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Chapter 1

Introduction

With the development of computer and data collection technologies, the database

sizes continue to grow and various statistical methodologies have been developed

over the past several decades, such as regularization method, novel robust modeling

strategies, symbolic data analysis, etc. There is currently much discussion about the

L1-type regularized regression in various �elds. By imposing an L1-type penalty term

to the least squares loss function, the L1-type regularization can perform simultaneous

parameter estimation and variable selection.

In this thesis, the following issues are discussed,

1. L1-type regularized regression,

2. Robust regression modeling via L1-type regularization,

3. Lag weighted lasso for time series model,

4. New type of Symbolic Data Analysis: Candle chart-valued time series.

These topics will be discussed in detail below.
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L1-type regularized regression

The �rst topic is the L1-type regularization method. As data size (i.e., number of

predictor variables p) continues to increase, not only estimation but also variable se-

lection is becoming a di�cult problem in regression modeling. The traditional model

selection procedures, such as forward, backward, stepwise selection and all subset

regression, however, are not feasible in a large number of predictor variables. Fur-

thermore, the least squares method, which is the most widely used for regression

modeling, has a demerit on multicollinearity under a large number of predictor vari-

ables, and thus su�ers from high variances of the estimated parameters.

To overcome the aforementioned drawbacks, several regularization methods have

been proposed. Hoerl and Kennard (1970) proposed a ridge regression imposing an

L2 norm penalty to the least squares loss function. Although the ridge regression can

overcome the high variance of estimator by imposing the L2 norm penalty, it cannot

perform variable selection simultaneously, and hence the traditional model selection

procedures have to be used for selecting an optimal model. This implies that the

ridge regression also has the demerit in a large number of predictor variables.

Tibshirani (1996) proposed a lasso (least absolute shrinkage and selection oper-

ator), which minimizes residual sum of squares subject to the L1 norm constraint.

Unlike the ridge regression, the lasso shrinks some coe�cients to exactly zero. This

implies that the lasso performs estimation and variable selection simultaneously, de-

pending on a regularization parameter. Furthermore, numerous L1-type regulariza-

tion methods have been proposed to improve modeling procedure, such as adaptive

lasso (Zou, 2006), elastic net (Zou and Hastie, 2005), smoothly clipped absolute devia-
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tion (Fan and Li, 2001), etc. The estimates of regression coe�cients by the lasso-type

approaches, however, cannot be analytically derived due to indi�erentiability of the

L1-type penalty term. To settle on this issue, several e�ective algorithms were pro-

posed. We brie�y introduce the various L1-type regularization methods and e�ective

algorithms for the L1-type regularization (e.g., Local quadratic approximation, LARS

and coordinate descent algorithm).

A crucial issue in the L1-type regularized regression is a proper choice of the reg-

ularization parameters. This issue can be viewed as a model selection and evaluation

problem. The regularization parameters were often selected by the cross-validation.

We discuss the methods for choosing the regularization parameters by the K-fold

cross-validation and generalized cross-validation. The problem of choosing the reg-

ularization parameters is essential in regression modeling, and needs to be taken

signi�cantly. Thus we will discuss this issue in various perspectives in the next topic.

Robust regression modeling via L1 regularization

We consider the robust regression modeling via L1-type regularization in various

aspects: methodology, model estimation and evaluation. This topic is a main part of

the present thesis.

We �rst discuss a robust L1-type regularization. Although the L1-type regular-

ization showed the superiority in regression modeling, its performance takes a sudden

turn for the worst in the presence of outliers, since it is based on the penalized least

squares method. To overcome the demerit, robust L1-type approaches were proposed

by replacing the least squares loss function with robust loss function: least abso-

lute lasso (Wang et al., 2007a), M-lasso (Zhang et al., 2009) and M-adaptive lasso
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(Lambert-Lacroix and Zwald, 2010). The M-estimate and LAD estimate, however, do

not have a high breakdown point even though they are better than the least squares

estimate (LSE). To improve robustness, we consider the least trimmed squares (LTS)

estimation procedure having a high breakdown point, and propose a least trimmed

squares elastic. By replace the least squares loss function with robust loss function,

the robust L1-type regularization performs well in sparse regression modeling un-

der the properly selected regularization parameters and tuning constant, even in the

presence of outliers.

In the robust sparse modeling, the selection of the regularization parameters and

also a tuning constant in outlier detection is a critical issue. Although the perfor-

mance of the robust sparse regression strongly depends on a proper choice of these

tuning parameters, relatively little attention was paid to this issue, particularly in

the presence of outliers. We propose novel methods for choosing an optimal set of the

regularization parameters and tuning constant in line with the information-theoretic

view point. We �rst introduce the use of the e�cient bootstrap information criteria

(Konishi and Kitagawa, 1996) for choosing an optimal set of the tuning parameters.

By using the variance reduction method, the variance due to the bootstrap resam-

pling can be signi�cantly reduced, and thus we can expect to e�cient modeling. We

also consider the generalized information criterion (Konishi and Kitagawa, 1996),

which can be applied to evaluate statistical models constructed by various types of

estimation procedure. The calculation of an in�uence function is crucial in deriv-

ing an information criterion. However, it is di�cult to obtain the in�uence function

corresponding to the L1-type regularization methods, because the L1-type penalty

functions are not di�erentiable in origin. To settle on the problem, we use the local
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quadratic approximation of the lasso-type penalty functions (Fan and Li, 2001), and

then derive an information criterion for evaluating robust sparse regression models in

line with the generalized information criteria.

We then consider the robust estimation of the L1-type regularized regression model

via an outlier-resistant algorithm. The algorithms, which showed the remarkable per-

formance for sparse regression modeling, are based on the sample mean, standard de-

viation and correlation or inner product estimated in a non-robust manner, and thus

their procedures su�er from outliers. To overcome the drawback, Khan et al. (2007)

proposed robust model selection techniques by robustify the LARS. We consider ro-

bust regression modeling via the coordinate descent procedure, which is competitive

with the well known LARS for the L1-type regularization. In order to robust sparse

regression modeling, we robustify the coordinate descent procedure based on outlier-

resistant inner product and pre-treatment techniques. By using the proposed robust

coordinate descent procedure, we can e�ciently perform robust regression modeling

without much additional calculation.

Finally, we consider the robust model evaluation problem. For robust regres-

sion modeling procedures, numerous studies on the robust estimation have been con-

ducted. However, relatively few studies have been devoted to robust model evaluation.

Ronchetti et al. (1997) introduced a robust cross-validation based on a robust loss

function. Jung (2009) proposed a robust generalized cross-validation by replacing

the least squares loss function with median, trimmed squares and mean absolute loss

functions. Ronchetti and Staudte (1994) proposed a robust version of Mallow's Cp
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by using the weight based on the residual of observations. We consider the robust

model evaluation criterion in line with the e�cient bootstrap information criterion.

Although the bootstrap information criterion has several advantages on its �exibil-

ity and weak assumptions, a bootstrap sample may contain more outliers compared

with those in the original sample, since bootstrap sample is drawn randomly. This

implies that the resulting criterion from the highly contaminated bootstrap sample

may produce biased results. To overcome the drawback, we propose a robust e�-

cient bootstrap information criterion via the Winsorizing technique (Srivastava et al.,

2010). By using the proposed robust e�cient bootstrap information criterion, we can

perform e�ective and stable model evaluation even in the presence of outliers.

Lag weighted lasso for time series model

A time series model is usually constructed by current and past values of predictor

variables and past values of response variable. In other words, a response variable is

explained by a parametric function of the present and past values of predictor variables

and past values of response variable. It implies that one of the important factors in

the time series modeling is a length of lag. We consider the time series modeling

in line with the adaptive lasso (Zou, 2006), which assigns di�erent penalties to each

coe�cient based on a weight. Although the adaptive lasso showed an exceptional

performance for regression modeling by imposing di�erent weights to each coe�cient,

it may not give proper and interpretable results for time series model with lagged

variables, since its weight does not take account of the length of lag.

We propose a lag weighted lasso, which additionally considers the e�ect of lag

length, for time series modeling. The proposed method shrinks the coe�cient based
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on weights re�ecting not only coe�cients size but also the lag length, unlike the

adaptive lasso. In other words, the coe�cient of variable in the distant past with a

small e�ect is estimated as small, or this variable is deleted from the model. In short,

the proposed lag weighted lasso can re�ect the properties of the time series data, and

thus we can expect to improve the forecasting accuracy of time series model.

New type of Symbolic Data Analysis: Candle chart-valued time series

Database has continued to grow, and thus summarization and visualization of enor-

mous amounts of data are increasingly important. To address this issue, symbolic

data analysis (SDA), such as interval-valued data, histogram valued data, multimodal

data, was introduced (Bock and Diday, 2000). The symbolic data analysis takes into

account the information that cannot be represented within the classical data model,

and can perform e�ective summarization and visualization of huge databases.

We introduce a new type of symbolic data, a candle chart-valued time series

(CTS) constructed with the four stock indices (i.e., open, close, highest and lowest

indices), and propose forecasting methods for CTS by using a statistical model in the

viewpoint of symbolic data analysis. In order to modeling CTS, we �rst propose a

method based on the original four stock indices consisting of the candle chart. We

also propose a method based on the two mid-point time series and two half-range

time series of intervals between the open and close indices, and between the highest

and lowest indices respectively. By using the proposed approaches, we can forecast

the direction of future stock index more accurately.

The rest of this thesis is organized as follows.

In Chapter 2, we brie�y present a motivation of the regularization method, and
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introduce various L1-type regularization methods. Then, we review several

algorithms for the L1-type regularization and methods for choosing the regular-

ization parameters.

In Chapter 3, we consider robust regression modeling via L1-type regularization in

aspects of methodology, estimation and evaluation. We �rst discuss about the

robust L1-type regularization, and then introduce novel methods for choosing

the optimal set of the regularization parameters and tuning constant via the

e�cient bootstrap information criterion and generalized information criterion.

We also present the robust sparse regression modeling via the outlier-resistant

algorithm for L1-type regularization, and propose the robust coordinate descent

procedures based on Winsorization and trimming techniques. Finally, we intro-

duce robust model evaluation criteria, and propose a novel robust criterion for

choosing the tuning parameters, called a robust e�cient bootstrap information

criterion. Monte Carlo simulations and real data analysis were conducted to

investigate the e�ectiveness of the proposed robust regression modeling strate-

gies. We observed that the proposed robust modeling strategies perform well

even in the presence of outliers.

In Chapter 4, we propose a novel L1-type regularization method for time series

model, called a lag weighted lasso. To re�ect the property of the time series

model constructed by lagged variables, we consider three types of weights which

re�ect not only coe�cient size but also length of lag. We illustrate the perfor-

mance of the proposed lag weighed lasso using simulation studies and real data

analysis through cerebrovascular disease data.
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In Chapter 5, we introduce a new type of symbolic data, a candle chart-valued time

series (CTS) constructed with four stock indices (open, close, highest and lowest

indices). To modeling the CTS, we propose new forecasting methods based on

the four stock indices, and based on two mid-point time series and two half-

range time series of intervals between open and close indices, and between the

highest and lowest indices, respectively. We investigate the e�ectiveness of the

proposed approaches through the analysis of the stock indices of �ve major

Asian countries.

In Chapter 6, we present summary and concluding remarks.
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Chapter 2

Sparse regression modeling

The regression analysis is the most widely used technique for investigating and model-

ing relationship between interested variable and predictor variables. Efron mentioned

that �the most important problem in statistics is a single problem: variable selection

in regression. This entails selecting variables from candidate variables, estimation of

parameter for those variables and inference.� (Hesterberg et al., 2008). As data size

and number of predictor variables increase, not only parameter estimation but also

variable selection has become increasingly important in the regression modeling to

achieve the following goals (Hesterberg et al., 2008):

• Prediction accuracy,

• Interpretation,

• Stability,

• Avoiding bias hypothesis test.
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Traditional variable selection methods (e.g., stepwise selection, all subset regression,

etc.), however, have a demerit on unstable results, and thus we cannot expect pre-

diction accuracy. Furthermore, the procedures are not feasible in the large number

of predictor variables. In recent year, the L1-type regularization has drawn a large

amount of attention for regression modeling. By imposing an L1-type penalty to a

loss function, the L1-type regularization methods can perform not only variable selec-

tion and estimation simultaneously, but also stable regression modeling by preventing

high variances of estimates.

This chapter provides the overall procedures of the L1-type regularized regression

modeling. We �rst introduce a motivation of the regularization method, and brie�y

review the various L1-type approaches constructed by least squares loss function with

L1-type of norm penalty. Then, we present the e�ective algorithms for the L1-type

regularization. Finally, we introduce a method for choosing the regularization param-

eters, which is a crucial issue in the L1-type regularized regression, since it can be

viewed as a model selection and estimation problem.

The rest of this chapter is organized as follows. In Section 2.1, we introduce

a motivation of the regularization method. We review the L1-type regularization in

Section 2.2. Section 2.3 presents the several algorithms for the L1-type regularization.

We introduce methods for choosing the regularization parameters in Section 2.4.

2.1 Motivation of L1-type regularization

Suppose we have n independent observations {(yi,xi); i = 1, ..., n}, where yi are

random response variables and xi are p-dimensional vectors of the predictor variables.
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Consider the linear regression model,

yi = xT
i β + εi, i = 1, ..., n, (2.1)

where β is an unknown p-dimensional vector of regression coe�cients and εi are the

random errors which are assumed to be independently and identically distributed with

mean 0 and variance σ2. In the present thesis, we assume that yi are centered and xij

are standardized by their mean and standard deviation:
∑n

i yi/n = 0,
∑n

i xij/n = 0

and
∑n

i x
2
ij/n = 1.

The most widely useed method for estimating the linear regression model in (2.1)

is a least squares (LS) procedure that minimizes,

RSS(β) =
n∑

i=1

(yi −
p∑

j=1

xijβj)
2. (2.2)

A matrix form of LS procedure is given by,

RSS(β) = (y −Xβ)T (y −Xβ), (2.3)

where X is n × p matrix with an input vector in each row and y is the n-vector of

output. By di�erentiating (2.3) with respect to β, we obtain a least squares estimator

(LSE),

β̂LS = (XTX)−1XTy. (2.4)

The least squares estimator is the best linear unbiased estimator. Although the LSE is

an unbiased estimator having minimum variance, it may be revealed a multicollinear-

ity in the highly correlated predictor variables and over�tting problem. In practical,

we cannot avoid increasing a correlation between predictors (i.e., multicollinearity)

in the large number of predictor variables. This implies that the matrix XTX has

12



similar values in o�-diagonal and diagonal elements, and thus a variance of the least

square estimator

V ar(β̂LS) = σ2(XTX)−1 (2.5)

increases. Consequentially, this leads to unstable results as shown in Breiman (1996),

because a small change in data can cause large change in modeling results. If worse

comes the worst, we cannot �nd the least squares estimator, since the matrix XTX

is not full rank under the exact multicollinearity.

To overcome the demerit, Hoerl and Kennard (1970) proposed a ridge regression,

β̂ridge = arg min
β
{RSS(β) + λ

p∑
j=1

β2
j }, (2.6)

where λ > 0 is a regularization parameter controlling model complexity. By di�eren-

tiating (2.6), we can �nd the solution of the ridge regression as follows,

β̂ridge = (XTX+ λI)−1XTy, (2.7)

where I is the p× p identity matrix. The ridge regression adds the positive λ to the

diagonal of matrixXTX, and thus it prevents that the matrix XTX has similar values

in diagonal and o�-diagonal elements. This implies that the ridge regression can

overcome the large variances of coe�cients estimates, and hence it can perform stable

regression modeling and improve prediction accuracy. Although the ridge regression

is a very attractive methodology in linear regression modeling, it is a technique for

estimation, and thus variable selection is conducted by using the traditional methods,

such as subset selection, stepwise selection, etc.

To settle on the issue, a L1-type regularization was proposed by imposing the

L1-type of norm penalty not L2 norm.

13



2.2 L1-type regularization

The L1-type regularization method has been received much attention for regression

modeling in various �elds. By imposing the L1-type penalty term, the following

L1-type regularization method can perform simultaneous variable selection and esti-

mation,

β̂L1.type = arg min
β
{RSS(β) +

p∑
j=1

pλ(|β|)}, (2.8)

where
∑p

j=1 pλ(|β|) is an L1-type penalty with a regularization parameter λ (> 0)

controlling the amount of shrinkage on the parameters. We brie�y introduce various

L1-type regularization methods in this section.

2.2.1 Lasso

The lasso (least absolute shrinkage and selection operator), proposed by Tibshirani

(1996), is a regularization method imposing an L1 norm penalty on regression coe�-

cients,

β̂lasso = arg min
β
{RSS(β) + λ

p∑
j=1

|βj|}, (2.9)

and, an alternative formulation is given by

β̂lasso = arg min
β
{RSS(β)}, subject to

p∑
j=1

|βj| ≤ t. (2.10)

The lasso is a shrinkage method similar to the ridge, but only di�erence being that it

shrinks some coe�cients to exactly zero. It means that the lasso can perform variable

selection and estimation simultaneously. We brie�y explain that how can the lasso

estimate some coe�cients to exactly zero in one dimensional situation (Sohail, 2011).
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Figure 2.1: Plot of f(b) with various λ

Consider the model,

f(b) = (b+ 1)2 + λ|b|. (2.11)

The �rst derivative of (2.11) is given by,

f
′
(b) = 2(b+ 1) + λsign(b), (2.12)

where sign(b) = −1, 0, 1 for b < 0, b = 0 and b > 0 respectively, and λ > 0. Figure 2.1

shows the plot of f(b) with various λ. As shown in Figure 2.1, the lasso sets b to zero

when the signs of f
′
(b) and b are changed at the same time. Because of f

′
(b) ≥ 0

when b ≥ 0, b becomes zero when f
′
(b) < 0 and b passes through zero simultaneously.
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Let L(β) be the lasso problem in (2.9), then

M =
∂L(β)

∂βj
(2.13)

= −2xT
j (y −Xβ) + λsign(βj).

