the extent that they interfere with the capacity to reproduce.  In the absence of a

desire to become pregnant, however, the pathological nature of anovulation or luteal phase

inadequacy is uncertain.  Dysmenorrhea, or menstrual cramps and symptoms such as nausea,

which are associated with the sloughing of the endometrium, may be severe enough to disrupt a

woman's daily activities.  When more is understood about the association between hormone profiles

and subsequent disease risk, functional disturbances may be deemed pathological to the extent

that they reflect alterations in the endocrine environment and place a woman at increased risk of

developing chronic disease.  Although some authors have begun to recommend preventive medical

treatment for ovulatory alterations based on possible long-term risks of chronic disease (see, for

example, Bernstein et al., 1987; Henderson et al., 1985), our scientific knowledge of these

relationships is far too limited to define menstrual dysfunction in such terms at this time. 

This section reviews the limited data that exist on population distributions of four categories of

menstrual morbidities: functional disorders, cycle length disorders, bleeding disorders, and

menstrual cramps.  As part of this review, the problem of finding valid and reliable operational
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definitions of these different menstrual morbidities is discussed.  Although the definition of

anovulation is rather straightforward, definitions of ‘‘cessation’’ of menses or ‘‘inadequate’’ luteal

phase are less obvious.  Premenstrual syndrome is not addressed, as a thorough review of that

literature is beyond the scope of this report. 

Functional Ovulatory Disorders: Anovulation and Luteal Phase Defects

Luteal phase deficiency is defined as the production of progesterone during the luteal phase at

levels insufficient to sustain a pregnancy (Andrews, 1979; Jones, 1976).  Luteal phase deficiencies

are thought to result from aberrant folliculogenesis, specifically from inadequate FSH stimulation

during the follicular phase (Speroff et al., 1983; Smith et al., 1985).  Decreases in the length and the

peak height of the post-ovulatory progesterone rise are referred to as short luteal phase and

inadequate luteal phase, respectively.  Clinically, a short luteal phase is defined as a luteal phase of

less than eight days (Lee, 1987), although Lenton et al. (1984a) suggest that luteal phases of less

than 11 days have a high probability of being abnormal.  Based on analysis of statistical

distributions, their data indicate that 100 percent of luteal phases shorter than 10 days would be

classified as abnormal, compared with 74 percent of 10-day phases, 22 percent of 11-day phases,

and 2 percent of 12-day phases.  Inadequate luteal function is generally defined as a luteal phase in

which progesterone levels do not reach 16 nanomole/liter for at least five days (Landgren et al.,

1980).

Although 3.5 percent of women who are evaluated for infertility (Jones, 1976) and 23–38

percent of women with recurrent spontaneous abortions (Speroff et al., 1983) are reported to have

luteal phase defects, little information is available on the prevalence of this condition within the

population.  Some estimates are available from the population studies described in Part II.  Doring

(1969) reported that 37 percent of menstrual cycles in women aged 18–20 years as compared with

9 percent of cycles in women aged 35–39 years had temperature elevations lasting less than 10

days.  Using a definition of eight days, 3.2 percent of women in the multinational WHO study of

participants in ‘‘natural’’ family planning programs (WHO, 1983) and 2.1 percent of women in a

smaller clinical study (Lenton et al., 1984a) had short luteal phases.  Landgren et al. (1980)

determined that 6 percent of the women in their study demonstrated insufficient progesterone

production.  However, their definition of dysfunction was derived by taking the 95th percentile of

progesterone production; thus, the prevalence is rather tautological.

Anovulation is, simply, the absence of ovulation.  Disturbances occurring at any point prior to

or during gonadotropin-dependent folliculogenesis in the delicate balance of hormonal feedback can

disrupt ovulation.  Specifically, anovulation may result from alteration or suppression of the pulsatile

release of GnRH from the hypothalamus, from inadequate or ill-timed stimulation of the ovary by
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FSH or LH, from insufficient elaboration of estradiol, or from interference with the local or peripheral

activity of estradiol.  In most studies, anovulation is inferred from the absence of an LH peak, the

absence of a rise in progesterone, or the absence of a rise in basal body temperature.  Although

anovulation can occur without any apparent change in menstrual cycle length, amenorrhea, short

cycles, and dysfunctional uterine bleeding may also result.  Data on population distributions of

anovulation were presented in Part II, Table 6.  To review, over half of the menstrual cycles of

adolescent girls, one-quarter of menstrual cycles of women in their early 20s, and one-third of

menstrual cycles of women over 50 are anovulatory.  During the years of reproductive maturity, from

the mid-20s to the mid-40s, only 2–7 percent of cycles are anovulatory (Doring, 1969; Vollman,

1968; Metcalf, 1983).

Menstrual Cycle Length Disorders: Amenorrhea and Oligomenorrhea

Amenorrhea is defined as the cessation of menses.  Clinically, the term usually refers to an

absence of menses for six months or longer; research definitions tend to use shorter intervals and

are highly inconsistent (see Table 12).  The term oligomenorrhea is used to define an absence of

menses for intervals shorter than amenorrhea or to characterize unevenly spaced menses. 

Definitions of ‘‘long’’ cycles, ‘‘short’’ cycles, and ‘‘irregularity’’ are even more ambiguous.  In the

case of amenorrhea, the persisting definitional ambiguity may reflect our lack of understanding

about the nature of variation in ovarian function (Harlow and Zeger, 1991). 

Few studies have been conducted on the population distribution of secondary amenorrhea,

that is, amenorrhea occurring after the onset of menarche.  Pettersson et al. (1973) gathered

information on a random sample of Scandinavian women aged 18–45 years using a mail

questionnaire.  They reported a one-year incidence rate of 3.3 percent, a one-year prevalence of 4.4

percent, and a point prevalence of 1.8 percent for amenorrhea of more than three months duration. 

Bachmann and Kemmann (1982), in a mail survey to U.S. college students, reported a point

prevalence of 11.3 percent for oligomenorrhea (menstrual-cycle lengths of 35–90 days) and of 2.6

percent for amenorrhea of more than 90 days.  The difference in point prevalence rates of

amenorrhea in these two studies reflects the fact that long menstrual cycles are more common in

young women.  In one of the only community-based studies of the prevalence of gynecological

illness from lesser industrialized countries, Bang et al. (1989) reported that 20.3 percent of study

participants in a small Indian village complained of amenorrhea.  On examination, 4.7 percent were

found to have amenorrhea and 22.4 percent were classified as having

‘‘oligomenorrhea/hypomenorrhea’’ (no operational definitions provided).  One large population-based

cross-sectional study from Denmark found that almost 30 percent of women aged 15–44

experienced at least one menstrual cycle longer than 35 days and variation in cycle length over 14
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days in the past year (Munster et al., 1992).

Bleeding Disorders: Menorraghia and Dysfunctional Uterine Bleeding

The term used to describe excessive blood loss independent of ovulatory status is

menorraghia.  Excessive blood loss is defined as blood loss of more than 80 milliliters per menses

(Hallberg et al., 1966).  Dysfunctional uterine bleeding refers to several patterns of altered bleeding

that result from anovulation, and may be characterized by excessive and/or prolonged blood flow.  In

the presence of normal ovulation, conditions such as coagulation disorders, endometriosis, uterine

infections, and possibly prostaglandin imbalances can also cause heavy bleeding (Mishell et al.,

1984; Rees, 1987; Smith et al., 1981).  In contrast to studies of anovulation or amenorrhea, little

substantive research has been undertaken on menstrual morbidities that are characterized by

excessive bleeding, despite the facts that such disorders are more likely than amenorrhea to

interfere with a woman's daily life and that abnormal bleeding is a major indication for performing

hysterectomy.  

Few studies have estimated the population prevalence of menorraghia.  An English study

estimated the yearly incidence of menorraghia to be seven cases per 1,000 women based on a

review of medical records in one practice (Stott, 1983).  The median age at clinical presentation was

35–39 years.  Bang et al. (1989) report that 4.9 percent of women in an Indian village complained of

profuse periods, but a significantly larger proportion, 15.2 percent, were diagnosed as having

menorraghia.  A population-based survey in Australia (Wood, 1972) found a similar number of

women (5.1 percent) reporting prolonged (more than seven days) menstrual bleeding.

Little information exists on risk factors for menorraghia.  In one case series, 51 percent of

women with abnormal bleeding had no evidence of organic pathology (Fraser, 1992).  Low iron levels

are associated with increased blood loss (Hallberg et al., 1966) and anemia seems to be an

important clinical/nutritional risk factor.  In the English study, menorraghia cases were more likely

to have had an associated iron- deficiency anemia than were age-matched controls (Stott, 1983).  In

the Bang et al. (1989) study, 83 percent of the women had iron-deficiency anemia.  Intrauterine

devices substantially augment blood flow, although devices containing progesterone tend to

diminish flow.  Data on other potential risk factors are very preliminary.  Case-control studies

suggest that menorraghia may be associated with other cardiovascular problems (Stott, 1983) and

that women with dysfunctional uterine bleeding are more likely to report recent stressful life changes

(Tudiver, 1983).  In support of this latter result, experimental data suggest that blood coagulation

factor activity may decrease in response to prolonged stress (Palmblad et al., 1977).  Prolonged

bleeding may be more common in smokers (Wood, 1972) and heavy flow may be more common in

obese women (Hartz et al., 1979).  Case reports have suggested that menorroghia may result from
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mild hypothyroidism (Wilansky and Greisman, 1989; Stoffer, 1982). 

Menstrual Cramps: Dysmenorrhea

Although the term dysmenorrhea is sometimes used to refer to a broad panorama of

symptomatology, it is appropriately defined as abdominal pain, cramping, or backache associated

with menstrual bleeding.  Related gastrointestinal symptomatology, such as nausea or diarrhea,

may also occur.  Primary dysmenorrhea refers to pain in the absence of other gynecologic

morbidity and generally occurs only in ovulatory cycles.  Secondary dysmenorrhea refers to

menstrual pain associated with other gynecologic morbidity, such as endometriosis or pelvic

inflammatory disease.  The proximate cause of primary dysmenorrhea is secretion of

prostaglandins, which both increase uterine contractibility and sensitize pain receptors.  Again,

population-based data on the prevalence of dysmenorrhea are limited.  Most women experience at

least mild cramping during at least some menstrual cycles.  No more than 5–10 percent of women

appear to experience severe and incapacitating pain.

Studies of dysmenorrhea have focused on adolescents.  In a Finnish study, 54 percent of girls

aged 10–20 reported at least occasional pain, while 13 percent reported that they always

experienced pain.  Prevalence increased with time since menarche: in the first year postmenarche,

only 7 percent of girls reported having cramps, as opposed to 25 percent in the fifth to ninth year

(Widholm, 1979).  Data from a national sample of U.S. adolescents are quite similar: 60 percent

reported ever having pain or discomfort, while 14 percent reported frequently missing school

because of cramps.  Several Swedish studies (Andersch and Milsom, 1982; Svanberg and Ulmsten,

1981) report similar results, while a Nigerian study of university students found a slightly higher

prevalence (72 percent) (Thomas et al., 1990).  As would be expected given the association with

ovulatory cycles, the prevalence of dysmenorrhea during adolescence increases with years since

menarche (Klein and Litt, 1981).  Exercise, on the other hand, appears to decrease menstrual

cramping (Okonofua et al., 1990).  Since dysmenorrhea is more likely to occur during ovulatory

cycles, factors such as physical exercise, which reduce the probability of ovulation, would be

expected to reduce the probability of pain.  However, other mechanisms, such as elevated

endorphin levels, may also be operative.

Studies in adult women are less consistent and often focus on subgroups of working women. 

In Bang et al.'s (1989) Indian study, 15 percent of women complained of dysmenorrhea while 57

percent were found to experience some level of pain on examination.  In an Australian survey

(Wood, 1972), 29 percent of women reported experiencing moderate or marked discomfort.  In

contrast, 75 percent of the mothers of the girls in the Finnish study (Widholm, 1979) reported

experiencing pain with menstruation.  Although dysmenorrhea is often touted as the greatest cause

of lost work time for women, the data disprove this assertion (Sturgis, 1923; Baetjer, 1946). 
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Svennerud (1959), in a comprehensive study, determined that dysmenorrhea accounted for only 3.7

percent and 2.5 percent of absences among female factory and office workers, respectively.  Data

from the National Health Interview Survey reveal that the greatest cause of lost work time for women

is, in fact, influenza (NCHS, 1978). 

In one of the few studies to consider risk factors for dysmenorrhea in adult women, Mergler

and Vezina (1985) demonstrated that exposure to cold in slaughterhouses significantly increased

both the prevalence of dysmenorrhea and the likelihood of taking sick leave.  Increased severity of

dysmenorrhea is correlated with amount of menstrual flow and nulliparity, while women who use oral

contraceptives report less severe pain.  Although one study found that smoking was associated with

fewer reports of menstrual cramps (Andersch and Milsom, 1982), two other studies (Wood, 1972;

Brown et al., 1988) found that smokers reported more dysmenorrhea.

 

Summary

Both descriptive research and etiologic research in the area of menstrual dysfunction are

insufficient.  For the more commonly evaluated dysfunctions of anovulation, amenorrhea, and luteal

phase defects, research deficiencies were outlined at the end of Parts II and III.  Considerably more

attention should be paid, however, to dysmenorrhea and bleeding disorders, which cause

substantial disruption to women's daily lives.  Inadequate data exist on the population prevalence of

abnormal bleeding, particularly during the menopausal transition, when such bleeding is likely to

lead to hysterectomy.  Basic research still needs to be conducted to describe the population

patterns of these disorders and to identify potentially modifiable risk factors.
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PART V. MENSTRUAL CYCLING, PHYSIOLOGIC FUNCTION, AND WOMEN'S LONG-TERM

HEALTH STATUS

This report has focused so far on the menstrual cycle as a health endpoint in and of itself. 

This section considers what is known about the broader impact of menstrual function on women's

health.  Two issues of critical importance are the role of the endocrine cycle in regulating diverse

aspects of normal physiologic function and the relationship between menstrual characteristics and

women's long-term risk of developing chronic diseases such as osteoporosis, cancer, and

cardiovascular disease. 

Considerable data indicate that hormones play an important role in the development of breast,

endometrial, and ovarian cancer (Kelsey, 1993).  Cessation of menstrual function at the time of

menopause is associated with an increased risk of osteoporosis (Sowers and Galuska, 1993) and

possibly cardiovascular disease (Barrett-Connor and Bush, 1989).  The beneficial effect of estrogen

replacement therapy (contraindications notwithstanding) supports a hormonally mediated etiology

for each of these conditions.  The accumulated evidence suggests that endogenous endocrine

profiles throughout a woman's reproductive life are relevant to her long-term health.  However,

mechanisms relating menstrual function to a woman's long-term health profile are not well

understood.  Studies of hormonal risk factors have generally used relatively crude markers of

endocrine function—for example, age at menarche, age at menopause, and pregnancy-related

variables such as parity or age at first birth.  The few studies that have examined the effect of

menstrual history itself have yielded inconsistent results (Choi et al., 1978; Sherman et al., 1982;

Olsson et al., 1983; La Vecchia et al., 1985).  A larger problem, however, is that rigorous studies of

the association between endocrine profiles and chronic disease have seldom been conducted,

despite the fact that pharmacologic interventions have been widely introduced. 

Unfortunately, studies of women's health tend to either completely ignore hormonal influences

or to consider them in isolation from other biologic and environmental risk factors.  This conceptual

schism was illustrated recently by two major epidemiologic studies of heart disease in women.  The

first study is a prospective study of the natural history of heart disease in men and women aged 45

to 65 (ARIC, 1989).  Even though this study observes women as they move through the menopausal

transition,  consideration of changing hormone profiles and the occurrence of menopause did not

inform the original design of the study.