Like to one dimensional problem, if a sign of M is changed when βj passes through

zero, then the lasso procedure estimates β̂j to exactly zero, if not β̂j ̸= 0. Let

A = {j : β̂j ̸= 0} be an active set, and Ac = {j : β̂j = 0} be a non-active set, and

thus at β̂j

j ∈ A if − 2xT
j (y −Xβ̂) + λsign(β̂j) = 0. (2.14)

j ∈ Ac if | − 2xT
j (y −Xβ̂)| < λ.

As shown above, the lasso estimates some coe�cients to exactly zero. This implies

that the lasso performs not only estimation and but also variable selection simulta-

neously depending on the regularization parameter λ.

2.2.2 Adaptive lasso

The recent studies exposed that the lasso estimator may be ine�cient and true model

selection result could be inconsistent (Fan and Li, 2001; Yuan and Lin, 2007; Zou,

2006). To overcome the problem, Zou (2006) proposed an adaptive lasso imposing

di�erent penalties to each coe�cient based on weight,

β̂adlasso = arg min
β
{RSS(β) + λ

p∑
j=1

ŵj|βj|}, (2.15)

where ŵ = 1/|β̂|γ, γ > 0 and the least square estimator or the ridge estimator can

be used as β̂. In the adaptive lasso, the amount of shrinkage is controlled by β̂, i.e.,
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the coe�cients of variables with large e�ect are shrunk slightly, whereas coe�cients

of variables with small e�ect are shrunk signi�cantly. Thus, the adaptive lasso is able

to identify the true model consistently and estimator is e�cient as shown in oracle

properties (Fan and Li, 2001; Zou, 2006).

2.2.3 Elastic net

The recent work suggests that the lasso may have some limitations as follows (Zou

and Hastie, 2005):

• In the p > n case, the lasso can select at most n variables, because of the convex

optimization problem.

• The lasso cannot take account the group e�ect of predictor variables.

• For usual n > p case, if there are high correlations between predictors, the lasso

is inconsistent and dominated by the ridge regression in the viewpoint of the

prediction performance.

To overcome the drawbacks, Zou and Hastie (2005) proposed a new regularized

technique called an elastic net as follows,

β̂elastic net = arg min
β
{RSS(β) + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j }, (2.16)

where λ1 and λ2 are regularization parameters controlling model complexity. Let

ϱ = λ2/(λ1 + λ2), then (2.16) can be seen the following problem,

β̂elastic net = arg min
β
{RSS(β) + (1− ϱ)

p∑
j=1

|βj|+ ϱ

p∑
j=1

β2
j }, (2.17)
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where ϱ ∈ [0, 1]. The penalty term of the elastic net is a convex combination of the

ridge and lasso penalties. When ϱ = 1, the elastic net becomes the ridge regression,

whereas when ϱ = 0, it becomes the lasso. And, when 0 < ϱ < 1, the elastic net

performs variable selection and estimation along with the characteristics of both lasso

and ridge regression. The elastic net having the two properties is a useful technique,

particularly in the p > n case, and grouped variable situation.

2.2.4 Smoothly clipped absolute deviation: SCAD

Fan and Li (2001) introduced three properties of good penalty function for the L1-type

regularized regression,

1. Unbiasedness: The resulting estimator is nearly unbiased when the true un-

known parameter is large to avoid modeling bias,

2. Sparsity: Small estimated coe�cients become zero to reduce model complexity,

3. Continuity: The resulting estimator is continuous to avoid instability in model

prediction,

and they proposed the smoothly clipped absolute deviation (SCAD) satisfying above

three properties,

β̂SCAD net = arg min
β
{1
2
RSS(β) +

p∑
j=1

pλ(|βj|)}, (2.18)

where

pλ(|βj|) =


λ|βj|, if |βj| ≤ λ,

−( |βj |2−2aλ|βj |+λ2

2(a−1)
), if λ < |βj| ≤ aλ,

(a+1)λ2

2
, if |βj| > aλ,
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Figure 2.2: Thresholding function with λ = 2 for (a) the lasso and (b) the SCAD

(a=3.7).

where a > 2 and λ > 0. The solution of the SCAD is given by,

β̂SCAD
j =


(β̂j − λ)+sign(β̂j) if |βj| ≤ 2λ,

{(a− 1)β̂j − sign(β̂)jλ} if 2λ < |βj| ≤ aλ,

β̂j if |βj| > aλ.

As shown above, the SCAD has the property �sparsity� like to the lasso for |βj| ≤ 2λ,

and can achieve the unbiasedness for large |βj| > aλ. Figure 2.2 (a) and (b) show the

estimator of the lasso and SCAD, respectively. From Figure 2.2, it can be seen that

the SCAD produces unbiased estimation results for large |βj| unlike to the lasso.

2.3 Estimation of sparse regression model

The lasso-type approaches provide a useful tool for the sparse regression modeling.

Although they have shown a remarkable performance in the regression modeling,

their estimates cannot be analytically derived due to indi�erentiability of the L1-type
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penalty term. To settle on the issue, several algorithms have been proposed. In

this section, we introduce the algorithms to implement the L1-type penalty, such as

local quadratic approximation (Fan and Li, 2001), LARS (Efron et al., 2004) and

coordinate descent algorithm (Friedman et al., 2007).

2.3.1 Local quadratic approximation

Fan and Li (2001) presented the following local quadratic approximation of L1-type

penalty for estimation of the sparse regression model.

Let pλ(| · |) be the L1-type penalty term. Suppose that we give an initial value

β0 that is close to the minimizer of (2.8). If βj0 is very close to 0, then set β̂j = 0.

Otherwise the penalty term is locally approximated by a quadratic function as follows,

[pλ(|βj|)]
′
= p

′

λ(|βj|)sign(βj) ≈ {p
′

λ(|βj0|)/|βj0|}βj, (2.19)

where βj ̸= 0. It means that,

pλ(|βj|) = pλ(|βj0|) +
1

2
{p′

λ(|βj0|)/|βj0|}(β2
j − β2

j0), (2.20)

for βj ≈ βj0.

In case of the lasso, the L1 norm penalty term can be locally approximated as

follows,

λ|βj| ≈ λ|βj0|+
λ

2
{
β2
j

|βj0|
− |βj0|}. (2.21)

Figure 2.3 shows the local quadratic approximation of lasso penalty term in (2.21).

As shown in Figure 2.3, the approximated lasso penalty term is di�erentiable, and

thus we can settle on the derivation problem. This implies that, we can �nd a solution
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Figure 2.3: Local quadratic approximation of lasso penalty λ|βj|

of the L1-type approaches by derivative of (2.8) with approximated penalty in (2.20).

2.3.2 LARS algorithm

The least angle regression (LAR) is a method for variable selection and estimation,

similar to the forward stepwise regression. Efron et al. (2004) modi�ed the LAR for

the lasso. In this present thesis, we call the procedure to LARS. The computational

cost of the LARS for entire p step is same with the usual least squares estimate

procedure for full model. Hastie et al. (2007) described the LARS algorithm for the

lasso as follows,
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Figure 2.4: LARS procedure for Diabetes dataset

1. Standardize the predictors to mean zero and unit variance. Start with r = y−ȳ,

β1, β2, ..., βp=0.

2. Find the predictor xj the most correlated with r.

3. Move βj from 0 towards β̂LS, until some other competitor xk has as much

correlation with the current residual as does xj.

4. Move βj and βk in the direction de�ned by their joint least squares coe�cient

of the current residual on (xj,xk), until some other competitor xl has as much

correlation with the current residual.

4a. If a non-zero coe�cient hits zero, drop its variable from the active set of
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variables and recompute the current joint least squares direction.

5. Continue in this way until all p predictors have been entered. After min(N−1, p)

steps, we arrive at the full least squares solution.

Figure 2.4 shows the LARS procedure for diabetes data (Efron et al., 2007) by us-

ing lars package in R, which well describes the properties of the lasso. As shown in

Figure 2.4, the variables are joined into the active set at each step as increasing the

shrinkage factor. It implies that the lasso performs variable selection and estimation

simultaneously along with a pathwise solution by choosing the shrinkage factor. The

small value of shrinkage factor corresponding large value λ shrinks coe�cients signi�-

cantly. This implies that the regularization parameter plays a key role in the L1-type

regularized regression modeling.

2.3.3 Coordinate descent algorithm

Coordinate descent algorithm is very competitive with well known LARS procedure

for the lasso problem (Friedman et al., 2007). Furthermore, it can be applied to

various L1-type regularization, such as the elastic net and garrote. The coordinate

descent algorithm has an advantage that the coordinate minimization can be done

quickly, and hence it is suitable method for regression modeling with a large number

of predictor variables.

We introduce the algorithm for the lasso. The lasso in (2.10) can be seen the

following problem,

f(β) = arg min
β
{1
2

n∑
i=1

(yi −
p∑

j=1

xijβj)
2 + λ

p∑
j=1

|βj|}. (2.22)
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In order to better understand the procedure, we �rst introduce the soft-thresholding

version of the lasso solution (Donoho and Johnstone, 1995) with single predictor vari-

able. The problem of (2.22) with single standardized x and coe�cient β is given

by

fs(β) = arg min
β
{1
2
(β − β̂)2 + λ|β|

}
, (2.23)

where β̂ =
∑n

i xiyi is the least squares estimator, since the predictor x is standardized.

If β > 0, (2.23) can be di�erentiated as follows,

∂fs(β)

∂β
= β − β̂ + λ = 0, (2.24)

and if β < 0 then β = β̂ + λ, thus the solution is given by

β̂(λ) = S(β̂, λ) ≡ sign(β̂)(|β̂| − λ)+ (2.25)

=


β̂ − λ, if β̂ > 0 and λ < |β̂|,

β̂ + λ, if β̂ < 0 and λ < |β̂|,

0, if λ ≥ |β̂|.

For the p predictor variables, (2.22) can be expressed with partial residual as follows,

f(β̃) = arg min
β
{1
2

n∑
i=1

(yi −
p∑

k ̸=j

xikβ̃k − xijβj)2 + λ

p∑
k ̸=j

|β̃k|+ λ|βj|}, (2.26)

where all values of β̃k for k ̸= j are �xed, and thus (2.26) can be considered as the

soft thresholding with jth predictor with partial residual. The di�erentiation of (2.26)

by βj is given,

∂f(β̃)

∂βj
= −

n∑
i=1

(yi −
p∑

k ̸=j

xikβ̃k − xijβj)xij + λ sign(βj) (2.27)

= −
n∑

i=1

xij(yi − ỹ(j)i ) +
n∑

i=1

x2ijβj + λ sign(βj),
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where ỹ
(j)
i =

∑p
k ̸=j xikβ̃k, and thus the coordinate update has following form,

β̃j ← S
( n∑

i=1

xij(yi − ỹ(j)i ), λ
)

(2.28)

as a minimizing (2.26) with respect to βj. The (2.28) can be viewed as the univariate

regression coe�cient of the partial residual (yi− ỹi) on the jth predictor variable, and

hence it is updated for j = 1, 2, ..., p, 1, 2, ... until convergence for the regression model

with p predictors.

The coordinate update in (2.28) can be expressed by,

β̃j ← S
(
β̃j(λ) +

n∑
i=1

xij(yi − ỹi), λ
)
, j = 1, 2, ..., p, 1, 2, .... (2.29)

By compute the simple least squares coe�cient on the partial residual (yi − ỹi), we

can �nd the lasso solution. This implies that the coordinate descent algorithm is an

e�ective method for the lasso. Although we focus on the procedure for the lasso, it

is a useful tool for various L1-type regularization methods, such as the elastic net,

garrote and ridge regression.

2.4 Selection of regularization parameters

As shown above, an appropriate choice of the regularization parameters is a vital

matter in the L1-type regularization, since variable selection and estimation heavily

depend on the adjusted parameters. The large value of the regularization parameter

shrinks largely, and thus the coe�cients are estimated in small. Furthermore, some

coe�cients are estimated to exactly zero.

The traditional model evaluation criteria, such as AIC and BIC, however, cannot

be directly applied for choosing the regularization parameters, since they were derived
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under the assumptions that the model is estimated by the maximum likelihood, and

they carried out in a parametric family of distributions including the true model

(Konishi and Kitagawa, 2008).

In practice, the most usually used method for choosing the regularization pa-

rameters is a cross-validation. In this section, we introduce the cross-validation for

regularization parameter selection.

2.4.1 Cross-validation

The regularization parameter was often selected by the cross-validation, which is the

simplest and useful method for modeling based on the predictive point of view. The

cross-validation procedure is conducted by estimating a predictive mean squares error

(PSE) from the separated dataset as a training data for model estimation and test

data for model evaluation.

• K-fold cross-validation:

The K-fold cross-validation is executed by the following step,

1. Data set is randomly divided into K-parts.

2. Remove the kth part of data.

3. The model is estimated based on the remaining K − 1 parts of data:

f̂ (−k)(λ,x).

4. For the kth part removed in step 3, the PSE is calculated:

{yk − f̂ (−k)(λ,xk)}2
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5. Do step 2 to 4 for k = 1, 2, ..., K, and calculate

CV(λ) =
1

K

K∑
k=1

{yk − f̂ (−k)(λ,xk)}2 (2.30)

as an estimate of the PSE.

In the L1-type regularized regression, we select the regularization parameter λ that

minimizes the CV(λ).

The choice of K, number of data partition, is also crucial in practice. The case

of K = n (i.e., n-fold cross-validation) is known as leave-one-out cross-validation.

Although the leave-one-out cross-validation can perform stable selection of tuning

parameters, it is time consuming. Generally, the 10-fold cross-validation is widely

used in various �elds.

• Generalized cross-validation:

In large data set, the K-fold cross-validation has a computational di�culty. To

overcome the drawback, a generalized cross-validation was proposed (Craven and

Wahba, 1979). The generalized cross-validation (GCV) focuses on the predicted value

ŷ = X(XTX)−1XTy = Hy, where the hat matrix H does not depends on the data

y. This implies that K times repetition by removing observations in kth part does

not required, and thus amount of the computation is signi�cantly reduced.

Lemma 2.4.1 The generalized cross-validation based on the hat matrix H is given,

GCV =
1

n

∑n
α=1{yα − f̂(λ,xα)}2

{1− 1
n
trH}2

. (2.31)

27



Proof. Let consider the leave-one-out cross-validation. Removing the αth data point

(yα,xα) and estimate the regression function f̂ (−α)(λ,x) = xT β̂(−α) by the lasso. And

then, we set zi = yi, and replace the αth data point yα with f̂ (−α)(λ,xα),

z = (y1, y2, ..., f̂
(−α)(λ,xα), ..., yn)

T . (2.32)

The regression function f̂ (−α)(λ,x) is estimated without the αth data point by mini-

mize,

n∑
i=1

{zi − xT
i β}2 + λ

p∑
j=1

|βj| (2.33)

≥
n∑

i̸=α

{zi − xT
i β}2 + λ

p∑
j=1

|βj|

≥
n∑

i̸=α

{zi − f̂ (−α)(λ,xi)}2 + λ

p∑
j=1

|β̂(−α)
j |

=
n∑

i=1

{zi − f̂ (−α)(λ,xi)}2 + λ

p∑
j=1

|β̂(−α)
j |.

Note that zα − f̂ (−α)(λ,xα) = 0, and thus f̂ (−α)(λ,x) can be seen as a minimizer of

the �rst line in (2.33).

Let hα,i is (α, i)
th component of the hat matrix H, then

f̂ (−α)(λ,xα)− yα =
n∑

i=1

hα,izi − yα (2.34)

=
n∑

i̸=α

hα,iyi + hααf̂
(−α)(λ,xα)− yα

=
n∑

i=α

hα,iyi − yα + hαα{f̂ (−α)(λ,xα)− yα}

= f̂(λ,xα)− yα + hαα{f̂ (−α)(λ,xα)− yα},

and thus,

yα − f̂ (−α)(λ,xα) =
yα − f̂(λ,xα)

1− hαα
. (2.35)
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By substituting (2.35) into the leave-one-out cross-validation version of (2.30), the

CV(λ) is given by

CV(λ) =
1

n

n∑
α=1

{yα − f̂(λ,xα)

1− hαα
}2. (2.36)

The generalized cross-validation (2.31) can be obtained by replacing 1−hαα in (2.36)

with its average 1− 1
n
trH.

In practically, it is di�cult to calculate the hat matrix H of lasso-type regular-

ization, since the L1-type penalty functions are not di�erentiable in origin. Tibshi-

rani (1997) proposed an approximate generalized cross-validation by using the local

quadratic approximation of lasso-type penalty (Fan and Li, 2001).
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Chapter 3

Robust regression modeling via L1

regularization

We discuss a robust regression modeling via the L1 regularization in various aspects.

Although the L1-type approaches showed the exceptional performances in regression

modeling, existing studies on

• Methodology

• Model estimation

• Model evaluation

for L1-type regularization were conducted under the assumption of absence of out-

liers. Recent studies (Khan et al., 2007; Zhang et al., 2009; Lambert-Lacroix and

Zwald, 2010) exposed that their performances take a sudden turn for the worst in the

presence of outliers, since the procedures are based on non-robust methodologies. We

introduce robust modeling strategies via the L1-type regularization in the aspects of
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methodology, model estimation and evaluation,

• Robust L1-type regularization,

• Robust algorithm for estimation of the L1-type regularized regression model,

• Robust model evaluation for tuning parameter selection.

First, we introduce the robust L1-type regularization methods. Although the L1-

type regularization provides an e�cient tool for regression modeling, its performance

su�ers from outliers, since it is constructed by penalized least squares method. To

overcome the drawback, several robust L1-type regularization methods were proposed

by replace the least squares loss function with robust loss function. We brie�y intro-

duce the existing robust methodologies and propose a least trimmed squares elastic

net having a high breakdown point. In the robust sparse regression modeling, an

appropriate choice of the regularization parameters and tuning constant in outlier

detection is a crucial issue, because the modeling procedure rely on the adjusted tun-

ing parameters. We propose novel methods for choosing the tuning parameters in

line with the information-theoretic approach.