 The second study is a large clinical trial designed to evaluate the efficacy of various regimens

of estrogen and progesterone on cardiovascular risk factors (Barrett-Connor and Bush, 1991). 

These hormonal regimens are not compared with other standard treatments such as aspirin,

cholesterol-lowering drugs, diet, and physical activity, despite the fact that clinical trials in men have
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proved these treatments efficacious.  It is necessary to emphasize that both studies are well

designed and will make important contributions to our knowledge of heart-disease risk in women. 

However, the failure to study the role of hormonal and nonhormonal risk factors in a more integrated

manner remains of concern.  Whether one is interested in studying common infections, heart

disease, or breast cancer, an important step in identifying the biologic mechanisms through which

the menstrual cycle influences disease risk will be to become better observers of the physiologic

rhythms engendered by menstrual function. 

Changes in Physiologic Function During the Menstrual Cycle

Although research is sparse, the menstrual cycle appears to modulate several aspects of

women's physiology.  Sporadic reports of variation across the menstrual cycle have been published

over the last century for a diverse set of physiologic parameters.  In recent years, interest in

premenstrual syndrome has stimulated research on whether changes occur in a wide variety of

physical and psychological symptoms during the premenstruum.  However, systematic

investigations of variability related to the menstrual cycle in relevant physiologic systems are

limited.  Nonetheless, data on circulatory, metabolic, and immunologic alterations suggest that

cyclic hormonal variation is an important determinant of variability for some physiological

phenomena. 

For example, heart rate, pulse transit time, and blood pressure (Kaplan et al., 1990; Dunne et

al., 1991) appear to vary systematically across the menstrual cycle, while hemodynamic and

hemostatic responses to psychological stress may be elevated during the luteal phase (Manhem et

al., 1991; Tersman et al., 1991; Jern et al., 1991).  Whether these systematic fluctuations have

functional or clinical implications remains uncertain; however, they are of sufficient magnitude to

confound research results.  Thus, timing of measurements during the menstrual cycle must be

considered in the design of studies that plan to measure cardiovascular response (Kaplan et al.,

1990). 

Perhaps of more immediate relevance to women's everyday lives are cyclic changes that have

been identified in energy metabolism.  Webb (1986), in a controlled calorimetric experiment in

sedentary conditions, found that women's 24-hour energy expenditure increased an average of 9

percent during the luteal phase, with some women expending up to 16 percent more energy. 

Sleeping metabolic rate has also been shown to increase an average of 8 percent in the luteal

phase (Meijer et al., 1992).  An earlier study of dietary intake found that women consume

approximately 500 more calories in the luteal as compared with the follicular phase (Dalvit, 1981)

and that this caloric increase stems from an approximate 50 percent increase in carbohydrate

consumption (Dalvit-McPhillips, 1983).  Based on Webb's data, premenstrual increases in
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carbohydrate consumption presumably reflect changing metabolic needs. 

Experimental findings that resting muscle glycogen content and muscle glycogen repletion

following exercise are higher during the luteal phase (Hackney, 1990; Nicklas et al., 1989) suggest

that hormonal changes during the menstrual cycle also alter carbohydrate metabolism and storage.

 Furthermore, studies in diabetic patients have demonstrated that insulin sensitivity decreases

during the luteal phase, at least for a subset of patients (Valdes and Elkind-Hirsch, 1991; Widom et

al., 1992).  Clearly, more investigation of alterations in physiological requirements is needed before

the impact of menstrual function on women's metabolism and food requirements can be fully

understood.  Labeling such changes in physiological requirements ‘‘sweet cravings’’ does little to

help women understand and adapt to their metabolic needs.  Failure to account for stage of the

menstrual cycle in analyzing food frequency data may confound results.

Immune Function

Potentially, one of the most important physiologic impacts of the menstrual cycle is its

influence on immune function.  Sex hormones affect differentiation, maturation, emigration, and

function of lymphocytes, modulate immunoregulatory mechanisms, and influence monocyte and

macrophage activity (Ahmed et al., 1985).  Progesterone and estrogen may prove either

immunosuppressive or immuno-enhancing depending on the dose, as immuno-endocrine effects are

target-cell–specific and hormone- and dose-dependent.  However, despite the relatively large body of

literature on differences between males and females in immune response, changes in immune

parameters during pregnancy, and effects of pharmacologic and physiologic doses of estrogen,

progesterone, and testosterone on in vitro systems and on in vivo animal models (reviewed in

Paavonen, 1987; Ahmed et al., 1985), only a handful of reports discuss change in immune response

during the human menstrual cycle.

The literature on menstrual-cycle–related variability in immune response has examined natural

killer (NK) activity (Sulke et al., 1985; White et al., 1982; Thyss et al., 1984; Gonik et al., 1985),

lymphocyte numbers and subtypes (Bolis et al., 1983; Tumbo-Oeri, 1985; Coulam et al., 1983;

Raptopoulou and Goulis , 1977; Mathur et al., 1979; Eichler and Keiling, 1988; Krzanowski, 1985),

serum CA125 levels (Lehtovirta et al., 1990), contact sensitivity to allergens (Alexander, 1988;

Agner et al., 1991), cellular immune response to Candida infection (Kalo-Klein and Witkin, 1989),

HIV infectibility of macrophages (Olafsson et al., 1991), detection of papillomavirus (McNicol et al.,

1990), and chlamydial infection (Rosenthal and Landefeld, 1990).  Most of this literature describes

preliminary findings and can only serve to suggest potentially important lines of research.

For example, T-lymphocytes appear to be an important target cell for reproductive hormone

activity (Ahmed et al., 1985).  Studies of variation over the menstrual cycle have evaluated
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lymphocyte numbers, percent distribution of lymphocytes or lymphocyte subsets, and lymphocyte

activity.  Unfortunately, methodological errors such as imprecise techniques, small samples,

infrequent sampling, and lack of hormonal data are serious enough to invalidate the findings of most

studies (Coulam et al., 1983; Eichler and Keiling, 1988; Tumbo-Oeri, 1985; Raptopoulou and Goulis,

1977). (See Table 13.)  Studies with sufficiently large samples that correlate immune parameters

with hormone measurements suggest that number and percent of lymphocytes do vary by

menstrual cycle stage (Krzanowski, 1985; Bolis et al., 1983; Mathur et al., 1979). 

The most rigorous study (Mathur et al., 1979) obtained blood samples from 18 women two to

three times per week.  Notably, gross comparisons of follicular-phase samples with luteal-phase

samples indicated that only monocyte and granulocyte counts exhibited statistically significant

increased counts in the luteal phase.  However, when fluctuations of plasma estradiol and

progesterone were evaluated in a detailed manner, more pronounced variation was observed.  White

blood cell, lymphocyte, and total T-lymphocyte counts were inversely correlated with estrogen

levels, the lowest counts occurring at the time of the follicular estrogen peak.  Monocyte and

granulocyte counts rose during the luteal phase, the highest count coinciding with the progesterone

peak.  Active T-cell counts did not fluctuate.

Whether or not sex hormones influence lymphocyte numbers or subset distributions, the more

important question is probably whether physiologic variation occurs in immune function.  Estrogens

have been shown to inhibit T-suppressor and natural killer function and modulate the production

and/or secretion of various lymphokines in vitro (Ahmed et al., 1985).  Estrogen receptors have been

located on T-suppressor but not T-helper cells (Stimson, 1988) and the depressive effect of estrogen

on in vitro T-cell activity affects only the T-suppressor subset (Stimson, 1988; Ahmed et al., 1985). 

Bolis et al. (1983) found that the percent of T-suppressor cells was significantly depressed in the

pre-ovulatory phase (cycle day 10+/–2) as opposed to the luteal (day 23+/–1) or menstrual phase. 

Cyclic change in NK cytotoxicity has been demonstrated during the estrus cycle of mice, with

a single peak in activity occurring during met-estrus-2 (Furukawa et al., 1984), and the data suggest

that the suppressive effects of estrogen are indirectly mediated by phagocytic cells such as

monocytes or macrophages.  Conflicting data from the human literature on NK activity (see Table

13) also suffer from serious methodological problems (White et al., 1982; Thyss et al., 1984; Gonik

et al., 1985).  In the one study that compared cytotoxicity levels at seven points across the

menstrual cycle (based on the timing of three to four samples per woman), NK activity dropped

significantly in the periovulatory period (Sulke et al., 1985).

Progesterone also modulates lymphocyte function and cytotoxicity (Szekeres-Bartho et al.,

1985).  Kalo-Klein and Witkin (1989) suggest that the cellular immune response to the presence of

Candida albicans and the inhibition of Candida germination are reduced in the late luteal phase and
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that women are more susceptible to infection during the premenstruum.  They subsequently showed

that in vitro lymphocyte proliferation in response to Candida albicans was reduced by 50 percent in

the presence of luteal-phase concentrations of progesterone (Kalo-Klein and Witkin, 1991).  In

contrast, low levels of progesterone characteristic of the follicular phase appeared to stimulate

lymphocyte proliferation.  As was true for estrogen effects on NK activity (Furukawa et al., 1984),

the effect of progesterone on lymphocyte response appeared to be mediated by monocytes (Kalo-

Klein and Witkin, 1991).

At least some of the various immunoregulatory proteins secreted by lymphocytes, monocytes,

and macrophages are affected by female sex hormones.  Interleukin-1 (IL-1) production by

peripheral monocytes and peritoneal macrophages, for instance, does appear to be under hormonal

control (Polan et al., 1988; Hu et al., 1988), with low levels stimulating and higher levels inhibiting

human peripheral monocyte IL-1 activity (Polan et al., 1988).  Female sex hormones also influence

other aspects of immune function, including phagocytic activity of macrophages and monocytes and

possibly antibody production by B cells (Ahmed et al., 1985).  Even fewer data are available on

potential menstrual-cycle–related variation in these parameters.  T- and B-cell responsiveness to

antigenic challenge has been demonstrated to vary during the estrus cycle of mice (Krzych et al.,

1978).  Two preliminary reports suggest that women's response to antigenic challenge may also be

stronger during the premenstruum (Alexander, 1988; Agner et al., 1991).

In summary, estrogen and progesterone are important modulators of cellular, and possibly of

humoral, immune response.  Nonetheless, the physiological and clinical implications of variation in

the endogenous hormone environment during the menstrual cycle remain unknown.  Most studies of

menstrual variation suffer from such serious methodological flaws that their findings must be

discounted.  Systematic investigation of the importance of fluctuations in the endogenous hormonal

environment for immune function is clearly warranted.  Simple comparisons between follicular and

luteal phases ought to be avoided because of the high probability that variation linked to fluctuations

in estrogen, LH, or FSH levels will not be detected.  Furthermore, hormone and immune

measurements must be coupled and use of frequent sampling in adequate numbers of women is

essential.  Information on cyclic variation in immune function will be relevant not only to

understanding women's disease patterns but also to determining appropriate protocols for

measuring immune status in epidemiologic and clinical studies. 

Plasma Lipids and Lipoproteins

While much is known about the effect of exogenous hormones on lipid parameters and risk of

coronary heart disease, the relevance of these findings to understanding the effect of the

endogenous hormonal environment on lipid parameters is unclear (Godsland et al., 1987).  Except
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for evaluations of the effects of menopausal status, little attention has been paid to how inter-woman

differences in the hormonal environment may alter lipid parameters.  The question of cyclic

variability in lipid profiles deserves attention because of its potential significance for risk of coronary

heart disease, the leading cause of death in American women.

To provide some background, higher levels of total cholesterol appear to be predictive of

coronary heart disease, while high-density lipoprotein cholesterol (HDL-C), particularly the HDL2

subfraction, exerts a protective effect and may be the most important lipid parameter in women

(Bush et al., 1988).  Women have higher levels of HDL-C at all ages than do men (Lipid Research

Clinics, 1980).  The importance of low-density lipoprotein cholesterol (LDL-C) and triglyceride levels

remains controversial, but triglycerides are more consistently a risk for women than for men in

epidemiologic studies (Austin, 1991).  Exogenous estrogen administration increases HDL-C

(especially the HDL2 subfraction) and triglycerides and decreases LDL-C.  Given alone, progestins

have opposite effects (Knopp, 1988; Bush et al., 1988; Miller, 1990).  Little is known about the effect

of cyclic estrogen-progestin therapy, which may now be the most common form of postmenopausal

hormone replacement therapy (HRT).  Preliminary findings suggest that adding progestin may

prevent the increase in triglycerides seen with estrogen alone without negating the beneficial HDL-C

and LDL-C effects (Egeland et al., 1990; Barrett-Connor et al., 1989; Nabulsi et al., 1993).

Studies of the effect of endogenous hormonal changes on lipids and lipoproteins have

examined puberty, pregnancy, and menopause, in addition to the menstrual cycle.  While HDL-C

concentrations decrease by about 10 milligrams/deciliter with puberty in boys, no similar change is

observed in girls (Lipid Research Clinics, 1980).  During pregnancy, large increases in both LDL-C

and HDL-C are observed (Barrett-Connor and Bush, 1991).  Postmenopausal white women exhibit a

more atherogenic lipid profile than do their premenopausal counterparts, including higher total

cholesterol, LDL-C, very-low-density lipoprotein (VLDL-C), and triglycerides (Hjortland et al., 1976;

Lindquist and Bengtsson, 1980; Bush et al., 1984; Matthews et al., 1989).  Cross-sectional studies

show no effect on HDL-C, but two recent prospective studies have also reported slightly but

significantly lower HDL-C levels postmenopausally (Matthews et al., 1989; Jensen et al., 1990). 

Studies of the effect of menstrual cycle stage on lipid parameters (see Table 14) are equivocal

and have many of the same methodological problems observed in the immune studies described

above.  They vary considerably in sample size, lipids measured, definition of cycle phases, and

timing and frequency of sampling.  The study populations also differ markedly by age, menstrual

cycle length and baseline lipid levels.  One study (Hemer et al., 1985) that included a large sample

size (N=114) drew only one blood sample per woman.  The largest of the studies that drew multiple

blood samples per woman included just 37 women (Lebech et al., 1990).  Most studies imputed

cycle phases based on the 28-day model, despite observed variability in menstrual cycle lengths. 
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Only 9 of the 16 studies evaluated hormonal levels.  In 12 of the 15 studies with multiple lipid

measurements per woman, only two to four samples were drawn per cycle and the timing of blood

draws during the cycle differed from study to study: some captured the pre-ovulatory increase in

estrogens, and others did not.  From an analytical viewpoint, it may also have been necessary to

model a lag time between major hormonal fluctuations and lipid parameters to account for the half-

life of lipoproteins in the blood (Kuller et al., 1990).

Nonetheless, the results provide some support for the hypothesis that lipid and lipoprotein

concentrations vary during the menstrual cycle.  Total cholesterol (Low-Beer et al., 1977; Krauss et

al., 1979; Mattsson et al., 1984; Hemer et al., 1985; Jones et al., 1988; Lebech et al., 1990),

triglycerides (Low-Beer et al., 1977; Krauss et al., 1979; Kim and Kalkhoff, 1979; Mattsson et al.,

1984; Tikkanen et al., 1986; Jones et al., 1988), LDL (Kim and Kalkhoff, 1979; Mattsson et al.,

1984; Lebech et al., 1990), and VLDL (Mattsson et al., 1984; Tikkanen et al., 1986) appear to

decline during the luteal phase.  Two recent studies found the lowest levels of total cholesterol

during menstruation (Lussier-Cacan et al., 1991; Tangney et al., 1991).  Findings for HDL-C are

somewhat more equivocal (Kim and Kalkhoff, 1979; Basdevant et al., 1981; Demacker et al., 1982;

Mattsson et al., 1984; Hemer et al., 1985; Tikkanen et al., 1986; Jones et al., 1988; Lebech et al.,

1990), possibly due to differential effects of sex hormones on HDL subfractions (Barclay et al.,

1965; Krauss et al., 1979).   