Then, we discuss a robust estimation for L1-type regularized regression model

via an outlier-resistant algorithm. The existing algorithms for L1-type regularization

as shown in Section 2.3 cannot perform well in the presence of outliers, since the

procedures are based on sample mean, standard deviation and correlation or inner

product obtained from a non-robust manner. To settle on the problem, Khan et

al. (2007) proposed a robust LARS procedure based on the robust correlation. We

consider the robust regression modeling via the coordinate descent algorithm, which

is competitive with the LARS, by winzorization and trimming techniques.
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Finally, we discuss a robust model evaluation for choosing the tuning parameters

of the robust lasso-type approaches. In the robust L1-type approaches, the robust

selection of the tuning parameters is a vital matter, since robust modeling procedure

heavily depends on appropriately selected tuning parameters. We propose a robust

e�cient bootstrap information criterion via the Winsorization technique for choosing

an optimal set of regularization parameters and tuning constant.

We show through Monte Carlo simulations and real-world examples the e�ective-

ness of the proposed robust strategies.

The rest of this chapter is organized as follows. In Section 3.1, we review the

robust lasso-type approaches, and then propose a new robust L1-type regularization,

called a least trimmed squares elastic net. We present methods for choosing an

optimal set of the regularization parameters and tuning constant in Section 3.2. We

discuss the outlier-resistant algorithm for the sparse regression modeling in Section

3.3. In Section 3.4, we discuss the robust model evaluation for choosing the tuning

parameters. Monte Carlo simulations are conducted to investigate the e�ciency of

the proposed methods in Section 3.5. The real world examples are shown in Section

3.6.

3.1 Robust L1-type regularization

The L1-type regularization as shown in Section 2.2 is a useful tool for regression mod-

eling. Although the lasso-type approaches have shown the exceptional performance

in various �elds of research, their performance takes a sudden turn for the worst

in the presence of outliers, since they are constructed by least squares loss function
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and L1-type penalty. To overcome the problem, several studies were conducted for

outlier-resistant lasso-type approaches by replace the least squares loss function with

the robust loss function.

3.1.1 Literature review: existing robust L1-type regularization

We brie�y introduce the existing studies on the robust lasso-type approaches. To

overcome non-robustness of lasso-type estimator, the least squares loss function is

replaced with other loss function (e.g., least squares trimmed loss function, least

absolute loss function, M-estimation function, etc.) as follows:

• Least absolute lasso (Wang et al., 2007a):

β̂LAD-lasso = arg min
β
{

n∑
i=1

|yi − xT
i β|+ λj

p∑
j=1

|βj|}, (3.1)

where λj is a regularization parameter for βj, and thus the least absolute lasso

allows for a di�erent regularization parameter for each coe�cient.

• Least trimmed squares lasso (Mateos and Giannakis, 2010):

β̂LTS-lasso = arg min
β
{

s∑
i=1

r2[i] + λ

p∑
j=1

|βj|}, (3.2)

where s is a tuning constant, r2[i] is the i
th order statistic of squared residuals

and ri = yi − xT
i β.

• M-lasso (Zhang et al., 2009):

β̂M-lasso = arg min
β
{

n∑
i=1

ρ(yi − xT
i β) + λ

p∑
j=1

|βj|}, (3.3)
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where ρ(·) is M-estimation function,

-Huber M-function,

ρ(·) = r2/2, if |r| < k (3.4)

= k(|r| − k/2), if |r| ≥ k.

-Tukey function :

ρ(·) = (k2/6)(1− [1− (r/k)2]3), if |r| < k (3.5)

= k2/6, if |r| ≥ k.

where k is a tuning constant.

• M-adaptive lasso (Lambert-Lacroix and Zwald, 2010):

β̂M-adlasso = arg min
β
{

n∑
i=1

ρ(yi − xT
i β) + λ

p∑
j=1

ŵj|βj|}, (3.6)

where ŵ = 1/|β̂|γ, γ > 0 and the least squares estimator or the ridge estimator

can be used as β̂.

The robust lasso-type regularization methods are composed of the robust loss func-

tions and the penalty term of the lasso or adaptive lasso. By replacing the least

squares loss function, the robust lasso-type regularization methods are able to per-

form variable selection and estimation e�ectively, even in the presence of outliers.

3.1.2 Least trimmed squares elastic net

Limitation : We considered that the M-estimator and LAD estimator do not have a

high breakdown point, and hence the existing robust L1-type regularization con-
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sisting of M-function and LAD-loss function also do not have a high breakdown

point.

Here, a breakdown point is a main aim of the robust statistics and measures the

smallest percentage of outliers in data which can e�ect to the estimation procedure

as following (Rousseeuw and Leroy, 1987),

De�nition 1 : Breakdown point.

Let sample of n data points,

Z = {(x11, ..., x1p, y1), ..., (xn1, ..., xnp, yn)}, (3.7)

and T(Z) be a regression estimator. By apply T to such a sample Z, we get a vector

of regression coe�cient,

T(Z) = β̂. (3.8)

Consider contaminated data Z′ obtained by replacing anym of the original data points.

Let us denote by bias(m;T,Z), the maximum bias that can be caused by such a con-

tamination:

bias(m;T,Z) = supZ′∥T(Z)−T(Z′)∥. (3.9)

If bias(m;T,Z) is in�nite, it means that m outliers have considerable e�ect on T,

which is expressed that �the estimator breaks down�. The breakdown point of the

estimator T at the sample Z is de�ned,

ε∗n(T,Z) = min{m
n
; bias(m;T,Z) is in�nite}. (3.10)

It can be also expressed by �masking e�ect� of outliers.
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Remark 3.1.1 The breakdown point of the least absolute deviation (LAD) and M

estimators is 0%. It can be intuitively understood from the loss function of LAD in

(3.1) and M-function in (3.4) and (3.5).

For the robust lasso-type approaches having a high breakdown point, we consider

the following least trimmed squares (LTS) estimator (Rousseeuw and Leroy 1987)

having the maximum breakdown point {[(n − p)/2] + 1}/n, which is asymptotically

equal 50%, for s = [(n+ p+ 1)/2] (see Rousseeuw and Leroy (1987), Theorem 6),

β̂LTS = arg min
β
{

s∑
i=1

r2[i]}, (3.11)

where r2[i] is the i
th order statistic of squared residuals, ri = yi − xT

i β. It is similar to

least squares estimator but only di�erence being that observations having the large

squared residuals r2[s+1],...,r
2
[n] are not used (Rousseeuw and Leroy 1987) for estimation

procedure, and thus we can reduce the e�ect of outliers in regression modeling.

In the LTS procedure, the sample size used to estimate is decreased from n to s.

In other words, there is a possibility that sample size s, is smaller than the number

of predictor variables p. Hence, although the LTS has a high breakdown point, it

is unsuitable for using with the lasso because of the limitation of lasso as a variable

selection method in p > n situation (see Section 2.2.3). As mentioned in Section 2.2.3,

the elastic net was proposed to settle the problem of the lasso in p > n situation.

Therefore, we propose a robust elastic net, called a least trimmed square-elastic net

(LTS-Ela),

β̂LTS-Ela = arg min
β
{

s∑
i=1

r2[i] + λ1

p∑
j=1

|βj|+ λ2

p∑
j=1

β2
j }, (3.12)
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where s is a tuning constant. The proposed LTS-Ela is composed of the LTS loss

function and the elastic net penalty term. The LTS-Ela is similar to the original elastic

net but with a key di�erence for the robustness. Unlike the original elastic net, the

LTS-Ela is based on only s observations having small residuals to reduce an e�ect of

outliers, and thus outliers having large residual are not used for regression modeling

procedure. This implies that choosing the not only regularization parameters but

also tuning constant s is a crucial matter, since the selected s plays a key role for

robustness in the LTS-Ela. We will present methods for choosing the optimal set of

these tuning parameters in following Section 3.2.

The proposed LTS-Ela shows the outstanding performance for the robust sparse

regression modeling in the viewpoint of forecasting accuracy and sparsity (see Part 1

in Section 3.5. Simulation studies).

3.2 Selection of tuning parameters in robust L1-type

regularization

The robust lasso-type approach is an e�ective tool for regression modeling in the

presence of outliers. By replacing the least squares loss function with robust loss

function, the robust L1-type regularization can perform simultaneous parameter esti-

mation and variable selection robustly. Crucial issues in the robust sparse modeling

include the selection of regularization parameters and also a tuning constant in out-

lier detection, because the features of the modeling procedure rely on the proper

choice of the adjusted parameters. However, relatively little attention was paid for
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Figure 3.1: Quantile regression with various quantiles

this issue, particularly in the presence of outliers. In fact, existing studies on the

robust L1-type regularization, such as the M-lasso and M-adaptive lasso (Zhang et

al., 2009; Lambert-Lacroix and Zwald, 2010), did not consider the selection of the

tuning constant. They selected only the regularization parameters controlling the

model complexity by the cross-validation under the �xed tuning constant k = 1.34,

which is a value for general M-estimation without lasso-type penalty. However, we

should consider the issue as an appropriate choice of set of regularization param-

eters and tuning constant, since the tuning constant also plays a key role in the

robust sparse regression modeling. Figure 3.1 shows the quantile regression for salary

data (Weisberg, 2005), which is one of the robust regression modeling, with various

quantiles. In the quantile regression, quantile can be seen as a tuning constant for

controlling the e�ect of outliers. As shown in Figure 3.1, the regression �tting line is
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signi�cant changed as increasing the quantile. This implies that choosing the tuning

constant is crucial in the robust regression modeling. As we mentioned in Section

2.4, the traditional criteria (i.e., AIC and BIC) are not suitable for choosing the tun-

ing parameters of L1-type regularization because of their assumption. Furthermore,

the usually used cross-validation for regularization parameter selection also has some

demerits on instability and over-�tting e�ect (Wang et al., 2007b).

In this section, we discuss about an appropriate choice of the regularization pa-

rameters and tuning constant in line with the information-theoretic viewpoint. We

�rst introduce to use the e�cient bootstrap information criteria for choosing the tun-

ing parameters (Konishi and Kitagawa, 1996; Park et al., 2012a). We also present a

model selection criterion in line with the generalized information criterion (Konishi

and Kitagawa, 1996; Park et al., 2012b).

3.2.1 E�cient bootstrap information criterion

We introduce the e�cient bootstrap information criteria for choosing the optimal set

of the tuning parameters of the robust lasso-type approaches.

Consider the case in which a model is given in the form of a probability distribution

{f(y|θ);θ ∈ Θ ⊂ Rp} having p-dimensional parameters. We assume that the data

yn = {y1, ..., yn} are generated from the true distribution function G(y). Our task is

to evaluate the expected goodness or badness of the estimated model f(z|θ̂) when it is

used to predict the independent future data Z = z generated from the unknown true
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distribution. The general form of an information criterion is constructed as follows:

IC(yn; Ĝ) = −2(log likelihood of statistical model− bias estimator) (3.13)

= −2
n∑

i=1

logf(yi|θ̂) + 2{estimator for b(G)},

where b(G) is a bias of the log-likelihood as an estimator of the expected log-likelihood

depending on the unknown probability distribution G. That is, the bias b(G) is given

by

b(G) = EG(yn)

[
logf(yn|θ̂(yn))− nEG(z)

[
logf(Z|θ̂(yn))

]]
, (3.14)

where logf(yn|θ̂(yn)) =
∑n

i=1 logf(yi|θ̂(yn)) and the expectation EG(yn) is taken with

respect to the joint distribution,
∏n

i=1G(yi) = G(yn) of the sample yn (Konishi and

Kitagawa, 2008). In general, the bias b(G) can take various forms depending on the

method employed to construct a statistical model.

Konishi and Kitagawa (1996) showed that the di�erence between the log-likelihood

of the model and n times the expected log-likelihood

D(yn;G) = logf(yn|θ̂)− n
∫

logf(z|θ̂)dG(z), (3.15)

can be decomposed into three terms

D(yn;G) = D1(yn;G) +D2(yn;G) +D3(yn;G), (3.16)

where

D1(yn;G) = logf(yn|θ̂)− logf(yn|θ), (3.17)

D2(yn;G) = logf(yn|θ)− n
∫

logf(z|θ)dG(z),

D3(yn;G) = n

∫
logf(z|θ)dG(z)− n

∫
logf(z|θ̂)dG(z).
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By taking the expectation term by term on (3.16), the second term is

EG[D2(yn;G)] = EG

[
logf(yn|θ)− n

∫
logf(z|θ)dG(z)

]
(3.18)

=
n∑

i=1

EG [logf(yi|θ)− nEG[logf(Z|θ)]

= 0.

Thus, the expectation of bias correction term in (3.15) can be expressed without

D2(yn;G) term as follows,

EG[D(yn;G)] = EG[D1(yn;G) +D3(yn;G)]. (3.19)

In the bootstrap information criteria, the true distribution G(y) is replaced with

an empirical distribution function Ĝ(y). With this replacement, the random variable

and estimator in (3.14) are substituted as follows:

G(y) −→ Ĝ(y),

yi ∼ G(y) −→ y∗i ∼ Ĝ(y),

Z ∼ G(z) −→ Z∗ ∼ Ĝ(z),

EG(y), EG(z) −→ EĜ(y∗), EĜ(z∗),

θ̂ = θ̂(y) −→ θ̂∗ = θ̂(y∗).

Therefore, the bootstrap bias estimate of (3.14) is given by

b∗(Ĝ) = EĜ(y∗)

[
n∑

i=1

logf(y∗i |θ̂(y∗
n))− nEĜ(z∗)

[
logf(Z∗|θ̂(y∗

n))
]]
. (3.20)

Let us B sets of bootstrap samples of size n and write the bth bootstrap sample as

y∗
n(b) = {y∗1(b), ..., y∗n(b)}. In the bootstrap estimate, (3.19) is replaced by

EĜ[D(y∗
n; Ĝ)] = EĜ[D1(y

∗
n; Ĝ) +D3(y

∗
n; Ĝ)]. (3.21)
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Therefore, we can use

bB(Ĝ) =
1

B

B∑
b=1

{D1(y
∗
n(b); Ĝ) +D3(y

∗
n(b); Ĝ)} (3.22)

as a bootstrap bias estimate.

Conditional on the observed data, Konishi and Kitagawa (1996) showed that the

orders of asymptotic conditional variances of two bootstrap estimates are

Var

[
1

B

B∑
b=1

{D(y∗
n; Ĝ)}

]
=

1

B
O(n), (3.23)

Var

[
1

B

B∑
b=1

{D1(y
∗
n; Ĝ) +D3(y

∗
n; Ĝ)}

]
=

1

B
O(1).

Figure 3.2 shows the box plots of the bootstrap estimates of D, D1 + D3, D1, D2,

and D3 for n=25, 100, 400, and 1600. From Figure 3.2, we can see that D and

D1 +D3 �uctuate in a di�erent manner because of the spreading of the distribution

D2. As shown in Figure 3.2, for the small n, such as n=25, the �uctuations of D1

and D3 are slightly large compared with of D2. On the other hand, when n increases,

the �uctuation of D2 becomes dominant and that of D1 + D3 becomes signi�cantly

smaller than that of D. It implies that the variance due to the bootstrap resampling

can be reduced signi�cantly, and thus we can expect to e�cient modeling.

Consequently, the e�cient bootstrap information criterion based on variance re-

duction method is de�ned as follows

EICe� = −2
n∑

i=1

logf(yi|θ̂) + 2{bB(Ĝ)} (3.24)

. = −2
n∑

i=1

logf(yi|θ̂) +
2

B

B∑
b=1

{D1(y
∗
n(b); Ĝ) +D3(y

∗
n(b); Ĝ)}.

For details on the theoretical justi�cation for sample variance reduction technique,

see Konishi and Kitagawa (1996; 2008).
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Figure 3.2: Box plots of the bootstrap estimates of D, D1 +D3, D1, D2, and D3 for

n=25 (top left), 100 (top right), 400 (bottom left), and 1600 (bottom right).

We choose an optimal set of the tuning parameters in the robust lasso-type ap-

proaches based on the EICe�. Under the assumption that εi in (2.1) are the random

errors from N(0, σ2), the linear regression model is expressed as follows,

f(yi|xi;β) =
1√
2πσ2

exp

[
−{yi − xT

i β}2

2σ2

]
. (3.25)

To calculate the EICe� for the linear regression model, we generate bootstrap

samples denoted as y∗
n = {y∗1, ..., y∗n} using a x-�xing method. In the x-�xing method,

we consider predictor variables xn not random variables and y∗
n = xT

n β̂ + e∗n, where
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e∗n are generated from en(= yn − xT
n β̂). And then, we calculate the EICe� based

on the estimated β̂ by the robust lasso-type approaches at the each set of tuning

parameters, and then we perform model selection and estimation by choosing the

optimal set of tuning parameters that minimize the EICe�. As shown above, by using

the EICe�, we can e�ectively perform the robust sparse regression modeling, since

the replications number of bootstrap can be reduced due to the variance reduction

method. This implies that the EICe� is suitable for regularization method with many

tuning parameters and large number of predictors. The EICe� showed the superiority

for tuning parameters selection of the proposed LTS-Ela in Section 3.1 (see Part 1 in

Section 3.5. Simulation studies).

3.2.2 Generalized information criterion

We derive an information criterion for choosing an optimal set of the regularization

parameters and a tuning constant in line with the generalized information criteria

(GIC), which can be applied to evaluate statistical models constructed by various

types of estimation procedure (Konish and Kitagawa, 1996; Park et al., 2012b). In

deriving an information criterion, the calculation of an in�uence function is essential.