In summary, as was true for immune function, our knowledge of the effects of menstrual

function on lipid profiles is quite rudimentary despite the considerable evidence of an association

between sex hormones and lipids.  Additional studies using larger sample sizes, more frequent

measurements, and hormonal measurements are obviously required to characterize menstrual

cycle effects on lipid parameters.  However, the data also suggest that additional hypotheses need

exploration.  Kim and Kalkhoff's (1979) finding of a luteal phase decrease in apo B is worthy of

further study, as the lipoproteins may be better predictors of coronary heart disease risk than are

lipoproteins (Avogaro et al., 1979).  Tikkanen et al.'s (1986) finding of decreased hepatic lipase

activity in the luteal phase also deserves attention.  Hepatic lipase activity is thought to be involved

in degrading HDL2, is lower in women than in men, and is suppressed by exogenous estrogen

administrations (Tikkanen et al., 1986; Godsland et al., 1987).  It could thus account for higher HDL2

levels in women.  The work of Tikkanen et al. indicate that both direct and indirect mechanisms for

menstrual-related fluctuations in lipid parameters warrant exploration.

The effect of environmental factors such as diet on the relationship between the menstrual

cycle and lipids also deserves more consideration.  Diet appears to influence both the endogenous

hormonal environment (see Additional Host and Environmental Factors, in Part III) and lipid

parameters (Bush et al., 1988).  Jones et al. (1988) noted differences in cyclic fluctuations in lipid
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parameters depending upon the fat content of the diet.  Furthermore, in societies in which coronary

heart disease is rare, gender differences in plasma lipoproteins levels are much reduced.  Though

the reasons for this difference are not well studied or understood, an interaction with some aspect of

socioeconomic status, such as diet, has been proposed (Godsland et al., 1987). 

Summary

The menstrual cycle appears to influence important aspects of women's physiologic function. 

Given the paucity of information, a systematic program of research on physiologic variation across

the menstrual cycle ought to be undertaken for a wide range of parameters.  In addition, the

potential influence of other host and environmental factors, such as genetics, diet, or stress, on

these associations could be explored.  Both the immune and lipid literature suggest that greater

attention should be given to indirect mechanisms through which reproductive hormones may exert

their effects.  Clearly, variation in immune competence and lipid parameters is of great clinical

interest.  However, factors of great relevance to women's daily lives, such as metabolic need, should

not be overlooked.

Menstrual History and Risk of Chronic Disease

Much of the evidence linking sex hormones to cancer, cardiovascular disease, and

osteoporosis is derived from data on exogenous steroids or from evaluation of the effects of

menarche, menopause, or pregnancy.  Despite preliminary evidence that the hormonal environment

throughout reproductive life might be a relevant indicator of long-term disease risk, few studies have

directly examined the role of menstrual characteristics or endocrine metabolism in explaining

chronic disease risk.  Failure to systematically investigate the role of life-time exposures to

endogenous hormones may be keeping us from identifying important prevention strategies.

For example, in most western countries, mortality rates associated with coronary heart

disease are lower for women than for men at all ages (Eaker et al., 1989; Johansson et al, 1983;

Godsland et al., 1987).  Because of this marked protection, considerable research has focused on

the protective role of female sex hormones, most notably estrogen, in lowering the risk of coronary

heart disease (Barrett-Connor and Bush, 1991).  A recent meta-analysis of 31 studies examining

the effect of postmenopausal exogenous estrogen use on coronary heart disease found a 50

percent reduction in risk among current users (Stampfer et al., 1991).  However, our understanding

of the potential role of endogenous hormones in defining lifetime risk is minimal.

Studies of endogenous hormonal effects on coronary heart disease risk that have focused on

the occurrence and timing of reproductive events such as puberty, pregnancy, and, more frequently,

menopause do not provide a coherent story.  The effect of parity on coronary heart disease risk is
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equivocal (Barrett-Connor and Bush, 1991).  Age at menarche is not significantly associated with

risk of coronary heart disease (Colditz et al., 1987; La Vecchia et al., 1987).  In general,

postmenopausal women exhibit a more atherogenic lipid profile than do premenopausal women,

including higher total cholesterol, LDL-C, triglycerides, and, in some studies, a slight decrease in

HDL-C (Matthews et al., 1989).  However, whether or not passage through menopause moves

women from a lower-risk to a higher-risk status remains uncertain.  While surgical menopause via

bilateral oophorectomy appears to be consistently associated with increased risk of coronary heart

disease (Colditz et al., 1987), the effect of natural menopause is less clear and is confounded by

the promotional effects of age and smoking (Willett et al., 1983) on both natural menopause and

coronary heart disease.

Metcalf's work (see Variability in the Endocrine Cycle, in Part II of this report) has suggested

that the low estrogen levels characteristic of older women, which presumably are relevant to

changing lipid profiles, evolve gradually and reach their nadir only sometime after menopause.  On

the other hand, age at menopause is a reflection of a woman's endogenous hormonal environment,

and that lifetime exposure may in fact be the causal factor in heart disease risk.  One provocative

case-control study found a significantly increased risk of myocardial infarction before age 55 in

women with a history of frequent menstrual cycles less than 21 or more than 35 days long (La

Vecchia et al., 1987). 

Interestingly, results from work in an animal model shed more light on the possible effects of

lifetime exposure to a relatively estrogen-deprived hormonal milieu (Clarkson et al., 1989).  Female

macaques have a 28-day menstrual cycle with estrogen and progesterone changes similar to those

in humans.  The male:female ratio for coronary artery atherosclerosis is similar to that seen in North

American white populations, and the females of the species have higher HDL levels than do the

males.  Social subordination is associated with an increased probability of anovulatory cycles,

luteal-phase deficiency, and lower estradiol peaks such that these animals are chronically estrogen-

depleted (Adams et al., 1985a; 1985b).  Relative to dominant females, subordinate females have

depressed HDL levels and a threefold elevation in coronary atherosclerosis independent of the lipid

effect.  Although each is associated with a decrease in HDL, both pregnancy and oral contraceptive

use decrease rather than increase atherosclerosis, suggesting that progesterone-induced adverse

lipoprotein changes may not be important in the face of adequate estrogen levels (Adams et al.,

1987). 

The menstrual cycle has been evaluated somewhat more extensively as a potential risk factor

for breast cancer and osteoporosis.  Although the data are, again, somewhat inconsistent (Sherman

et al., 1982), long or ‘‘irregular’’ cycles have also been found to be protective for breast cancer

(Frisch et al., 1985; La Vecchia et al., 1985; Olsson et al., 1983) as well as for ovarian cancer
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(Parazzini et al., 1989).  Short menstrual cycles were also found in one study to be a risk factor for

certain lung cancers (Gao et al., 1987).

Despite some inconsistent reports (Baker and Demers, 1988), menstrual characteristics do

appear to predict bone mass in premenopausal (Drinkwater et al., 1990) and collegiate (Lloyd et al.,

1988) athletes, with regular cycling women having higher bone density than women with a history of

long cycles.  Two recent studies of bone loss (Prior et al., 1990) and bone mass (Sowers et al.,

1990) suggest that menstrual cycle characteristics and estradiol levels in premenopausal women

may be the most important predictors of long-term risk of osteoporosis.  Over a one-year period,

menstrual cycle characteristics were a better predictor of bone loss in premenopausal women than

was level of physical activity (Prior et al., 1990).  Premenopausal women in the lowest fifth

percentile of femoral bone mass had significantly lower estradiol levels and higher luteinizing

hormone levels than controls (Sowers et al., 1990).  These data suggest that early differences in a

woman's hormonal milieu are related to peak adult bone mass. 