However, we cannot derive the in�uence function corresponding to the L1-type reg-

ularization methods, because the L1-type penalty functions are not di�erentiable in

origin. To settle on the issue, we use the local quadratic approximation of the lasso-

type penalty functions (Fan and Li, 1996), and then derive an information criterion

for evaluating robust sparse regression models. We �rst introduce the generalized

information criteria (Konish and Kitagawa, 1996).
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Generalized information criteria

Akaike's (Akaike, 1973) information criterion (AIC) was often used for model selection

and evaluation in various �elds. With the development of the modeling techniques,

it has been necessary that an information criterion for models estimated by various

techniques, not only maximum likelihood method. Konishi and Kitagawa (1996)

proposed generalized information criteria (GIC) by relaxing the following assumptions

imposed on the AIC,

• Estimation is by maximum likelihood.

• It carried out in a parametric family of distributions including the true model.

For the GIC, which can evaluate to various modeling techniques, Konishi and

Kitagawa (1996) employed a functional estimator, θ̂ = T(Ĝ), which is second order

compact di�erentiable at G. The p-dimensional functional estimator can be expressed

as

θ̂ = T (Ĝ) = (T1(Ĝ), ..., Tp(Ĝ))
T . (3.26)

Given a functional Tj(G) (j=1,...,p), the in�uence function, which plays an essen-

tial role in the information criteria, is de�ned by

T
(1)
j (y;G) = lim

ϵ→0

Tj((1− ϵ)G+ ϵδy)− Tj(G)
ϵ

, (3.27)

where δy is a distribution function having a probability of 1 at point y. They de�ne

the p-dimensional vector of in�uence function having T
(1)
j (y;G) as the jth element as

follow

T (1)(y;G) = (T
(1)
1 (y;G), ..., T (1)

p (y;G))T . (3.28)
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The bias of the log-likelihood for the model f(y|θ̂) in estimating the expected log-

likelihood is given by

b(G) = EG[
n∑

i=1

logf(yi|θ̂)− n
∫

logf(z|θ̂)dG(y)] (3.29)

= tr{
∫

T (1)(y;G)
∂logf(y|θ)

∂θ

∣∣∣
θ=T (G)

dG(y)}+O(n−1).

The asymptotic bias, b(G), can be estimated by replacing the unknown distribution

G with an empirical distribution Ĝ. Thus, the generalized information criteria for

evaluating the statistical model f(y|θ̂) with a functional estimator, θ̂ = T (Ĝ), is

given by

GIC = −2
n∑

i=1

logf(yi|θ̂) +
2

n

n∑
i=1

tr{T (1)(yi; Ĝ)
∂logf(yi|θ)

∂θ

∣∣∣
θ=T(Ĝ)

}. (3.30)

Proposed criterion for robust sparse regression modeling

We present an information criterion for evaluating the robust sparse regression models

in line with the GIC. To derive an information criterion, the second order di�eren-

tiable functional estimator, θ̂ = T (Ĝ), is required. In the case of the lasso-type

approaches, however, the functional estimator is not di�erentiable because of the L1-

type penalty function. To settle on the problem, we use the local quadratic approxi-

mation as shown in Section 2.3.1. We calculate the in�uence function corresponding

the lasso-type estimator based on the approximated L1-type penalty function, and

then derive an information criterion for choosing the regularization parameters and

a tuning constant.

For the linear regression model, we use robust lasso-type estimates (e.g., with

Huber function in (3.4)) of the regression coe�cients β given as the following solution.
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If TR.la,0(G) is very close to 0, then set TR.la(G) = 0. Otherwise it is assumed that

the functional TR.la(G) is given as a solution of the implicit equation∫
{ψ(y − xTTR.la(G))x− p

′

λ(|TR.la,0|)sign(TR.la)} dG(y) = 0. (3.31)

By using the local quadratic approximations, we can rewrite (3.31) as

≈
∫ [

ψ(y − xTTR.la(G))x− {p
′

λ(|TR.la,0|)/|TR.la,0|}TR.la(G)
]
dG(y) = 0. (3.32)

To derive the in�uence function T
(1)
R.la(G), G in (3.32) is substituted with (1−ε)G+εδy

as follows,∫ [
ψ(y − xTTR.la((1− ε)G+ εδy))x (3.33)

−{p′

λ(|TR.la,0|)/|TR.la,0|}TR.la((1− ε)G+ εδy)
]
d((1− ε)G+ εδy) = 0.

Di�erentiating both sides of the equation with respect to ε and setting ε=0 yields∫ [
ψ(y − xTTR.la(G))x− {p

′

λ(|TR.la,0|)/|TR.la,0|}TR.la(G)
]
d(δy(y)−G(y)) (3.34)

+
[ ∫
− ∂

∂β
ψ(y − xTTR.la(G))xx

T − {p′

λ(|TR.la,0|)/|TR.la,0|}
∣∣∣
β=TR.la

dG(y)

· ∂
∂ε

TR.la((1− ε)G+ εδy)
]
= 0.

Consequently, the in�uence function, T
(1)
R.la(G), of the functional that de�nes the

robust lasso-type estimator is given by

T
(1)
R.la(G) ≡

∂

∂ε
TR.la((1− ε)G+ εδy)

∣∣∣
ε=0

(3.35)

=

[∫
∂

∂β
ψ(y − xTTR.la(G))xx

T + {p′

λ(|TR.la,0|)/|TR.la,0|}dG(y)
]−1

·
[
ψ(y − xTTR.la(G))x− {p

′

λ(|TR.la,0|)/|TR.la,0|}TR.la(G)
]
.
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Thus, the asymptotic bias of the log-likelihood of f(y|x, β̂R.la(λ)) is given by

b
(1)
R.la = tr

([∫
ψ

′
(y − xTTR.la(G))xx

T + {p′

λ(|TR.la,0|)/|TR.la,0|}dG
]−1

(3.36)

×[
∫ [

ψ(y − xTTR.la(G))x− [p
′

λ(|TR.la,0|)/|TR.la,0|]TR.la(G)
]

·∂logf(y|x,β)
∂βT

∣∣∣
β=TR.la(G)

dG]
)
+O(n−1).

By replacing the unknown distribution G by the empirical distribution Ĝ, and sub-

tracting the asymptotic bias estimate from the log-likelihood, we have an informa-

tion criterion for the statistical model f(y|x, β̂R.la(λ)) with the functional estimator,

β̂R.la(λ) = T(Ĝ), in the following

GICR.la = −2
n∑

i=1

logf(yi|xi, β̂R.la(λ)) + 2{R(ψ, Ĝ)−1Q(ψ, Ĝ)}, (3.37)

where

R(ψ, Ĝ) = − 1

n

p∑
j=1

n∑
i=1

[ ∂

∂βj
ψ(yi − xT

i TR.la)x
2
i,j

]
+ {p′

λ(|TR.la,j0|)/|TR.la,j0|}, (3.38)

Q(ψ, Ĝ) =
1

n

p∑
j=1

n∑
i=1

[(
ψ(yi − xT

i TR.la)xi,j − {p
′

λ(|TR.la,j0|)/|TR.la,j0|}TR.la,j

)
(3.39)

·∂logf(yi|xi,β)

∂βj

∣∣∣
β=TR.la

]
.

For the robust sparse regression modeling, we choose the optimal set of regularization

parameters and a tuning constant minimizing the information criterion GICR.la, using

the grid search. The proposedGICR.la showed outstanding performance for the robust

sparse regression modeling in the viewpoint of sparsity (see Part 2 in Section 3.5.

Simulation studies).
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3.3 Robust estimation for sparse regression model

We present a robust estimation via outlier-resistance algorithms for L1-type regular-

ized regression modeling. Although the existing algorithms e�ectively perform sparse

regression modeling as shown in Section 2.3, they su�er from outliers, since the proce-

dures are based on sample mean, standard deviation and correlation or inner product

obtained by a non-robust manner. It implies that we cannot expect stable modeling

results by using the existing algorithms in the presence of outliers. To overcome the

problem, Khan et al. (2007) proposed robust model selection techniques by mod-

ify the LARS. In order to robustify the LARS procedure, Khan et al. (2007) used

standardized data by median and median absolute deviation, and robust correlation.

We consider the robust sparse regression modeling via the coordinate descent al-

gorithm, which is competitive with the well known LARS for the L1-type regulariza-

tion. Although the coordinate descent algorithm e�ectively performs sparse regression

modeling, it also su�ers from outliers, since the solution path is delivered based on

standardized data by mean, standard deviation, and inner product of predictor and

partial residual obtained by a non-robust manner. In order to robust regression mod-

eling, we �rst standardize data by median and median absolute deviation instead of

mean and standard deviation like Khan et al. (2007), and propose robust coordinate

descent algorithms based on an outlier-resistant inner product. We also introduce

pre-treatment techniques for data cleaning by using the Winsorization and trimming

methods based on the robust Mahalanobis distance.
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3.3.1 Robust LARS

We brie�y introduce the robust linear model selection method via the LARS algorithm

proposed Khan et al. (2007). They demonstrated that the LARS algorithm sensitive

to outliers because it is based on the mean, variance and correlation. In order to

robustify the LARS algorithm, they replaced the mean, variance and correlation

estimated in a non-robust manner with median, median absolute deviation (MAD)

and robust correlation via the Winsorization technique, respectively.

For robust LARS procedure, they �rst robustly standardize data by using the

median and MAD, and then proposed the bivariate wisorization for robust correlation,

u = min(
√

(k/D(x)), 1), (3.40)

where x = (x1, x2)
T , k = 5.99 as a 95% quantile of the χ2(df = 2) distribution and

D(x) is the Mahalanobis distance based on some initial correlation matrix R0,

D(xR0
j ) = (xj − X̄j)

TS
−1(R0)
j (xj − X̄j), (3.41)

where superscript R0 means ones based on the adjusted Winsorized data, and the

initial correlation matrix is obtained by adjusted Winsorized data.

Remark 3.3.1 The adjusted Winsorization controls the outliers by using two tuning

constants. The large tuning constant c1 is used to winsorize the majority of standard-

ized data, and a smaller tuning constant c2 is used to winsorize the remaining data.

They used c1 = 2 and c2 =
√
qc1, where q = n2/n1, n1 is the number of observations

detected as a non-outlier by tuning constant c1, and n2 = n− n1.

Figure 3.3 shows the adjusted Winsorization for initial correlation matrix R0. From
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Figure 3.3: Adjusted Winsorization with c1 = 2 for initial correlation proposed by

Khan et al. (2007)

the Figure 3.3, it can be seen that using the adjusted Winsorization, the Mahalanobis

distance in (3.41) can detect outliers exquisitely.

They propose a robust LARS based on the robust correlation via the bivariate

Winsorized data in (3.41).

3.3.2 Robust coordinate descent procedure

It is well known that the coordinate descent algorithm is competitive with the LARS

for the lasso-type approaches. Table 3.1 shows the running timings for regression

modeling by the coordinate descent algorithm and LARS procedure. The algorithms

are implemented as R functions (i.e., glmnet and lars, respectively). We �t the

regression model in (2.1) with each p and n based on the lasso. As shown in Table

3.1, the coordinate descent algorithm is faster then LARS procedure, especially in
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large dataset. Furthermore, the coordinate descent algorithm shows the outstanding

performance for L1-type regularized regression modeling compared with LARS (see

columns forecasting RMSE and True negative (T.N) which means a sparsity).

We consider the robust sparse regression modeling via coordinate descent proce-

dure. As shown in Section 2.3.3, the coordinate descent procedure is based on the

data standardized by mean and standard deviation and inner product of xij with

Table 3.1: Comparison with Coordinate descent and LARS procedures

model procedure timing RMSE T.N F.N

σ=1

p=8,n=40
LARS 24.29 1.10 0.46 0.00

Coordi 15.4 1.07 0.58 0.00

p = 40, n = 40
LARS 83.3 6.19 0.10 0.00

Coordi 20.14 2.32 0.73 0.00

p = 100, n = 40
LARS 121.01 - - -

Coordi 36.53 - - -

p = 100, n = 40
LARS 325.88 - - -

Coordi 74.85 - - -

σ=5

p = 8, n = 40
LARS 23.63 5.49 0.53 0.15

Coordi 16.94 5.15 0.60 0.14

p = 40, n = 40
LARS 93.55 22.59 0.12 0.04

Coordi 26.27 8.74 0.58 0.10

p = 100, n = 40
LARS 110.78 - - -

Coordi 43.00 - - -

p = 100, n = 40
LARS 315.88 - - -

Coordi 67.95 - - -
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partial residual (yi − ỹi), and hence the presence of outliers in either predictors or

partial residual may cause distorted results in estimation and variable selection.

To illustrate the drawback, we apply the algorithm to the diabetes dataset (Efron

et al., 2004). The dataset consists of the 10 predictor variables, age, sex, BMI, BP

and six serum measurements, and a quantitative measure of disease progression as a

response variable for n = 442 patients. We label the 10 predictor variables as x1 to

x10. The 10 predictor variables are standardized:
∑

i xij/n = 0,
∑

i x
2
ij/n = 1. The

coordinate descent algorithm is applied to the diabetes dataset with selected λ by the

10-fold cross-validation. Figure 3.4 (a) shows iterates for each coe�cients β̂lasso(λcv)

by the algorithm. The coe�cients β̂lasso(λcv) are converged after 26 steps.

To show the seriousness of outlier e�ect on the procedure, we contaminate the

dataset by replacing 10% observations in x1 and x9 with outliers for N(5, 32), and

then apply the algorithm to the contaminated dataset. In the presence of outliers, the
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Figure 3.4: Iterates for each coe�cients in the coordinate descent procedure
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procedure shows unstable process and the iteration number for convergence increases

as shown in Figure 3.4 (b). It implies that outliers signi�cantly change the process of

the coordinate descent algorithm, which demonstrates the sensitivity of the algorithm

against outliers, and thus it makes distorted modeling results.

To settle on the drawback, we consider the robust coordinate descent algorithm

based on the standardized data by median and median absolute deviation like Khan

et al. (2007), and outlier-resistant inner product via the Winsorization and trimming

technique by the Mahalanobis distance, which is basis for multivariate outlier detec-

tion. The Mahalanobis distance, however, can be also in�uenced by outliers, since it is

based on location and covariance estimated in a non-robust manner. Rousseeuw and

Zomeren (1990) proposed the robust Mahalanobis distance based on the minimum

covariance determinant (MCD),

De�nition 2 : Minimum Covariance Determinant (MCD).

The MCD is the mean and covariance matrix based on the sample size of h (h ≤ n)

that minimizes the determinant of covariance matrix (John and David, 2004),

MCD = (X̄∗
jM ,S

∗
jM), (3.42)

where

M={set of h points: |S∗
jM | ≤ |S∗

jK |∀ sets K s.t. #|K| = h},

where #|ω| de�nes the number of elements set ω

X̄∗
jM =

1

h

∑
i∈M

xij, (3.43)

S∗
jM =

1

h

∑
i∈M

(xij − X̄∗
jM)T (xij − X̄∗

jM). (3.44)

The MCD has the highest breakdown point: h = (n+ p+ 1)/2.
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Figure 3.5: Bivariate ellipse plot

By replacing location and covariance matrix with those in MCD, the robust Ma-

halanobis distance was proposed (Rousseeuw and Zomeren, 1990),

RD(xj) = (xj − X̄∗
jM)TS∗−1

jM (xj − X̄∗
jM). (3.45)

Figure 3.5 shows the ellipse plot based on the Mahalanobis distance. The dashed line

shows an ellipse based on the classical D(x) and the normal line shows a robust ellipse

based on the RD(x). By using the robust Mahalanobis distance, the observations

placed outside of robust ellipse are detected as outliers, and thus they are controlled

by some techniques. For instance, the observations 15 and 77 are detected as outliers

by using the RD(x), while they are not considered as outliers by using D(x). It

implies that the RD(x) more e�ectively performs outlier detection compared with
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D(x), and thus we can expect robust modeling procedure by using the RD(x). We

robustify the coordinate descent procedure by using the robust Mahalanobis distance.

(A) W.coordinate descent algorithm

The coordinate descent procedure is progressed by calculate the inner product with

jth predictor and partial residual, and thus we should control outliers in both jth

predictor and partial residual. In order to robustify the coordinate descent procedure,

we proposed the robust bivariate Winsorization via the robust Mahalanobis distance,

RD.W.obj = min(
√
k/RD(xj), 1) xj, (3.46)

where k = 5.99 as the 95% quantile of the χ2(df = 2) distribution like Khan et

al. (2007). The coordinate descent procedure is conducted based on a robust inner

product by using the Winsorized data RD.W.obj which is updated in every iteration

j = 1, 2, ..., p, 1, 2..., for robust sparse regression modeling. We call this procedure as

a W.coordinate descent algorithm in Algorithm 1.

Algorithm 1: W.coordinate descent algorithm

Step 1. Set β̃ = (β̃1, β̃2, ..., β̃p)=0.

Step 2. Calculate partial residual: yi − ỹi(=
∑p

j=1 xiβ̃j).

Step 3. Robust bivariate Winsorizing of xj : x
W
j =(xW

j , (yi − ỹi)
W ) is based on

RD.W.obj = min(
√
k/RD(xj), 1) xj .

Step 4. Apply the coordinate descent algorithm to Winsorized data xW
j ,

β̃j ← S
(∑n

i=1 x
W
ij (yi − ỹi)

W , λ
)
.

Step 5. Iterate steps 2 to 4 until convergence.
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(B) T.coordinate descent algorithm

We also consider a trimming method, which is widely used to reduce e�ect of outliers.

The trimming technique controls an e�ect of outliers by eliminating extreme obser-

vations at each tails. We propose the robust bivariate trimming technique similar to

robust bivariate Winsorization,

RD.T.obj = xj{I(
√
k/RD(xj) ≥ 1)}. (3.47)

For the robust bivariate trimming technique, we also use the robust Mahalanobis

distance RD(xj) and k = 5.99 as the 95% quantile of the χ2(df = 2) distribution.

RD.T.obj is updated in each iterations step, and then the variable selection and

estimation are conducted base on the robust inner product by the trimmed data

RD.T.obj in the coordinate descent procedure. By using the bivariate trimming

technique, we use the observations placed only in the robust ellipse as shown in

Figure 3.5 to calculate the inner product. This implies that the robusti�ed coordinate

descent procedure may not be a�ected by outliers, and thus can performs robust

Algorithm 2: T.coordinate descent algorithm

Step 1. Set β̃ = (β̃1, β̃2, ..., β̃p)=0.

Step 2. Calculate partial residual: yi − ỹi(=
∑p

j=1 xiβ̃j).

Step 3. Robust bivariate trimming of xj : x
TR
j =(xTR

j ,(yi − ỹi)
TR) is based on

RD.T.obj = xj{I(
√
k/RD(xj) ≥ 1)}.

Step 4. Apply the coordinate descent algorithm to trimmed data xTR
j ,

β̃j ← S
(∑n

i=1 x
TR
ij (yi − ỹi)

TR, λ
)
.

Step 5. Iterate steps 2 to 4 until convergence.
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variable selection and estimation. We call this procedure as a T.coordinate descent

algorithm in Algorithm 2.

(C) Pre-treatment techniques for outliers

We introduce alternative approaches for robust coordinate descent procedure via pre-

treatment techniques for data cleaning. In order to clean the whole dataset, we use the

multivariate Winsorization and trimming techniques based on the robust Mahalanobis

distance. Figure 3.6 shows the elliptical ball based on the multivariate Mahalanobis

distance (p = 3). The thick gray elliptical ball shows the robust multivariate Ma-

halanobis distance and light one shows the classical one in 3-dimension. We control

the outliers placed outside of thick elliptical ball by Winsorizing and trimming tech-

niques. In the pre-treatment technique, we control the outliers in p predictor variables

Figure 3.6: 3-dimensional elliptical ball based on multivariate Mahalanobis distance

(thick ball: ordinary Mahalanobis distance, light ball: Robust Mahalanobis distance)
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and response variable y at once by using multivariate Winsorization and trimming

techniques.

• Data cleaning via the multivariate Winsorization technique. We �rst in-

troduce the pre-treatment technique by using the multivariate Winsorization. The

multivariate Winsorization technique based on the robust multivariate Mahalanobis

distance is given,

RD.W.x = min(
√
k/RD(x), 1)x, (3.48)

where x = (x1, x2, ..., xp, y)
T and k = χ2(df = p + 1) as a 95% quantile of the

χ2(df = p+ 1) distribution (Khan et al., 2007).

After Winsorizing the dataset, the ordinary coordinate descent procedure per-

forms variable selection and estimation using the Winsorized data RD.W.x. We call

this procedure as a W.pre-treatment.

• Data cleaning via the multivariate trimming technique. We also introduce

the data cleaning method using the multivariate trimming technique. Similar to Win-

sorization techinique, robust multivariate Mahalanobis distance is used for detecting

outliers, and then we discard the observations detected as outliers by using following

multivariate trimming technique,

RD.T.x = x{I(
√
k/RD(x) > 1)}. (3.49)

We also use k = χ2(df = p+ 1) as a 95% quantile of the χ2(df = p+ 1) distribution.

After cleaning dataset via multivariate trimming technique, the ordinary coordi-

nate descent procedure performs variable selection and estimation using the cleaned

59



data RD.T.x. We call this procedure as a T.pre-treatment.

The proposed robust coordinate procedures can reduce the e�ect of outliers, and

thus we can expect a robust sparse regression modeling under the appropriately se-

lected tuning parameters λ and h (see Part 3 in Section 3.5. Simulation studies).

3.4 Robust selection of the tuning parameters

In this section, we discuss a robust model evaluation for choosing the regularization

parameters and tuning constant. Although numerous studies on the robust estimation

have been conducted for the outlier-resistant modeling, relatively little attention was

paid for the robust evaluation. Ronchetti et al. (1997) introduced the robust cross-

validation by using the robust loss function, and Jung (2009) proposed the three type

of generalized cross-validation by replace the least squares loss function. Ronchetti

and Staudte (1994) proposed the robust version of Mallow's Cp by using a weight

function.

In the robust lasso-type approaches, the robust evaluation for choosing the tun-

ing parameters is a vital matter, because the feature of the robust sparse modeling

procedure heavily depends on the proper choice of the adjusted parameters. We in-

troduce a robust information criterion based on the bootstrap technique for choosing

the tuning parameters in the robust L1-type regularization. Although the bootstrap

information criterion has several advantages on its �exibility and weak assumptions,

the bootstrap information criterion cannot perform robustly in the presence of outliers

because of a randomly drawn technique of bootstrap method. In order to overcome

the drawbacks, we propose a robust bootstrap information criterion via Winsorizing
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technique (Srivastava et al., 2010) in line with the e�cient bootstrap information

criterion (Konishi and Kitagawa, 1996; Park, 2012).

We �rst brie�y introduce the existing robust model selection criteria, and then

present the proposed robust e�cient bootstrap information criterion.

3.4.1 Literature review: robust model selection criteria

Robust cross-validation

Ronchetti et al. (1997) introduced a robust linear model selection based on the cross-

validation. In order to evaluate models robustly, they proposed the robust criterion

by using the robust loss function,

∑
k∈Iv

ρ(ẽi), (3.50)

where {ẽk = yk− f̂−k(xk)} and Iv is a validation data. They use a robust loss function

ρ(t) = min(t2, b2σ̂2
ẽ), where b = 1.345 and σ̂ẽ = 1.483 · mediani∈k|ẽi − median(ẽi)|.

Ronchetti et al. (1997) summarized the proposed robust cross-validation as following,

1. Data set is divided by K-parts randomly.

2. Model is estimated by using the data set without kth part of data.

3. For kth part of data, compute the robust loss in (3.50).

4. Repeat step 2 to 3 for K data parts, and compute an average the robust pre-

diction criterion for each model.

5. Choose the model minimizing the average prediction criterion in (3.50).
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Robust generalized cross-validation

Jung (2009) proposed the robust generalized cross-validation. Let consider the

generalized cross-validation as an expression of the leave-one-out cross-validation ver-

sion in Section 2.4.1,

GCV =
1

n

n∑
α=1

{yα − f̂(λ,xα)

1− hαα
}2. (3.51)

The GCV is based on the least squares loss function, and hence it su�ers from outliers.

To overcome the drawback, Jung (2009) considered three type of robust criteria by

modify the least squares loss function as follows,

· median generalized cross-validation:

MEDIAN.CV = median
[
{yα − f̂(λ,xα)

1− hαα
}2
]
. (3.52)

· trimmed sum of squares generalized cross-validation:

TSS.GCV =
1

h

h∑
α=1

{yα − f̂(λ,xα)

1− hαα
}2. (3.53)

· mean absolute generalized cross-validation:

MA.GCV =
1

n

n∑
α=1

|yα − f̂(λ,xα)

1− hαα
|. (3.54)

Robust Mallow's Cp

The Mallow's Cp is a useful tool for model selection in regression modeling. Mallow

considered following criterion based on the mean squares error for model evaluation,

Γ =
1

σ2
E[

n∑
i=1

(ŷi − E(yi)2)], (3.55)
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and then proposed the following estimate, called a Mallow's Cp,

Cp = Γ̂ =
RSSp

σ̂2
+ 2p− n. (3.56)

Ronchetti and Staudte (1994) demonstrated the ordinary Mallow's Cp is sensitive

to outliers because it is based on the RSSp, and then proposed robust version of

Mallow's Cp based on the M-estimator β̂ with weights ŵi = ψ(ri)/ri. They de�ned

the robust version of Γ,

Γ(w) =
1

σ2
E[

n∑
i=1

ŵ2
i (ŷi − E(yi)2)]. (3.57)

And then, Ronchetti and Staudte (1994) proposed a robust version of Mallow's Cp,

RCp =
Wp

σ̂2
− (Up − Vp), (3.58)

where Wp =
∑n

i=1 ŵ
2
i (yi − ŷi)2, σ̂2 is a robust and consistent estimator of σ2 in the

full model, and Up and Vp are computed based on the weighted function and number

of parameters p.

3.4.2 Robust e�cient bootstrap information criterion

We consider a robust version of the bootstrap information criterion. Although the

bootstrap technique is a practical method, it has a demerit in the presence of outliers

that a bootstrap sample may contain more outliers compared with those in the original

sample, since the bootstrap sample is drawn randomly (see Figure 3.7). Table 3.2

shows the seriousness of the problem that bootstrap sample contains more outliers

than those in the original sample over 100,000 simulated datasets. As shown in Table

3.2, overall more than 35% of bootstrap samples contain more outliers than those

63



Figure 3.7: The drawback of bootstrap sample in the presence of outliers

in the original samples. This implies that the resulting criterion from the bootstrap

sample may produce biased results in the presence of outliers, and hence it does

not perform well as a tuning parameter selector. In order to overcome the

drawback, we propose a robust bootstrap information criterion via Winsorization

technique (Srivastava et al., 2010) in line with the e�cient bootstrap information

criterion for choosing an optimal set of the regularization parameters and a tuning

Table 3.2: Percentage that bootstrap sample contains more outliers than original

sample

Proportion (%) of outliers in the original sample

n 1% 5% 10% 15%

100 0.26 0.39 0.42 0.43

500 0.38 0.45 0.46 0.47

1000 0.42 0.46 0.48 0.48
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constant (Park, 2012).

A Winsorization is a robust statistical technique that aims to reduce the e�ect of

outliers in the sample (Yale and Forsythe, 1976). First, we introduce a Winsorization

bootstrap method (Singh, 1998; Srivastava et al., 2010). Suppose that the order

statistics of the original data be denoted by y[1], y[2], ..., y[n]. A δ-Winsorized sample

for {yi} is given by

y∗i = y[l+1], if yi ≤ y[l], (3.59)

= y[n−l], if yi ≥ y[n−l+1],

= yi, otherwise,

where δ = l/n, 0 ≤ δ ≤ 1/2 represents a Winsorizing proportion. The Winsorized

bootstrap sample {y∗∗i } are randomly drawn from the δ-Winsorized sample {y∗i }. This

implies that the Winsorized bootstrap sample may not be a�ected by outliers which

are greater than y[l] or smaller than y[n−l+1]. Thus, we can reduce the e�ect of outliers

in the bootstrap technique.

Remark 3.4.1 In the Winsorization technique, choosing the Winsorizing proportion

δ is crucial in practice. The simplest way to choose the δ is to specify them in advance

(Chen et al., 2001). The δ was determined adaptively from the data in literatures

(Welsh, 1987; Dodge and Jurecková, 1997). Chen et al. (2001) mentioned that this

issue is a largely philosophical question as to which approaches individual users prefer.

Srivastara et al. (2010) showed that the wisorization technique with δ ≈ �proportion

of outliers in the original dataset� outperforms in bootstrap regression. Therefore, we

use the Winsorizing proportion δ = �proportion of outliers in the original dataset�.
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For outlier-resistant model evaluation, we propose a robust e�cient bootstrap

information criterion via the Winsorized bootstrap sample. By using the Winsorized

bootstrap sample, the bootstrap bias estimate of (3.14) is given by

b∗∗(Ĝ) = EĜ(y∗∗)

[
n∑

i=1

logf(y∗∗i |θ̂(y∗∗
n ))− nEĜ(z∗∗)

[
logf(Z∗∗|θ̂(y∗∗

n ))
]]
. (3.60)

Let us extract B sets of Winsorized bootstrap samples of size n and write the

bth Winsorized bootstrap sample as y∗∗
n (b) = {y∗∗1 (b), ..., y∗∗n (b)}. In the wisorized

bootstrap estimate, (3.21) is replaced by

EĜ[D(y∗∗
n ; Ĝ)] = EĜ[D1(y

∗∗
n ; Ĝ) +D3(y

∗∗
n ; Ĝ)]. (3.61)

Therefore, the bootstrap bias estimate of (3.14) is substituted by

bwB(Ĝ) =
1

B

B∑
b=1

{D1(y
∗∗
n (b); Ĝ) +D3(y

∗∗
n (b); Ĝ)}. (3.62)

Consequently, the proposed robust e�cient bootstrap information criterion is given

by

R.EICe� = −2
n∑

i=1

logf(yi|θ̂) + 2{bwB(Ĝ)} (3.63)

= −2
n∑

i=1

logf(yi|θ̂) +
2

B

B∑
i=1

{D1(y
∗∗
n (b); Ĝ) +D3(y

∗∗
n (b); Ĝ)}.

By using the R.EICe�, the variance of the bootstrap estimates caused by simulation

can be reduced extensively, and then the number of bootstrap replications may be

greatly reduced. Furthermore, we can perform accurate and stable model evaluation

even in the presence of outliers.

We choose an optimal set of the regularization parameters and a tuning constant

in the robust lasso-type regularization by using the R.EICe� based on the grid search.
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To calculate the R.EICe� for the robust sparse regression model, the Winsorized

bootstrap samples denoted as y∗∗
n = {y∗∗1 , ..., y∗∗n } are generated using the x-�xing

method. In the x-�xing method, y∗∗
n = xT

n β̂ + e∗∗n , where e
∗∗
n are randomly drawn

from Winsorized sample e∗n of en(= yn − xT
n β̂),

e∗i = e[l+1], if ei ≤ e[l], (3.64)

= e[n−l], if ei ≥ e[n−l+1],

= ei, otherwise.

Afterwards, we calculate the R.EICe� based on the estimate β̂ by the robust lasso-type

approaches at the each set of the regularization parameters and a tuning constant.

Finally, we perform model selection and estimation by choosing the optimal set of

these tuning parameters that minimizes the R.EICe�.

The proposed R.EICe� showed the robust and e�cient performance for the ro-

bust sparse regression modeling by using the Winsorization technique and variance

reduction method (see Part 4 in Section 3.5. Simulation studies).

3.5 Simulation studies

Monte Carlo simulations are conducted to investigate the e�ectiveness of the pro-

posed robust modeling strategies. In this chapter, we introduced the robust L1-type

regularization and methods for choosing the tuning parameters in the information-

theoretic view point. We also introduced the robust algorithm and model evaluation

criterion for robust sparse regression modeling.

In order to show the e�ectiveness of the proposed methods, we evaluate our meth-
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ods comparing with existing ones. This section is composed by the following four

parts to evaluate each proposed robust modeling strategies,

Part 1 : LTS-Ela and e�cient bootstrap information criterion.

Part 2 : GICR.la via local quadratic approximation.

Part 3 : Robust coordinate descent procedure.

Part 4 : Robust e�cient bootstrap information criterion.

We simulated N datasets consisting of n observations from the following model

yi = xT
i β + σεi, i = 1, ..., n, (3.65)

where β is p-dimensional vector and εi are standard normal. The correlation between

xl and xm is ρ|l−m| with ρ=0.5.

In order to evaluate the proposed methods, we compare the simulation results

for variable selection and forecasting accuracy. The results of variable selection are

showed as average percentage of zero coe�cients in columns �T.N� and �F.N�. The

�T.N� means a true negative (i.e., the average percentage of true zero coe�cients, that

were correctly set to zero), and �F.N� means a false negative (i.e., average number

of the true non-zero coe�cients, incorrectly set to zero). And forecasting accuracy is

measured forecasting root mean squares error (RMSE) by N simulated datasets.

Part 1 : LTS-Ela and e�cient bootstrap information criterion.

In Part 1, we evaluate the proposed robust L1-type regularization, called a LTS-Ela

compared with LTS-lasso, and e�cient bootstrap information criterion as a tuning

parameter selector.
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We simulated N = 50 datasets in σ = 1. Two simulations are conducted in the

presence of 0%, 10%, 20% and 30% outliers for εi ∼ N(10, 3),

1. Simulation 1:

p = 10 as β = (2, 3, 0, 0, 1.5, 0, 0, 1, 0, 0)T ,

2. Simulation 2:

p = 40 as β = (2, ..., 2︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
5

, 5, ..., 5︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
5

, 2, ..., 2︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
5

, 5, ..., 5︸ ︷︷ ︸
5

, 0, ..., 0︸ ︷︷ ︸
5

)T .

We �rst show the stability of the EICe� compared with the cross-validation (CV).

Table 3.3 shows the standard deviation of selected tuning parameters and forecasting

root mean squares error (RMSE) in the ordinary elastic net. From Table 3.3, it can

be seen that the EICe� stably performs robust sparse regression modeling compared

with the CV.