In summary, the data on menstrual cycle characteristics as risk factors for chronic disease,

though limited, are sufficient to suggest that this avenue of research could be productive both in

explaining women's long-term health status and in identifying prevention strategies for

premenopausal women.  However, while ovulatory disturbances may be protective for some chronic

diseases, such as breast cancer (Henderson et al., 1985), they are probably a risk factor for others,

such as osteoporosis (Prior et al., 1990) and possibly heart disease.  In the absence of sufficient

epidemiologic research on the relationship between menstrual function and multiple aspects of

women's health, calls for interventions based on preliminary findings for isolated disease outcomes

are probably inappropriate (Bernstein et al., 1987; Henderson et al., 1985). 

Given the role of sex hormones in regulating a wide variety of physiologic parameters,

consideration ought to be given to developing a paradigm of women's health based on identification

of what might constitute an optimal hormonal balance.  Such an understanding of the relationship

between menstrual characteristics, ovarian hormones, and risk of chronic disease could then lead

to innovative, preventive strategies with important public health implications.

Throughout this report, it has been suggested that our conception of the menstrual cycle

needs to be broadened from a simple focus on ovulation to a broader perspective of the endocrine

environment, and that we need to begin thinking about the broad implications of this endocrine

environment for women's health.  To date, not only have we not satisfactorily characterized

population distributions of women's endogenous hormonal environments, but we have few clues

about what might constitute the optimal endogenous endocrine environment to promote long-term

health.  The multiple, complex, interdependent, and dose-dependent effects of estrogen and

progesterone on the immune system and physiologic function are of particular concern when one
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considers the potential impact of long-term and widespread pharmacologic interventions such as

steroid contraception and hormone replacement therapies.  Evaluation of the health consequences

of steroid contraception and estrogen-replacement therapy ultimately depends upon gaining a better

understanding of the complex relationship between the menstrual cycle and women's health.
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PART VI.  DEFINING A RESEARCH AGENDA FOR THE MENSTRUAL CYCLE

Based on the above review, it is obvious that a comprehensive program of research is needed

in order to begin filling the myriad gaps in scientific knowledge about the menstrual cycle.  Given

the lack of knowledge about many fundamental aspects of menstrual function and about linkages

between the menstrual cycle and other physiologic systems, the importance of conducting basic

research cannot be underestimated.  For those physiologic parameters that fluctuate across the

menstrual cycles, careful consideration of this source of variation in epidemiologic study designs is

essential to the validity of study results.  Basic science studies will need to be undertaken to fill this

fundamental gap in knowledge. 

In some instances, evaluation of questions that have not yet been asked or well developed,

such as how endocrine metabolism varies among women, may need to take priority if we wish to

make substantial gains in our understanding of women's reproductive and long-term health. 

Although the National Institutes of Health have begun several research initiatives focused on

menopause and the health effects associated with the cessation of reproductive life, considerably

more focus needs to be given to the menstrual cycle itself, as its influence extends over 30 to 40

years of a woman's life.  Specific recommendations for research program priorities include the

following:

1. More population-based studies of the natural variability in menstrual cycles across the
reproductive life course need to be conducted in ethnically, culturally, and socially
diverse populations.  In addition to information on cycle length and the probability of
ovulation, these studies should also describe variability in bleed duration and amount,
hormonal patterns, and metabolic pathways.  Host and environmental factors that may
influence this variability should also be examined, with an emphasis on the role of diet,
environmental chemicals, and the social environment.

2. Epidemiologic studies of age-specific incidence and prevalence of menstrual dysfunction,
particularly abnormal bleeding, are needed in all ethnic groups.  Case-control studies to
examine risk factors for abnormal bleeding should also be a high priority.

3. Basic research on changes in physiologic function across the menstrual cycle should be
undertaken for most physiologic parameters; however, because of their significance to
women's health profile, research on cyclic changes in immune function, metabolism, and
cardiovascular function should be priorities.

4. Systematic investigation of the relationship between menstrual cycle characteristics and
risk of chronic disease, including evaluation of hormone profiles and physiologic risk
factors in premenopausal women, is also essential.

5. In addition to this substantive research program, development of simpler quantitative
hormonal assays are needed to facilitate investigation of inter-woman differences in
hormonal patterns and endocrine metabolism.
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Finally, the ubiquitous methodological error of equating cycle day with the endocrine level of a

standardized 28-day model menstrual cycle must also be addressed.  Studies that assume that

ovulation occurs on cycle day 14, that the luteal phase invariably lasts 14 days, and that variation in

cycle length is due to variation in length of the follicular phase should no longer be considered

acceptable science.  In the general population of women, who exhibit considerable variability in their

hormonal patterns and marked variation in phase length by age, standardized cycle days are neither

precise nor valid measures of endocrine levels.  Use of this proxy measure is likely to lead to

misclassification and, therefore, to invalid results.  Such misclassification is especially likely if the

subcategorization is more detailed than follicular/luteal phase.  Furthermore, as was evident from

studies of immune parameters and lipid profiles, simple follicular/luteal classification may not be

sufficient to detect meaningful variation.  To the extent that it is important, for a given parameter, to

identify (1) change associated with peak as opposed to basal estrogen levels; (2) peak levels as

opposed to the presence of progesterone; (3) relative increases in hormones; or (4) the effect of

change in gonadotropin levels, more frequent sampling coupled with hormonal data will be critical.
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TABLE 1: Menstrual cycle length (days) by age, results of four studies

Treloar et al., 1967 Vollman, 1977 Chiazze et al,
1968

Matsumoto et al, 1962

Age Person-year
mean

S.D. Median     Range     
(5–95%)

Mean Median    Range  
(5–95%)

Mean  
(15–45-day

cycles)

S.D. Mean S.D. Range
(10–90%)

Postmenarche
  Year 1
  Year 2
  Year 5

36.9
34.1
31.2

11.2
8.7
4.4

29.1
29.1
28.2

18.3–83.1
18.4–63.5
21.7–40.4

35.0
31.2
30.1

29.0
28.7
27.8

17.8–76.5
19.9–57.5
19.9–48.5

Age (years)
  20
  20–24
  25
  25–29
  30
  30–34
  35
  35–39
  40
  40–44
  45

30.1

29.8

29.3

28.2

27.3

3.9

3.5

3.2

2.7

2.8

27.8

27.8

27.2

26.7

26.2

22.1–38.4

22.7–37.1

22.5–35.4

22.3–33.4

21.8–32.0

29.0

30.7

29.6

29.1

27.3

28.3

27.9

28.2

27.9

27.9

26.7

26.7

19.7–39.2

23.6–43.5

23.1–39.4

22.8–36.4

22.0–33.6

20.1–39.8

29.1

28.5

28.0

27.3

26.9

4.6

3.6

3.5

3.4

3.7

31.0

31.3

30.1

29.4

5.7

7.5

5.5

4.8

26–38

26–37

25–36

25–35

Premenopause
  5 years
  2 years
  1 year

28.4
43.5
57.1

6.4
19.5
35.5

25.5
26.6
27.9

17.8–38.8
15.4–80.0

14.9–∞

Note: S.D. = standard deviation                        Sources:  See Bibliography



TABLE 2: By-woman probabilities of transition in segment length from segment t to
segment t + 1 (144 women contributed 1,082 segment pairs)

Length of
segment
t (days)

Total number
of transitions

Probability of length of segment t + 1 (days)

<17 17–25 26–34 35–43 44–59 >59
<17 14 .09 .41 .25 .19 .06 .00

17–25 207 .02 .18 .65 .09 .06 .00
26–34 708 .01 .18 .65 .10 .03 .03
35–43 103 .03 .10 .65 .16 .03 .03
44–59 33 .04 .07 .66 .10 .06 .07
>59 17 .04 .25 .40 .07 .21 .04

Source: Reprinted from Journal of Clinical Epidemiology 44 (1991): 1015-25, S.D. Harlow and S.L. Zeger, Application of
longitudinal methods to the analysis of menstrual diary data, Copyright 1991, with kind permission from Elsevier Science
Ltd, The Boulevard, Langford Lane, Kidlington OX5 1GB, UK.