Table 3.4 and 3.5 show the simulation results for variable selection in Simulation

Table 3.3: Standard deviation of tuning parameters and RMSE in Part 1

Simulation 1 Simulation 2

Outliers λ1 λ2 RMSE λ1 λ2 RMSE

0%
CV 0.20 0.07 0.63 0.11 0.31 33.54

EICe� 0.11 0.06 0.51 0.07 0.00 22.65

10%
CV 0.30 0.16 2.56 0.12 0.25 35.79

EICe� 0.28 0.14 2.94 0.07 0.00 18.34

20%
CV 0.31 0.17 4.76 0.12 0.26 47.78

EICe� 0.28 0.16 3.88 0.10 0.00 24.08

30%
CV 0.28 0.13 6.78 0.14 0.24 38.30

EICe� 0.28 0.16 5.87 0.10 0.00 22.05
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1 and Simulation 2, respectively. The parts in the shadow of the gray appear the

proposed methods. From the columns �T.N� in Table 3.4 and 3.5, it can be seen

that the proposed LTS-Ela based on the e�cient bootstrap information criterion is

outstanding in the viewpoint of the �sparsity�, which is a crucial property of the lasso-

type approaches. Although the proposed EICe� is not outstanding for �F.N�, this is

an inevitable result, since there is a trade-o� between bias and variance. We focus

Table 3.4: Average number of zero in Part 1 (Simulation 1)

T.N (%) F.N (%)

LTS-lasso LTS-Ela LTS-lasso LTS-Ela

Outliers

0%

CV 0.35 0.29 0.01 0.01

AIC 0.05 0.20 0.00 0.00

BIC 0.05 0.20 0.00 0.00

EICe� 0.29 0.43 0.00 0.00

10%

CV 0.43 0.31 0.01 0.03

AIC 0.06 0.39 0.00 0.12

BIC 0.05 0.38 0.00 0.11

EICe� 0.50 0.61 0.11 0.15

20%

CV 0.44 0.37 0.05 0.07

AIC 0.10 0.27 0.02 0.05

BIC 0.05 0.25 0.02 0.05

EICe� 0.42 0.60 0.11 0.19

30%

CV 0.46 0.43 0.14 0.17

AIC 0.11 0.18 0.04 0.07

BIC 0.10 0.16 0.04 0.06

EICe� 0.50 0.61 0.15 0.21
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Table 3.5: Average number of zero in Part 1 (Simulation 2)

T.N (%) F.N (%)

LTS-lasso LTS-Ela LTS-lasso LTS-Ela

Outliers

0%

CV 0.24 0.36 0.01 0.10

AIC 0.17 0.21 0.00 0.01

BIC 0.17 0.21 0.00 0.01

EICe� 0.13 0.46 0.01 0.04

10%

CV 0.27 0.44 0.05 0.19

AIC 0.17 0.24 0.04 0.02

BIC 0.17 0.23 0.04 0.02

EICe� 0.10 0.45 0.05 0.07

20%

CV 0.34 0.41 0.10 0.20

AIC 0.18 0.28 0.04 0.03

BIC 0.18 0.26 0.04 0.03

EICe� 0.12 0.54 0.04 0.13

30%

CV 0.31 0.37 0.10 0.17

AIC 0.12 0.30 0.05 0.03

BIC 0.12 0.28 0.05 0.03

EICe� 0.11 0.51 0.05 0.12

on the �T.N�, because a main aim of the lasso-type approaches is �sparsity�. We

also compare the forecast accuracy of the LTS-lasso and proposed LTS-Ela. Because

we con�rmed the superiority of the e�cient bootstrap information criterion to the

other criteria in Table 3.3, 3.4 and 3.5, we will show the forecasting results based on

the e�cient bootstrap information criterion. The root mean square errors (RMSE)

by over the 50 simulated datasets are shown in Table 3.6. From Table 3.6, it can be
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Table 3.6: Forecasting root mean square error in Part 1

0% 10% 20% 30%

Simulation 1
LTS-lasso 1.09 2.24 2.87 3.62

LTS-Ela 1.19 2.20 2.67 3.31

Simulation 2
LTS-lasso 4.29 13.15 13.40 28.48

LTS-Ela 5.74 7.20 8.25 8.87

seen that the proposed LTS-Ela outperforms for the forecasting accuracy compared

with the LTS-lasso. In Simulation 2, the LTS-lasso showed poor results, especially

under the highly contaminated data. This implies that the lasso cannot perform well

in p > n situation.

In summary, the proposed LTS-Ela based on the EICe� outperforms for �sparsity�

and forecasting accuracy in the presence of outliers.

Part 2 : GICR.la via local quadratic approximation

In part 2, we evaluate the proposed GICR.la. In order to evaluate the proposed

GICR.la, we compare with results by the BIC which showed the superior performance

for choosing the regularization parameters in Wang et al. (2007), and results by the

cross-validation.

We evaluate the proposed method as a tuning parameter selector in the M-lasso

and M-SCAD with the Huber function,

• M-lasso:

β̂M-la = arg min
β
{

n∑
i=1

ρ(ri) + λ

p∑
j=1

|βj|}. (3.66)

72



• M-SCAD:

β̂M-SCAD = arg min
β
{

n∑
i=1

ρ(ri) +

p∑
j=1

pλ(|βj|)}, (3.67)

where

pλ(|βj|) = λ|βj|, if |βj| ≤ λ; (3.68)

= −( |βj|
2 − 2aλ|βj|+ λ2

2(a− 1)
), if λ < |βj| ≤ aλ; (3.69)

=
(a+ 1)λ2

2
, if |βj| > aλ. (3.70)

For model estimation by the M-lasso and M-SCAD, we use an iterative reweighted

least square (IRLS) algorithm (Zhang et al., 2009). Two simulations were

Table 3.7: RMSE and sparsity in Part 2 (Simulation 1)

Method Outliers RMSE
No.of Zeros

Outliers RMSE
No.of Zeros

T.N F.N T.N F.N

M-Lasso

GICR.la

1%

1.10 5.8 0.0

5%

1.12 7.0 0.0

BIC 1.09 2.8 0.0 1.12 4.2 0.0

CV 1.07 5.6 0.0 1.13 5.8 5.8

GICR.la

15%

1.52 10.4 0.0

sensible

10.30 6.0 0.0

BIC 1.52 8.8 0.0 10.26 3.4 0.0

CV 1.55 5.0 0.0 10.27 0.4 0.0

M-SCAD

GICR.la

1%

1.10 6.0 0.0

5%

1.11 9.8 0.0

BIC 1.09 1.8 0.0 1.11 10.0 0.0

CV 1.07 4.4 0.0 1.14 5.6 0.0

GICR.la

15%

1.52 13.0 0.0

sensible

10.33 10.6 0.0

BIC 1.52 9.4 0.0 10.33 7.4 0.0

CV 1.50 1.4 0.0 10.52 0.8 0.0
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conducted under the cases εi are standard normal with 1%, 5% and 15% outliers for

εi ∼ N(10, 1) in σ = 1, and sensible outliers for εi ∼ D/
√
var(D), σ = 9.67, where D

is a standard double exponential distribution,

1. Simulation 1: β = (3, 1.5, 0, 0, 2, 0, 0, 0)T for n = 80,

2. Simulation 2: p = 40 as β = (3, 1.5, 0, 0, 2, 0, 0, 0, 3, 1.5, 0, 0, 2, 0, 0, 0, 3, 1.5, 0, 0)T

for n = 40.

Table 3.7 and 3.8 compare the forecasting root mean square errors (RMSE) and

simulation results for variable selection.

From the columns �RMSE�, it can be seen that all the model selection procedures

Table 3.8: RMSE and sparsity in Part 2 (Simulation 2)

Method Outliers RMSE
No.of Zeros

Outliers RMSE
No.of Zeros

T.N F.N T.N F.N

M-Lasso

GICR.la

1%

1.44 0.2 0.0

5%

1.56 1.4 0.0

BIC 1.43 0.2 0.0 1.54 1.4 0.0

CV 1.41 0.0 0.0 1.47 1.3 5.8

GICR.la

15%

3.07 2.8 0.0

sensible

12.57 20.8 0.1

BIC 3.00 2.3 0.0 12.55 5.0 0.0

CV 2.70 2.5 0.0 12.79 3.0 0.0

M-SCAD

GICR.la

1%

1.46 0.4 0.0

5%

1.53 2.0 0.0

BIC 1.46 0.4 0.0 1.52 0.8 0.0

CV 1.36 1.8 0.0 1.47 2.0 0.0

GICR.la

15%

3.00 5.0 0.0

sensible

13.50 15.0 0.1

BIC 2.97 3.0 0.0 13.03 2.1 0.0

CV 2.76 3.2 0.0 12.68 1.0 0.0
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give the similar forecasting results in Simulation 1, and the cross-validation shows

superiority in Simulation 2. The columns �T.N� show that the GICR.la is superior

for the �sparsity� in all outlier situations and simulation settings. It implies that the

proposed GICR.la is a useful tool for robust L1-type regression modeling, especially

for the variable selection.

Part 3 : Evaluation of robust coordinate descent procedure.

In part 3, we evaluate the proposed robust coordinate descent algorithm. We sim-

ulated N = 100 datasets consisting of n = 80 observations from (3.65) with β =

(3, 1.5, 0, 0, 2, 0, 0, 0)T and σ = 1. The tuning parameters λ and h are selected by

the generalized information criterion via local quadratic approximation as shown in

Section 3.2.2. We consider the following four situations that outliers in only response

variable and outliers in both response and predictor variables.

(a) 10% outliers for N(30, 1) in only yi

(b) 10% outliers for N(0, 5) in only yi

(c) 5% outliers for N(30, 1) in yi, and 5% outliers for N(0, 5) in x1 and x5

(d) 5% outliers for N(0, 5) in yi, and 5% outliers for N(0, 5) in x1 and x5

We �rst show the stability of the proposed procedures. Table 3.9 shows the stan-

dard deviation of estimated non-zero coe�cients β̂1, β̂2 and β̂5. From Table 3.9, it

can be clearly seen that the proposed methods are more stable than ordinary proce-

dure. TheW.pre-treatment and T.pre-treatment, especially, show the outstand-

ing performance in the all situations. We also evaluate the forecasting accuracy
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and variable selection results in Table 3.10. It can be seen from Table 3.10 that

the proposed robust procedures produce reliable regression modeling results even in

the presence of outliers, especially the W.coordinate descent algorithm shows

the best performance in overall. In short, the proposed robust coordinate descent

Table 3.9: Standard deviation of estimated β̂1, β̂2, β̂5 in Part 3

β̂1 β̂2 β̂5

(a)

coordi.al 1.256 1.261 1.287

W.coordi.al 0.566 0.336 0.449

T.coordi.al 0.526 0.396 0.442

W.pre-treatment 0.799 0.617 0.730

T.pre-treatment 0.843 0.538 0.720

(b)

coordi.al 0.888 0.732 0.919

W.coordi.al 0.509 0.365 0.458

T.coordi.al 0.503 0.378 0.456

W.pre-treatment 0.746 0.514 0.674

T.pre-treatment 0.690 0.559 0.683

(c)

coordi.al 1.237 0.772 1.112

W.coordi.al 0.436 0.324 0.365

T.coordi.al 0.467 0.327 0.431

W.pre-treatment 0.957 0.546 0.876

T.pre-treatment 1.219 0.554 0.978

(d)

coordi.al 1.211 0.623 1.013

W.coordi.al 0.458 0.281 0.375

T.coordi.al 0.443 0.287 0.374

W.pre-treatment 1.127 0.516 0.980

T.pre-treatment 1.129 0.462 0.853
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Table 3.10: RMSE and sparsity in Part 3

RMSE T.N F.N

(a)

coordi.al 3.73 0.50 0.19

W.coordi.al 2.12 0.96 0.10

T.coordi.al 2.26 0.95 0.10

W.pre-treatment 3.29 0.88 0.13

T.pre-treatment 3.30 0.85 0.11

(b)

coordi.al 2.63 0.79 0.14

W.coordi.al 1.98 0.95 0.08

T.coordi.al 2.05 0.94 0.10

W.pre-treatment 2.32 0.90 0.09

T.pre-treatment 2.34 0.91 0.13

(c)

coordi.al 2.64 0.68 0.11

W.coordi.al 1.76 0.95 0.05

T.coordi.al 1.76 0.94 0.05

W.pre-treatment 2.10 0.94 0.10

T.pre-treatment 2.17 0.93 0.12

(d)

coordi.al 2.11 0.81 0.12

W.coordi.al 1.62 0.94 0.04

T.coordi.al 1.66 0.93 0.04

W.pre-treatment 1.79 0.95 0.10

T.pre-treatment 1.59 0.95 0.06

procedures are superior to existing one in the viewpoint of the stability, forecasting

accuracy and sparsity in the presence of outliers.

Part 4 : Robust e�cient bootstrap information criterion.

In part 4, we evaluate the robust model evaluation criterion, called a robust e�cient
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Figure 3.8: Standard deviation of bootstrap estimate of the D, D1 +D3, D1, D2 and

D3

bootstrap information criterion for choosing the tuning parameters. First, we show

the stability of the proposed robust e�cient bootstrap information criterion in the

presence of outliers. Figure 3.8 shows bar plots of the standard deviation of bootstrap

estimates D, D1 + D3, D1, D2 and D3, for sample size n = 100. From the Figure

3.8, it can be clearly seen that bootstrap estimates D, D1 +D3, D1, D2, and D3 in

the proposed robust bootstrap information criterion (black bar plots) show smaller

standard deviation compared with those in the existing one (white bar plots). It

implies that the proposed robust bootstrap information criterion is more e�cient and

stable against outliers than the existing one, and thus we can expect e�ective and

robust sparse regression modeling by using the proposed method.

We evaluate the proposed robust e�cient bootstrap information criterion as a
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tuning parameters selector for robust sparse regression modeling. In this part, we

simulated N = 50 datasets consisting of n = 80 observations from (3.65) with β =

(3, 1.5, 0, 0, 2, 0, 0, 0)T and σ = 1. Simulations are conducted in the presence of 5%,

10%, and 15% outliers for εi ∼ N(30, 3). To evaluate the proposed method, we choose

the regularization parameters and tuning constant by the robust e�cient bootstrap

information criterion and by the ordinary bootstrap information criterion. We also

compare the results by the 10-fold cross-validation. To �nd the solution of the robust

L1-type regularization, we use an iterative reweighted least square (IRLS) algorithm

(Zhang et al., 2009).

We conduct the three simulations for robust sparse regression modeling by the

LTS-lasso, M-lasso and M-SCAD with the Huber M-function in (3.4). We show the

variable selection results and forecasting accuracy of robust sparse regression modeling

under the LTS-lasso, M-lasso and M-SCAD in Table 3.11, 3.12 and 3.13, respectively.

• LTS-lasso

Table 3.11: LTS-lasso in Part 4

Outlier Method T.N F.N RMSE

5%

CV 0.036 0.000 1.82

E�.Boot.IC 0.036 0.000 1.99

Robust.E�.Boot.IC 0.068 0.000 1.67

10%

CV 0.008 0.000 3.17

E�.Boot.IC 0.020 0.000 3.33

Robust.E�.Boot.IC 0.048 0.000 2.83

15%

CV 0.004 0.000 4.56

E�.Boot.IC 0.008 0.000 5.00

Robust.E�.Boot.IC 0.020 0.000 4.07
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• M-lasso

Table 3.12: M-lasso in Part 4

Outlier Method T.N F.N RMSE

5%

CV 0.076 0.000 1.75

E�.Boot.IC 0.076 0.000 1.75

Robust.E�.Boot.IC 0.086 0.003 1.74

10%

CV 0.076 0.007 3.59

E�.Boot.IC 0.054 0.000 3.47

Robust.E�.Boot.IC 0.086 0.003 3.44

15%

CV 0.042 0.020 5.25

E�.Boot.IC 0.056 0.017 5.24

Robust.E�.Boot.IC 0.060 0.020 5.20

• M-SCAD

Table 3.13: M-SCAD in Part 4

Outlier Method T.N F.N RMSE

5%

CV 0.076 0.000 1.75

E�.Boot.IC 0.084 0.000 1.73

Robust.E�.Boot.IC 0.152 0.000 1.72

10%

CV 0.036 0.000 3.45

E�.Boot.IC 0.036 0.000 3.58

Robust.E�.Boot.IC 0.064 0.020 3.58

15%

CV 0.008 0.070 5.39

E�.Boot.IC 0.052 0.040 5.29

Robust.E�.Boot.IC 0.084 0.070 5.27

From the column �T.N� in all Tables 3.11, 3.12 and 3.13, it can be seen that the

proposed robust e�cient bootstrap information criterion is a useful tool as a tuning
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parameter selector for �sparsity� in the presence of outliers. It can be also seen that

the proposed method is superior to the existing ones for the forecasting accuracy

(see column �RMSE�). In short, the proposed robust e�cient bootstrap information

criterion is e�ective for robust sparse regression modeling via LTS-lasso, M-lasso and

M-SCAD in the viewpoint of the �sparsity� and forecasting accuracy.

3.6 Real-world examples

We illustrate the proposed robust modeling strategies through the real-world data

analysis to evaluate the practicality. In this section, we evaluate proposed LTS-Ela

with e�cient bootstrap information criterion through the McDonald and Schwing

dataset (Croux and Ruiz-Gazen, 2005), and robust coordinate descent procedures

through the crime data (Agresti and Finlay, 1997).

Part 1: LTS-ela with e�cient bootstrap information criterion

In Part 1 of real-world examples, we apply the proposed LTS-Ela and e�cient boot-

strap information criterion to the McDonald and Schwing dataset (Croux and Ruiz-

Gazen, 2005). The McDonald and Schwing dataset consists of p=16 variables

· Y: total Age Adjusted Mortality Rate

· x1: mean annual precipitation in inches

· x2: mean January temperature in degrees Fahrenheit

· x3: mean July temperature in degrees Fahrenheit

· x4: percent of 1960 SMSA population that is 65 years of age or over
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· x5: population per household, 1960 SMSA

· x6: median school years completed for those over 25 in 1960 SMSA

· x7: percent of housing units that are found with facilities

· x8: population per square mile in urbanized area in 1960

· x9: percent of 1960 urbanized area population that is non-white

· x10: percent employment in white-collar occupations in 1960 urbanized area

· x11: percent of families with income under 3,000 in 1960 urbanized area

· x12: relative population potential of hydrocarbons, HC

· x13: relative pollution potential of oxides of nitrogen, NOx

· x14: relative pollution potential of sulfur dioxide, SO2

· x15: percent relative humidity, annual average at 1 p.m.

These are socioeconomic and climatological variables measured at each of the

n=60 metropolitan statistical areas in the United States. The 15 independent vari-

ables and mortality is measured from 1959 to 1961. We estimate the regression model

based on the observations 1 to 40, and then we calculate forecasting RMSE based on

observations 41 to 60 in Table 3.14.

The variables x1, x3, x6, x7, x8, x9, x10, x12, x14 and variables x1, x2, x8, x9,

x10, x14 are selected by LTS-lasso with the cross-validation and with the e�cient

bootstrap information criterion, respectively. And, the variables x1, x2, x3, x5, x6,

x7, x8, x9, x10, x11, x13, x14 and variables x1, x2, x3, x4, x6, x7, x8, x9, x10, x12,

x14 are selected by LTS-Ela with the cross-validation and with the e�cient bootstrap
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Table 3.14: Real data analysis results in Part 1

Elastic net LTS-lasso LTS-Ela

CV 47.93 47.80 46.12

AIC 49.85 48.27 47.35

BIC 49.85 48.27 47.35

EICe� 46.82 45.11 45.02

information criterion, respectively. The AIC and BIC tend to select all variables in

the Elastic, LTS-lasso and LTS-Ela. From Table 3.14, it can be �rst seen that the

LTS-Ela shows the outstanding performance compared with ordinary elastic net and

LTS-lasso in the presence of outliers. We can also see that the LTS-Ela, especially,

based on the e�cient bootstrap information criterion shows the smallest RMSE. This

implies that the proposed methods are also e�ective for the real world data analysis,

especially contaminated dataset.

Part 2: Robust coordinate descent procedures

In part 2 of real world examples, we apply the proposed robust coordinate descent

procedures to the crime data (Agresti and Finlay, 1997). The crime dataset consists

of p=9 variables for n = 51 observations as follows,

· crime: violent crimes per 100,000 people

· sid: state id

· state: state name

· murder: murders per 1,000,000 people

· pctmetro: the percent of the population living in metropolitan areas
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Table 3.15: Real data analysis results in Part 2

Coordi.al W.Coordi.al T.Coordi.al W.pre T.pre

RMSE 126.33 106.95 114.58 114.13 107.72

· pctwhite: the percent of the population that is white

· pcths: percent of population with a high school education or above

· poverty: percent of population living under poverty line

· single: percent of population that are single parents

The variable �crime� is considered as a response variable and the variables �murder,

pctmetro, pctwhite, pcths, poverty� and �single� are considered as predictor variables

(i.e., p=6). The model is estimated by the lasso via the proposed robust coordi-

nate descent procedures. Table 3.15 shows the forecasting RMSE by each algorithm.

From Table 3.15, it can be seen that the proposed robust procedures outperform

for forecasting accuracy compare with ordinary coordinate descent algorithm. The

W.coordinate descent algorithm, especially, shows the best performance for the

real data analysis.

84



Chapter 4

Lag weighted lasso for time series

model

In this chapter, we introduce a novel L1-type regularization method for time series

model (Park and Sakaori, 2012a). In the real world, many time series occur, such as

stock market index, monthly mortality and measurements of environmental factors.

The response variable in the time series model is explained by a parametric function of

the present and past values of predictor variables and past values of response variable.

It implies that the lag length of the past variables is an important factor for time

series modeling.

We propose a novel regularization method for time series model in line with the

adaptive lasso. The adaptive lasso is able to identify the true model consistently and

estimator is e�cient by imposing the penalty which re�ects the coe�cient size of each

variable. Although the adaptive lasso provides a useful tool for regression modeling,

it is not suitable for time series model, since the adaptive lasso cannot re�ect the
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e�ect of lag length, which is a crucial factor in the time series modeling. We propose

a lag weighted lasso which considers not only coe�cient size but also the lag e�ects

for estimation of the time series model. We observe that the proposed lag weighted

lasso improves a forecasting accuracy by re�ect the properties of time series.

The rest of this chapter is organized as follows. In Section 4.1, we brie�y introduce

the general time series models. We propose a lag weighted lasso with three types of

weights in Section 4.2. Monte Carlo simulations are conducted to investigate the

e�ectiveness of the proposed lag weighted lasso in Section 4.3. A real world example

through cerebrovascular disease data is shown in Section 4.4.

4.1 Time series model

Autoregressive (AR) model

The most widely used and basic time series model is the autoregressive (AR) model.

Consider the series Yt, Yt−1, ..., Yt−q. The AR(q) model is constructed by lagged vari-

ables of response variable and an error term,

Yt = α+

q∑
l=0

βlL
lYt + et (4.1)

= α+ β1Yt−1 + · · ·+ βqYt−q + et,

where et is a white noise process having a zero mean and a constant variance σ2,

cov(et, Yt−l) = 0 for all l ̸= 0, and L represents the lag operator (i.e L0Yt = Yt,

L1Yt = Yt−1). As shown in (4.1), the response variable Yt is explained by only the

past values of response variable in AR model.
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Autoregressive Distributed Lag (ADL) model

When the present value Yt cannot be fully explained by the past series Yt−l, we con-

sider additional explanatory variables Xj,t−l (j = 1, ..., p, l = 0, ..., qj) in order to

improve forecast accuracy. Autoregressive distributed lag (ADL) model is composed

of lagged variables of response variable, and current and lagged variables of explana-

tory variables. The ADL(q0, q1, q2, ..., qp) model is given by

Yt = α +

q0∑
l=1

β0,lL
lYt +

q1∑
l=0

β1,lL
lX1,t + . . .+

qp∑
l=0

βp,lL
lXp,t + et, (4.2)

where et is a white noise process having zero mean and constant variance σ2. We can

express (4.2) as follows:

Yt = α +

p∑
j=0

qj∑
l=0

βj,lL
lXj,t + et, (4.3)

where we assume that β0,0 = 0, X0,t = Yt, and the following three assumptions hold:

1. E(et|Yt−1, Yt−2, ..., X1,t, X1,t−1, ..., Xp,t−1, Xp,t−2, ...) = 0.

2. (Yt, X1,t, ..., Xp,t) are stationary.

3. The correlation coe�cients between (Yt, X1,t, ..., Xp,t) and (Yt−l, X1,t−l, ..., Xp,t−l)

decline as l increase.

4.2 Lag weighted lasso for time series model

General time series models are composed of lagged variables, and the e�ects of the ex-

planatory variables on the response variable decay to zero as time passes by (Ravines

et al., 2006). In other words, even for variables having strong e�ect, the variable e�ect
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reduces as increasing lag length as shown in the assumption 3 of ADL model. This

implies that we should consider the lag e�ects in the time series modeling without

seasonality.

In the adaptive lasso, the amount of shrinkage is controlled by β̂, and hence the

coe�cients of variable with large e�ect are shrunk slightly, whereas coe�cients of

variable with small e�ects are shrunk signi�cantly. Although the adaptive lasso e�ec-

tively perform estimation and variable selection for regression modeling by imposing

di�erent weights to each coe�cient, it may not give proper and interpretable results

for time series models with lagged variable, since its weight does not re�ect the lag

length.

Numerous studies on weight re�ecting the lag e�ects in time series model have

been conducted (Matsumoto and Szidarovszly 2010; Shrestha 2007; Tibshirani 2006).

We consider the weight in Shrestha (2007) which is in line with our assumption �The

factor e�ects reduce as lag length increases�. Shrestha (2007) assumed that the re-

sponse variable is explained by the cumulative and extended lag e�ects of explanatory

variables. And, they claimed that the tth explanatory variable can be expressed under

the following assumption:

Xt =

q∑
l=0

ωlXt−l, (4.4)

where

ωl = α(1− α)l, (4.5)

and α is a constant, 0 < α < 1, that is wl is a geometrically decreasing weight up to

the qth lag. We use the weight ωl = α(1− α)l for re�ecting the lag e�ects, and then
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propose a lag weighted lasso with three type of weights for the stationary time series.

The three type of weights are composed of two parts, one re�ecting the coe�cient

size and the other one re�ecting the lag e�ects,

• re�ecting only the lag e�ects:

w
(1)
j,l =

1

[α(1− α)l]γ
. (4.6)

• re�ecting coe�cient size and lag e�ects with γ on only the coe�cient size:

w
(2)
j,l =

1

(|β̂j,l|)γ
1

α(1− α)l
. (4.7)

• re�ecting coe�cient size and lag e�ect with γ on both the coe�cient size and

lag e�ects:

w
(3)
j,l =

1

[|β̂j,l|α(1− α)l]γ
. (4.8)

The proposed weights in (4.6), (4.7) and (4.8) control the amounts of shrinkage

based on the coe�cients size and lag length. The lag weighted lasso is a similar

manner to the adaptive lasso but with a key di�erence. The lag weighted lasso has

weights which re�ect not only coe�cients size but also the lag e�ects unlike the

adaptive lasso, and thus the estimators of variable with small α(1 − α)l and β̂ are

considerably shrunk. In other words, coe�cient of variable in distant past with small

e�ect is estimated in small, or this variable is deleted from the model. If the time

series includes seasonality, we should take a suitable di�erence of the series before

applying the lag weighted lasso.

For ADL model, we �rst �t the AR model, and then consider additional explana-

tory variables in order to explain the part of future yt which cannot be explained by
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lagged variables of response variable. To re�ect the ADL modeling procedure to the

lag weighted lasso, we suggest not only the general weight (i.e., Type 2) imposing

both lagged response and explanatory variables, but also Type 1 weight imposing

only explanatory variables as follow

• Type 1: the part of lag e�ect in weights is on only the explanatory variables,

• Type 2: the part of lag e�ect in weights is on both the explanatory variables

and lagged variables of response variable.

It implies that we select additional explanatory variables more strictly than lagged

response variable by using the Type 1 weight. Estimates of the lag weighted lasso with

Type 1 and Type 2 weights are given in Table 4.1 and 4.2 respectively. We can use

either the least square estimator or ridge estimator as β̂, and choose regularization

parameters from γ > 0, λ > 0 and 0 < α < 1. From Tables 4.1 and 4.2, it can be

seen that the lag weighted lasso assigns di�erent weights to di�erent coe�cient and

Table 4.1: Estimates of the lag weighted lasso with Type 1 weight

weight lag weighted lasso estimates

w(1)
β̂∗
w(1) = arg min

β
∥y −

∑p
j=0

∑qj
l=0 βj,lL

lxj,t∥2 + λ
∑p

j=0

∑qj
l=0 ŵ

(1)
j,l |βj,l|

= arg min
β

∥y −
∑p

j=0

∑qj
l=0 βj,lL

lxj,t∥2

+λ(
∑q0

l=1
|β0,l|
|β̂0,l|γ

+
∑p

j=1

∑qj
l=0

|βj,l|
[α(1−α)l]γ

)

w(2)
β̂∗
w(2) = arg min

β
∥y −

∑p
j=0

∑qj
l=0 βj,lL

lxj,t∥2 + λ
∑p

j=0

∑qj
l=0 ŵ

(2)
j,l |βj,l|

= arg min
β

∥y −
∑p

j=0

∑qj
l=0 βj,lL

lxj,t∥2

+λ(
∑q0

l=1
|β0,l|
|β̂0,l|γ

+
∑p

j=1

∑qj
l=0

|βj,l|
(|β̂j,l|)γ [α(1−α)l]

)

w(3)
β̂∗
w(3) = arg min

β
∥y −

∑p
j=0

∑qj
l=0 βj,lL

lxj,t∥2 + λ
∑p

j=0

∑qj
l=0 ŵ

(3)
j,l |βj,l|

= arg min
β

∥y −
∑p

j=0

∑qj
l=0 βj,lL

lxj,t∥2

+λ(
∑q0

l=1
|β0,l|
|β̂0,l|γ

+
∑p

j=1

∑qj
l=0

|βj,l|
(|β̂j,l|[α(1−α)l])γ

)
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Table 4.2: Estimates of the lag weighted lasso with Type 2 weight

weight lag weighted lasso estimates

w(1)
β̂∗
w(1) = arg min

β
∥y −

∑p
j=0

∑qj
l=0 βj,lL

lxj,t∥2 + λ
∑p

j=0

∑qj
l=0 ŵ

(1)
j,l |βj,l|

= arg min
β

∥y −
∑p

j=0

∑qj
l=0 βj,lL

lxj,t∥2 + λ
∑p

j=0

∑qj
l=0

|βj,l|
[α(1−α)l]γ

w(2)
β̂∗
w(2) = arg min

β
∥y −

∑p
j=0

∑qj
l=0 βj,lL

lxj,t∥2 + λ
∑p

j=0

∑qj
l=0 ŵ

(2)
j,l |βj,l|

= arg min
β

∥y−
∑p

j=0

∑qj
l=0 βj,lL

lxj,t∥2 + λ
∑p

j=0

∑qj
l=0

|βj,l|
(|β̂j,l|)γ [α(1−α)l]

w(3)
β̂∗
w(3) = arg min

β
∥y −

∑p
j=0

∑qj
l=0 βj,lL

lxj,t∥2 + λ
∑p

j=0

∑qj
l=0 ŵ

(3)
j,l |βj,l|

= arg min
β

∥y−
∑p

j=0

∑qj
l=0 βj,lL

lxj,t∥2 + λ
∑p

j=0

∑qj
l=0

|βj,l|
(|β̂j,l|[α(1−α)l])γ

lag period. This implies that the lag weighted lasso re�ects the properties of time

series, and thus we can e�ectively perform the time series modeling.

4.3 Simulation studies

We examine, through Monte Carlo experiments the e�ectiveness of the proposed lag

weighted lasso for time series model comparing with the lasso and adaptive lasso. We

considered the following ADL(5,3,3) model:

Yt = α +
5∑

l=1

β0,lYt−l +
3∑

l=0

β1,lX1,t−l +
3∑

l=0

β2,lX2,t−l + et. (4.9)

For estimating the time series model, we used the LARS algorithm (Efron et al.,

2004), and the least square estimator as β̂. The explanatory variables X1 and X2 are

generated from the bivariate normal distribution N2(0,Σ), where Σ =

 1 0.5

0.5 1

, and
et is a zero mean white noise process with a constant variance σ2. The regularization

parameters are chosen from 0 < α < 1 and 0 < γ ≤ 5 by 10-fold cross-validation.
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As mentioned above, the lag weighted lasso is a suitable method when the variable

e�ects decrease with increasing lag length. However, we consider several situations

because this assumption is not always true.

Case 1: The variable e�ects decrease with increasing lag length.

Case 2: The variable e�ects are not related to the lag period.

For the two cases, we consider two models.

Model 1: Many small e�ects.

Model 2: A few large e�ects.

We generated 100 datasets for n = 100 and σ = 1, 3, 5 in each situation. Table

4.3 shows the true model settings for the simulation studies. In practice, the choice

of q0, ..., qp is a crucial matter. Pesaran (1999) introduced a method for choice the

order q0, ..., qp by AIC of all model based on the combination q0, ..., qp. However, it

Table 4.3: Simulation settings

Yt−l X1,t−l X2,t−l

β0,1 β0,2 β0,3 β0,4 β0,5 β1,0 β1,1 β1,2 β1,3 β2,0 β2,1 β2,2 β2,3

Case 1

Model 1 : many small e�ects, σ = 1, 3, 5

0.3 −0.2 0.1 0 0 0.9 0.7 0.5 0 1 −0.7 0.5 0

Model 2 : A few large e�ects, σ = 1, 3, 5

−0.5 −0.4 0 0 0 3 0 0 0 −3 2 0 0

Case 2

Model 1 : many small e�ects, σ = 1, 3, 5

0 0.1 −0.2 0 0.3 −0.4 −0.3 0 0.7 −0.7 0 0.3 1

Model 2 : A few large e�ects, σ = 1, 3, 5

0 0.4 0 −0.6 0 0 0 2 0 0 −2 0 3
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is improper for model with large number of predictor variables in the view point of

the cost and time consuming. In general, the order of lagged variable yt−l (i.e., q0) is

selected based on the autocorrelation function (ACF), partial autocorrelation function

(PACF) and AIC based on the AR model constructed by only lagged variables of

response variable. And then we consider the additional explanatory variables based on

the granger causality test (Lee, 2007). The lag order of predictor variables, q1, ..., qp,

are selected by consider a characteristic of data, explanatory power and principle of

Parsimony. In this study, we �t the ADL model by using the ACF, PACF and granger

causality test.

Figure 4.1 shows the relative prediction error (RPE)

RPE = E[(ŷ − xTβ)2]/σ2, (4.10)

for each method (the horizontal line shows the RPE of the adaptive lasso). From the

Figure 4.1, it can be seen that the lag weighted lasso outperforms both the lasso and

adaptive lasso for forecast accuracy. Although the optimal weight in the lag weighted

lasso is di�erent in the true models, the lag weighted lasso with Type 1 w(2) shows

the best performance in overall.

We also compare the accuracy of the true model selection. We compute the

probability of the lasso solution path containing the true model in the 100 replications

in Table 4.4. The lag weighted lasso shows superiority for true model selection in Case

1. For Case 2, the adaptive lasso shows better results than the lag weighted lasso.

This result is comprehensible from common sense, since the lag weighted lasso is a

suitable method for situation that the variable e�ects decrease with increasing lag

length (i.e., Case 1).
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Figure 4.1: RPE for each method.
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Table 4.4: Probability of containing the true model in solution path

Case 1 Case 2

model 1 model 2 model 1 model 2

σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5 σ = 1 σ = 3 σ = 5

lasso 0.00 0.01 0.00 0.34 0.43 0.37 0.09 0.01 0.10 0.87 0.72 0.53

adaptive lasso 0.19 0.04 0.03 0.90 0.82 0.54 0.23 0.01 0.01 1.00 0.89 0.63

Type1 w(1) 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.04 0.02 0.00

Type2 w(1) 0.35 0.33 0.24 0.58 0.47 0.48 0.05 0.00 0.00 0.16 0.05 0.00

Type1 w(2) 0.19 0.00 0.04 0.80 0.74 0.51 0.20 0.01 0.01 0.67 0.74 0.46

Type2 w(2) 0.30 0.14 0.18 0.84 0.81 0.65 0.16 0.00 0.01 0.72 0.53 0.43

Type1 w(3) 0.13 0.07 0.03 0.57 0.54 0.43 0.10 0.00 0.00 0.50 0.37 0.18

Type2 w(3) 0.22 0.08 0.06 0.77 0.70 0.48 0.10 0.01 0.01 0.71 0.55 0.37

4.4 Real-world example: Cerebrovascular Mortality

data

We illustrate the weighted lasso through the analysis of Cerebrovascular Mortality

data (Park and Lee, 2009) to evaluate the practicality. The dataset consists of

monthly mortality of cerebrovascular diseases and environmental factors from January

1996 to December 2005 in Seoul, Korea as given in Park and Lee (2009). The envi-

ronmental factors as explanatory variables are air pollutants SO2, O3, NO2, PM10,

temperature and humidity obtained from Korea' National Statistics O�ce as shown

in Table 4.5.