TABLE 3: By-segment transition probabilities from segment t to segment t + 1 (17,287
segment pairs from 701 women aged 13–52 years)

Segment t days
Probability by segment t + 1 days

20–24 25–34 35–44 45–59 >59
20–24 .15 .73 .08 .03 .007
25–34 .06 .84 .08 .02 .004
35–43 .06 .61 .26 .06 .02
44–59 .06 .56 .25 .10 .03
>59 .06 .50 .22 .16 .07
Source:  Calculated based on data presented in: S. Matzumoto et al., Statistical studies on menstruation; A criticism on
the definition of normal menstruation, Gunma Journal of Medical Science 11 (1962): 294–318.



TABLE 4: Blood loss per bleeding episode

Volume of blood loss (mls)
Variable Mean S.E. Median Ninetieth

percentile
All women 43.3 2.3 30.0 83.9
Age 15 28.4 65.1
Age 23 30.6 77.8
Age 30 30.9 86.3
Age 40 30.8 87.1
Age 45 29.5 88.1
Age 50 36.4 133.1
Women with normal bleeds
  Subjective report 38.5 1.9
  Subjective report and adequate iron levelsa 33.2 1.6

Note: S.E. = standard error
a haemoglobin concentration = > 12 g/100 ml blood; plasma iron concentration = > 80 ug/100 ml plasma; MCHC = > 30%
(MCHC = mean corpuscular hemoglobin concentration)
Source: L. Hallberg et al., "Menstrual blood loss—a population study," Acta Obstetrica y Gynecologica Scandinavia 45
(1966):320-51, © 1966 Munkgaard International Publishers Ltd., Copenhagen, Denmark.



TABLE 5: Probability of anovulation, findings from four studies

Study Ovulation
measurement

method

Cycle length
(days)

Age (years) Percent
anovulatory

cycles
By cycle length
Vollman, 1977

BBT 16–21
25–30
>59

all ages 22–44%
2–4%
41%

Matsumoto et al., 1962 BBT <25
25–38
>38

20–39 17%
3%

18%
By age
Doring, 1969

BBT all cycles 12–14
18–20
21–25
26–40
41–50

60%
20%
13%
3–7%

12–15%

Vollman, 1977 BBT all cycles 1 year post-
menarche

29
40–45

56%

1%
34%

Metcalf, 1983 weekly urine all cycles 10–14
20–24
30–39
>50

52%
28%
2%

34%
By age and cycle length
Metcalf, 1983 weekly urine 20–35

36–49

10–24
40–55

10–24
40–55

35%
11%

38%
68%

Note:  BBT = basal body temperature                              Sources: See Bibliography



TABLE 6: Estimates of the length of the follicular and luteal phase, findings from five
investigations

Long menstrual cycles excluded All menstrual cycle
lengths included

Variable WHO, 1983 Landgren
et al., 1980

Lenton et al,
1984a,b

Vollman,
1970

Matsumoto
et al., 1962

N (women) 687 68 299 524 n/a
N (cycles) 6,427 68 327 13,785 2,500
Method Mucus Blood Blood BBT BBT
Selection criteria Peak day, present

NFP user
Ovulatory

25–36 days
Ovulatory
<41 days

Biphasic
—

Biphasic
—

Follicular phase
Mean length (days) 15 15.1a 12.9a 17.4 17.9

10%–90%
 5%–95%

10.5–19
10–23 10.3–16.3 10.8–27.2

13–24

Luteal phase
Mean length (days) 13.5 13 14.1 11.7 12.7

10%–90%
 5%–95%

8.7–17.2
11–17 11.3–17.0 6.9–15.3

11–15

Note: BBT = basal body temperature;  NFP = "natural" family planning;   a Geometric mean    
Sources: See Bibliography



TABLE 7: Range of mean and peak plasma levels that include 91 percent of
measured values of FSH, LH, estradiol, and progesterone during 68
menstrual cycles of 25 to 36 days duration, in women aged 19–39 years

Range
FSH
IU/l

LH
IU/l

Estradiol
pmol/l

Progesterone
nmol/l

Mean level, day 1–6

Preovulatory

Luteal peak

Mean level, luteal
phase

>0.9 to <4.0

>2.5 to <16

>1.5 to <3.3

>1.0 to <3.5

>13 to <36

>1.1 to <4.3

>150 to <370

>690 to <2,120

>480 to 1,180

>300 to <710

>1.2 to <4.4

>32 to <92

>15 to <42

Note:  IU/l = international units/liter             pmol/l = picomoles/liter       nmol/l = nanomoles/liter
Source:  Reprinted from Hormonal profile of the cycle in 68 normally menstruating women, by B.M. Landgren et al.,
Acta Endocrinology 94(1980):89–98, by permission of Scandinavian University Press.



TABLE 8: Association between hormonal levels and menstrual cycle and ovarian
phase lengths

Length of cycle/phase
Variable Short Long

Menstrual cycle High estrogen (day 1–6) High prepeak LH
High peak LH

Folicular phase High estrogen (day 1–6)
High estrogen (pre-ovulatory peak)

High prepeak LH

Luteal phase High peak progesterone

Source:  Reprinted from Hormonal profile of the cycle in 68 normally menstruating women, B.M. Landgren et al., Acta
Endocrinology 94(1980):89–98, by permission of Scandinavian University Press.



TABLE 9: Variation in ovarian hormone and gonadotropen levels, by age, findings from four studies

Study Method N (women) Age FSH LH Oestradiol Progesterone

Sherman et al., 1979 daily blood
samples

10
7
8

18–30
40–45
46–56

ng/ml
172±11
178±33
219±22

ng/ml
105±17
110±3

124±13.6

pg/ml
150±17
145±24
102±31

—
—
—

Metcalf and Livesey,
1985

weekly urine
samples

48
6 irregular

52
9 irregular

20–39
21–39

40–48
41–54

>10 i.u./24 hr
3%
1%

9%
32%+

>10 i.u./24 hr
9%
8%

8%
32%+

µmol/24hr

Metcalf and MacKenzie,
1980; Metcalf, 1979

weekly urine
samples

66
(186 cycles)

51
(164 cycles)

20
(60 cycles)

20
(79 cycles)

38
(121 cycles)

42
(140 cycles)

20–24

25–29

30–34

35–29

40–44

45–51

12.4±0.4

12.8±0.5

13.7±0.6

13.9±0.7

11.2±0.4

11.3±0.4

Note:  i.u. = international units                 Sources: See Bibliography



TABLE 10: Regional variation in menstrual blood loss, findings from five studies

Study Country Mean duration
(days)

Mean loss (mls)

WHO, 1981 Mexico
India (high caste)
India (low caste)
Egypt
Indonesia
Philippines
Yugoslavia
United Kingdom
Pakistan

4.0
4.4
4.0
4.4
4.4
4.8
4.8
5.3
5.6

Belsey et al., 1988a Mexico
Europe

4.0
5.9

WHO, 1986b Sri Lanka
Hong Kong

4.3
6.0

Hallberg et al., 1966 Sweden 43.4+/–2.3
Ji et al., 1981 China 56.3+/–2.8
a Includes only women using "natural" family planning.            b Girls aged 11–15 years.
Sources: See Bibliography



TABLE 11: Some host and environmental factors that might be
important determinants of menstrual function

Factor Types
Stress

Diet

Chemicals

Physical environment

Social environment

Family stress
Occupational stress
Role conflict
Chronic stress

Meat
Fat
Caffeine
Micronutrients

Drugs
Environmental chemicals (pesticides)
Occupational chemicals (solvents)
Tobacco

Sound
Electromagnetic fields
Light
Ergonomic factors

Female group synchrony
Intersex synchrony
Violence
Crowding
Social status
Social support



TABLE 12: Operational definitions of menstrual dysfunction in the literature

Condition Definition Study
Amenorrhea Delayed menses

No menses for 2 months
No menses for 4 months
No menses for 6 months

No menses for 90 days (3 months)

<3 cycles per year
<4 cycles per year

Boehm and Salerno, 1973
Drew, 1961
Oian et al., 1984
Galle et al., 1983; Shangold and Levine,
1982; Wakat et al., 1982

Frisch et al., 1980; Pettersson et
al., 1973; Shortridge, 1988

Glass et al., 1987
Ouellette et al., 1986; Sanborn, 1982

Irregularity Cycles <22 or >50 days
Cycles >37 days
Cycles >38 days
Frequent cycles <21 or >35 days
Cycles that vary by >5 days

Wilson et al., 1984
Shangold and Levine, 1982
Frisch et al., 1980
La Vecchia et al., 1985
Olsson et al., 1983 

Sources:  See Bibliography.



TABLE 13: Studies of the variability in immune parameters across the menstrual cycle

Study
Number of women
and cycles

Number and timing of blood
draws

Hormonal
measures Immune parameters Results

T-lymphocytes
  Raptopoulou and
  Goulis,     1977

10 women
ages 19–25,
1 cycle

3 samples per cycle
1 week before, during, and 1
week after menses

no total lymphocytes,
% T-lymphcytes,
number T-lymphocytes

decrease during menses

number neutrophils no change
  Mathur et al.,
1979

16 women,
ages unknown,
1 cycle

up to 12 samples per cycle
(2–3 per week)

progesterone,
estradiol (E2),
LH

total lymphocyte and T-
lymphocyte counts

monocyte and granulocyte
counts

negative correlation with
E2; nadirs at follicular and
luteal E2 peaks

positive correlation with
progesterone

  Bolis et al., 1983 27 women, ages 23–
30, 1 cycle

3 samples per cycle:
day 10 ± 2, day 23 ± 1, menses

no basal body
temperature

total T-lymphocytes no change

T helper preovulatory increase
T suppressor preovulatory decrease

  Coulam et al.,    
    1983

5 women, ages 18–
30, 1 cycle

up to 8 samples per cycle (every
3–4 days)

no % of total T, T-helper,
T-suppressor lymphocytes

no variation observed

  Krzanowski,       
  1985

63 women, ages 18–
48, 1 cycle

1 sample per cycle no T-helper:T-suppressor ratio maximum day 1–4;
minimum day 21–24

  Tumbo-Oeri,       
  1985

14 women, ages 19–
32, 1 cycle

3 samples per cycle,
6 days before, during, and 6
days after menstruation

no T and B lymphocyte
numbers and percent

decreased during
menstruation

  Eichler and        
   Keiling, 1988

6 women, ages 30–
44, 3 cycles

5 samples per cycle, days 1,
13, 14, 15, 25

no lymphocyte
subset counts

no differences observed



TABLE 13:
Continued

Study
Number of women and
cycles

Number and timing of blood
draws

Hormonal
measures Immune parameters Results

Natural killer (NK)
cells
  White et al., 1982 14 women, ages 21 to

perimenopause,
1 cycle

1 sample per cycle
no

natural killer activity higher activity in 2d half
than 1st half of cycle

  Thyss et al, 1984 13 women, ages 29–39,
1 cycle

2 samples per cycle, day 7 ± 1
and 23 ± 1

no natural killer activity no difference between
1st and 2d half of cycle

  Sulke et al., 1985 18 women, mean age
26.1, 1 cycle

3–4 samples per cycle estradiol natural killer activity NK activity depressed
during ovulation, not
correlated with E2

concentration
  Gonik et al., 1985 13 women, mean age

27, 1 cycle
3 samples per cycle, up to 10
days before, during, and up to
12 days after menses

no natural killer activity no differences observed

Skin reactivity
  Agner et al., 1991 29 women, ages 20–40,

1 cycle
2 challenges per cycle:
day 1, day 9–11

no patch test stronger response
elicited on day 1 than
on day 9–11

Ca-125 levels
  Lehtovirta et al.,
1990

16 women, ages 15–32,
1 cycle

approximately 8 times per cycle estradiol,
progesterone,
LH

Ca-125 levels higher week 1 than at
mid-cycle, negatively
correlated with
progesterone

Sources:  See Bibliography.



TABLE 14: Study findings on variation in lipid and lipoproteins across the menstrual cycle

Study

Number of
women
and cycles

Frequency of
samples

Ovarian
hormones
measured

Total
cholesterol

Tri-
glyceride VLDL LDL HDL HDL2

Oliver and Boyd,
1953

12 women,
mean age 22,
1 cycle/woman

2x/week,
5 weeks

no
BBTa

 ↓ midcycle
 ↓ with menses

Aldercreutz and
Tallquist,
1959

29 women,
ages 20–41,
1 cycle/woman

1–6x cycle no  ↑ pre-ovulation
 ↓ post-ovulation
 ↑ before menses
 ↓ with menses

Barclay et al.,
1965

11 women,
ages 25–44
3 cycles/woman

1x/week no
b

↑ day 14

Low-Beer et al.,
1977

11 women,
ages 20–43,
1 cycle/woman

3x cycle (day 5–6,
14 days before
menses, 5–6 days
before menses)

no  ↓ luteal phase ↓ luteal phase

Krauss et al.,
1979

4 women, 
ages 22–26,
2 cycles/ woman

1x/week estradiol,
progesterone,
LH

— ↑
ovulation
rapid ↓
post-
ovulation

Kim and Kalkhoff,
1979

14 women,
mean age 33,
3 cycles/woman

every 3–5 days no
BBTa

↓ late luteal phase ↓ late luteal
phasec

↓ luteal
phase

↑ late luteal
phasec —

Basdevant et al,
1981

8 women,
ages 25–35,
1 cycle/woman

3x/cycle (days 1, 8,
21)

estradiol
estrone,
progesterone,
testosterone,
LH, FSH

— — —

Demacker et al.,
1982

10 women,
ages 24–37,
1 cycle/woman

2x/week no
— — — —



TABLE 14:   Continued   

Study

Number of
women and
cycles

Frequency of
samples

Ovarian
hormones
measured

Total cholesterol Tri-glyceride VLDL LDL HDl HDL2

Mattsson et al.,
1984

22 women,
ages 18–35
1 cycle/woman

4x/cycle (days 6–8,
13–15, 20–22, 27–
29)

estradiol,
progesterone,
andiostenedrone,
testosterone

↓ luteal (inverse
correlation with E2)

↑ preovulatory
↓ luteal (positive
correlation with E2

↓ luteal ↓luteal
(inverse
correlation
with E2

↑ luteal
(inverse
correlation
with E2

Hemer et al., 1985 114 women,
mean age mid-
20s

1 sample estradiol,
progesterone

↑ late follicular
—

↑ early
luteal

↓ luteal
—

Tikkanen et al., 1986 24 women,
ages 21–33,
2 cycles/woman

2x/cycle (days 7,
21)

estradiol,
progesterone,
LH, FSH

↓ lutealc ↓ lutealc ↓ lutealc

— —

Woods et al., 1987 15 women,
mean age 24.2
1 cycle/woman

3x/cycle (days 4–6,
ovulation, ovulation
+ 6–8 days)

LH,
progesterone —

↑ ovulatory
— — —

Jones et al., 1988 31 women,
ages 20–40,
2 cycles/woman

2x/cycle (follicular
and luteal)

no
BBTa

↓ luteal ↓ luteal ↑ luteal

Lebech et al., 1990 37 women,
ages 19–36,
1 cycle/woman

3x/cycle (days 6–8,
12–14, 24–26)

estradiol,
progesterone, LH,
FSH

— — — — —

Lussier-Cacan et
al., 1991

18 women,
ages 23–38,
1 cycle/woman

9x/cycle estradiol,
progesterone,
LH, FSH
BBTa

↓↓ menses
↓ lutealc

↓ menses

Tangney et al., 1991 9 women,
ages 24–39,
2–4 months/
woman

5x/month (days 1–
5, 7–10, 13–17, 19–
22, 25–menses)

estradiol nadir menses, peak
ovulation —

a BBT = basal body temperature.     b No change in parameter across the cycle.      c Not statistically significant.
Sources: See Bibliography.
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