This example is suitable for evaluating the lag weighted lasso, since the cere-

brovascular disease mortality is a�ected by cumulative and extended lag e�ects of
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Table 4.5: Environmental factors

variables unit sources

Air pollutants

SO2 X1

ppmO3 X2 Korea National Statistical O�ce

NO2 X3 (Auto-measured data)

PM10 X4 µg/m3

Meteorology
Temperature X5

oC Korea National Statistical O�ce

(Monthly average)Humidity X6 %

the environmental factors. We forecast the monthly mortality in 2005 based on the

data from 1996 to 2004 as training data. The model is composed from 1 to 12 lagged

variables of mortality and from 0 to 5 lagged variables of environmental factors. Table

4.6 shows the forecast results for each method. From the variable selection results,

we identi�ed that the adaptive lasso had tendency that if one variable is selected,

all of its lagged variable are also selected. It implies that the adaptive lasso cannot

re�ect the lag e�ect. Furthermore, the adaptive lasso did not select yt−1 unlike to

the lag weighted lasso with Type 2 w(3). In the ADL model, the recent past variables

of yt explain a major part of future yt, and thus the adaptive lasso might show not

good performance for forecasting accuracy as shown in Table 4.6. In short, the lag

weighted lasso with Type 2 w(3) outperforms both the lasso and the adaptive lasso in

real data analysis.

Table 4.6: Forecast results for cerebrovascular disease mortality in 2005

LS lasso adalasso Type1w(1) Type2w(1) Type1w(2) Type2w(2) Type1w(3) Type2w(3)

RPE 0.7630 0.5849 0.5541 0.6879 0.6270 0.4436 0.4377 0.4078 0.3934
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In recently years, various studies about e�ects of environmental factor on mortality

have been conducted worldwide. We expect that the lag weighted lasso may helpful

to these studies.
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Chapter 5

Symbolic candle chart-valued time

series

This chapter introduces a new type of symbolic data, called a candle chart valued time

series (CTS), and presents novel approaches for forecasting CTS (Park and Sakaori,

2012b).

Along with increasing data size and growth in the use of huge dataset, summa-

rization and visualization of large dataset are increasingly important. To address

this issue, symbolic data analysis (SDA) has been introduced by Bock and Diday

(2000). The symbolic data analysis is able to e�ectively summarize and visualize

huge databases by represent as formats of lists, intervals and distributions not single

values. Furthermore, SDA takes account of the information that cannot be repre-

sented within the classical data model.

There is currently much discussion about the interval-valued data analysis which

focuses on the interval of variable not single value. Billard and Diday (2000) intro-

98



duced linear regression modeling approaches for symbolic interval-valued data based

on the mid-point of intervals. Lima Neto and De Carvalho (2008) proposed a new

approach for the interval-valued data based on the mid-point and half-range of inter-

vals. Lima Neto et al. (2006) also proposed new sum of squares based on correlation

between the mid-point and half-range of intervals.

Maia et al. (2008) introduced approaches to interval-valued time series based

on autoregressive (AR) model, autoregressive integrated moving average (ARIMA)

model, arti�cial neural network (ANN) model and hybrid ARIMA and ANN model.

Arroyo et al. (2009) introduced various forecasting methods for a histogram-valued

time series (HTS).

We introduce a new type of symbolic data, a candle chart-valued time series

(CTS). The candle chart consisting of open, close, highest, and lowest stock indices

(or prices) has been widely used to empirically forecast stock index direction. By

using the historical stock indices, we have been establishing a trading strategy. The

dataset of candle chart, however, may become extremely large, since the candle chart

is constructed by four indices at time t. We consider the candle chart consisting of

the four indices as a one symbolic data, called a candle chart valued time series, and

then propose the forecasting approaches for future stock index direction based on

the CTS. We observe that the information about the stock indices can be e�ectively

summarized and visualized by using the CTS, and forecasting accuracy of stock index

direction is improved by using the our approaches.

The rest of this chapter is organized as follows. In Section 5.1, we introduce a

typical symbolic data. Section 5.2 presents approaches to the symbolic interval-valued

data which are basis of our study. We introduce a candle chart-valued time series, and
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propose the forecasting approaches for the CTS in Section 5.3. A real world example

through the stock indices of �ve major Asian countries is presented in Section 5.4.

5.1 Symbolic data

Symbolic data was introduced in order to summarize and visualize information from

a large dataset. In the viewpoint of the symbolic data analysis, a huge classical

dataset can be organized as a manageable symbolic data by represent as formats

of list, distributions, interval, etc. We introduce two typical symbolic data, called

interval-valued data and histogram-valued data.

Table 5.1: Classical data: pulse rate

01Jul12 02Jul12 · · ·

am.0 am.1 · · · pm.1 pm.2 · · · pm.11 am.0 am.1 · · · pm.1 pm.2 · · · pm.11 · · ·

patient 1 1 95 · · · 105 90 · · · 89 1 95 · · · 100 90 · · · 85 · · ·

patient 2 2 85 · · · 110 96 · · · 85 1 85 · · · 110 100 · · · 99 · · ·

patient 3 4 97 · · · 98 97 · · · 98 1 102 · · · 105 105 · · · 84 · · ·
...

...
...

...

patient 98 90 95 · · · 103 100 · · · 87 1 83 · · · 89 90 · · · 109 · · ·

patient 99 89 98 · · · 112 110 · · · 81 1 97 · · · 99 80 · · · 116 · · ·

patient 100 85 95 · · · 101 89 · · · 100 1 101 · · · 103 95 · · · 96 · · ·

Suppose we have the dataset consisting of pulse rate measured hourly as shown in

Table 5.1. The dataset represented by classical data format may become very huge,

and thus it is di�cult to e�ectively �gure out information from the huge dataset.

In the view point of the symbolic data analysis, however, the pulse rate dataset can
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Table 5.2: Interval-valued data: pulse rate

01Jul12 02Jul12 · · ·

patient 1 [85,119] [88,119] · · ·

patient 2 [80,116] [85,120] · · ·

patient 3 [81,120] [83,115] · · ·
...

...
...

...

patient 98 [83,113] [80,121] · · ·

patient 99 [89,109] [81,120] · · ·

patient 100 [80,123] [83,116] · · ·

be organized as a daily interval (i.e., [minimum, maximum]) as shown in Table 5.2.

These data is an interval-valued symbolic data. This implies that the huge dataset

can be e�ectively expressed by interval-valued data, and thus we can summarize and

visualize some information from the huge dataset.

The classical data in Table 5.1 can be also expressed as a format of the histogram.

Let consider the patient 1's data in 01Jul12 as follow,

01Jul12

am.0 am.1 · · · pm.0 pm.1 · · · pm.12

patient 1 1 95 · · · 105 90 · · · 89

In the viewpoint of the symbolic data analysis, the classical data can be organized

by follows,

yi = {pi1[ai1, bi1], ..., pisi [aisi , bisi ]}, (5.1)

where pisi is the relative frequency for the sub-interval [aisi , bisi ], i = 1, ..., n, that

is, the observed histogram takes values on si interval for i
th observation (Diday and
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Nori, 2008). This is a histogram-valued data.

As shown above, the huge dataset can be summarized by the interval-valued data

and histogram-valued data. This implies that we can e�ectively organize and visualize

the large dataset by using the symbolic data analysis.

In order to analyze the information summarized by the symbolic data, numerous

studies have been conducted by using statistical models (e.g., regression model, time

series model, etc). For details on the symbolic data analysis, see Diday and Nori

(2008).

5.2 Approaches for symbolic interval-valued data

We brie�y introduce approaches for symbolic interval-valued data based on mid-point

and half-range (Billard and Diday, 2000; Lima Neto and De Carvalho, 2006, 2008),

which are basis of our study.

5.2.1 Centre and Range method

Centre and Range method (CRM method), proposed by Lima Neto and De Carvalho

(2008), considers information about mid-point and half-range of interval between

upper bound with lower bound of variable on the linear regression model. The CRM

method is constructed by yc and yr, xcj and x
r
j (j = 1, ..., p) as the mid-point and half-

range of the response variables y and predictor variable xj, respectively. The linear

regression model based on the CRM method consists of two vectors, wi = (xc
i , y

c
i )
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and ri = (xr
i , y

r
i ), with xc

i = (xci1, ..., x
c
ip) and xr

i = (xri1, ..., x
r
ip) where

yci =
yLi

+ yUi

2
, xcij =

xLij
+ xUij

2
, (5.2)

yri =
yLi
− yUi

2
, xrij =

xLij
− xUij

2
,

where yL and yU , and xL and xU are lower bound and upper bound of y and x,

respectively.

The mid-points (yci ) and half-range (yri ) of response variable are explained by the

mid-point (xcij) and the half-range (xrij) of predictor variables respectively,

yci = βc
0 + βc

1x
c
i1 + · · ·+ βc

px
c
ip + εci , (5.3)

yri = βr
0 + βr

1x
r
i1 + · · ·+ βr

px
r
ip + εri , (5.4)

and thus the sum of squares of the CRM method is given by,

SCRM =
n∑

i=1

(εci)
2 + (εri )

2. (5.5)

In the CRM method, we assume that the mid-point and half-range of interval are

independent, and thus minimizing the sum of square is equivalent to �tting the two

independent regression models of the mid-point and half-range of interval, respectively

(Lima Neto and De Carvalho, 2008). We estimate β̂c = (β̂c
0, β̂

c
1, ..., β̂

c
p) and β̂r =

(β̂r
0 , β̂

r
1 , ..., β̂

r
p) by minimizing (5.5).

5.2.2 NCRM1 and NCRM2 method

Lima Neto et al. (2006) proposed new sum of squares and new linear regression meth-

ods for interval-valued data. They considered a correlation between mid-point and

half-range on the regression model with response variables yc and yr, and predictor

variables xcj and x
r
j (j = 1, ..., p).
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NCRM1 method

In the NCRM1 method, the two regression models for mid-point and half-range have

same regression coe�cients,

yci = β0 + β1x
c
i1 + · · ·+ βpx

c
ip + εci , (5.6)

yri = β0 + β1x
r
i1 + · · ·+ βpx

r
ip + εri . (5.7)

The sum of squares of the NCRM1 method is given by,

SNCRM1 =
n∑

i=1

[(εci + εri )
2]. (5.8)

We estimate β̂ = (β̂0, β̂1, ..., β̂p) by minimizing (5.8), and the lower bound (yL) and

upper bound (yU) are predicted as follows,

ŷL = ŷc − ŷr and ŷU = ŷc + ŷr, (5.9)

where ŷc = xcβ̂ and ŷr = xrβ̂.

NCRM2 method

The NCRM2 method is similar to the NCRM1 method, but has di�erent regression

coe�cients of yci and y
r
i ,

yci = β0 + βc
1x

c
i1 + · · ·+ βc

px
c
ip + εci , (5.10)

yri = β0 + βr
1x

r
i1 + · · ·+ βr

px
r
ip + εri . (5.11)

The sum of squares of the NCRM2 method is given by

SNCRM2 =
n∑

i=1

[(εci + εri )
2]. (5.12)

In the NCRM2 method, we estimate β̂c = (β̂0, β̂c
1, ..., β̂

c
p) and β̂r = (β̂0, β̂r

1 , ..., β̂
r
p) by

minimizing (5.12), and the lower bound (yL) and upper bound (yU) are predicted like

the NCRM1 method.
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5.3 Approach for symbolic candle chart-valued time

series (CTS)

The candle chart consisting of open, close, highest, and lowest stock indices (or prices)

has been widely used to empirically forecast the direction of future stock index. By

using the historical stock indices, we have been establishing trading strategies. We

introduce a new symbolic data, candle chart-valued time series (CTS) aggregated

by the four indices time series. And we propose forecasting approaches for CTS

extending the approaches for interval-valued data.

We �rst brie�y introduce the method for symbolic interval-valued time series based

on the mid-point and half-range series (Maia et al., 2008). In this method, two time

series are considered: mid-point yct and half-range yrt of interval of time series,

yct =
yLt + yUt

2
, yrt =

yLt − yUt

2
(t = 1, 2..., T ). (5.13)

To forecast the interval-valued time series, Maia et al. (2008) applied the AR,

ARIMA, ANN, and hybrid models to the mid-point yc and half-range yr, respec-

tively. In their study, the hybrid with the ARIMA and ANN model showed the best

performance for forecasting interval-valued time series in overall.

5.3.1 Time series model for forecasting CTS

We consider the candle chart consisting of four indices, open, close, highest and lowest

as one symbolic variable at time t, called a candle chart-valued time series (CTS), in

the viewpoint of the symbolic data analysis. By using the CTS, we can e�ectively

summarize and visualize information about stock indices. In order to forecast the
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CTS, we consider the following two mid-points (yocmt , yhlmt ) and two half-ranges (yocrt ,

yhlrt ) of intervals between the open (yot ) and close (y
c
t ) indices, and between the highest

(yht ) and lowest (ylt) indices consisting of candle chart respectively, that is,

yocmt =
yct + yot

2
, yocrt =

yct − yot
2

, (5.14)

yhlmt =
yht + ylt

2
, yhlrt =

yht − ylt
2

,

where ŷocmt ≥ 0, ŷhlmt ≥ 0, ŷhlrt ≥ 0,−∞ < ŷocrt <∞ and ŷlt ≤ ŷot , ŷ
c
t ≤ ŷht .

We consider the hybrid ARIMA and ANN model, which showed the outstanding

performance for interval-valued time series (Hansen and Nelson, 2003) to forecast

CTS. To explain volatility clustering, we also consider the ARIMA-ARCH model,

which is widely used for �nancial time series having volatility clustering.

Hybrid model

The hybrid model, proposed by Zhang (2003), is composed of linear component and

nonlinear component,

yt = Lt +Nt, (5.15)

where yt is a current value of the time series at time t, Lt and Nt denote the linear

and nonlinear components, respectively.

The hybrid model is composed of two steps. In the �rst step, we apply the ARIMA

model for the linear component Lt, and then apply the ANN model to the residuals

of the ARIMA model,

nt = yt − L̂t, (5.16)

to capture the nonlinear relation of the series by using p input nodes as follows,

nt = f(nt−1, nt−2, ..., nt−p) + εt. (5.17)
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Thus, the forecasted time series ŷt is constructed by

ŷt = L̂t + N̂t. (5.18)

The hybrid model showed the superiority for forecasting time series and interval-

valued time series in various �elds of literature (Hansen and Nelson, 2003; Maia et

al., 2008). For further details on this method, see Zhang (2003).

ARIMA-ARCH model

Financial time series often have a volatility clustering which means that large changes

in series tend to cluster together. Numerous studies on the �nancial time series have

been progressed by using the autoregressive conditional heteroskedasticity (ARCH)

model to explain the volatility clustering (Chen and Jayaparakash, 2005).

We consider the ARIMA-ARCH model for CTS. The ARIMA(p, d, q)-ARCH(s)

model is given by

ϕp(B)(1−B)dyt = θq(B)εt + ηt, (5.19)

ηt = σtet, (5.20)

where ϕp(B) = (1 − ϕ1B − · · ·ϕpB
p) is a stationary autoregressive (AR) operator,

θq(B) = (1 − θ1B − · · · θqBq) is an invertible moving average (MA) operator, ηt are

i.i.d. random variables with mean zero and variance one, which is independent of past

realizations ηt−i, and

σt = α0 +
s∑

i=1

αiη
2
t−i. (5.21)

The di�erenced series (1 − B)dyt follow the general stationary ARMA (p, q) process

(Wei, 2006).
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5.3.2 Parameter constraint and estimation

We propose novel approaches to estimate CTS in the viewpoint of the symbolic data

analysis. In order to modeling CTS, we consider a method based on the original

four stock indices, open, close, highest and lowest indices, and method based on the

mid-point and half-range of stock indices's interval.

The 4-indices method

We �rst introduce a 4-indices method consisting of original open (yo), close (yc),

highest (yh) and lowest (yl) indices time series. In the 4-indices method, we apply

the time series models to the open (yo), close (yc), highest (yh) and lowest (yl)

indexes, respectively. The sum of squares for the 4-indexes method is given by

S4I =
n∑

i=1

(εoi )
2 +

n∑
i=1

(εci)
2 +

n∑
i=1

(εhi )
2 +

n∑
i=1

(εli)
2. (5.22)

The 4-indices method minimizing sum of squares S4I is equivalent to �t the four

independent time series models for the yo, yc, yh and yl, respectively.

MMRR method

We also propose a MMRRmethod based on three types of sum of squares for modeling

CTS that is similar to Lima et al. (2006)' methods for interval-valued data. The

MMRR method considers the information about interval between the 4-indices in the

viewpoint of the symbolic data analysis. In the MMRR method, we consider the

two mid-point time series and two half-range time series in (5.14), and then propose
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following three types of sum of squares,

S1 =
n∑

t=1

(εocmt )2 +
n∑

t=1

(εocrt )2 +
n∑

t=1

(εhlmt )2 +
n∑

i=1

(εhlrt )2, (5.23)

S2 =
n∑

t=1

(εocmt + εocrt )2 +
n∑

t=1

(εhlmt + εhlrt )2, (5.24)

S3 =
n∑

t=1

(εocmt + εocrt + εhlmt + εhlrt )2. (5.25)

In the S1, the four variables y
ocm
t , yocrt , yhlmt , and yhlrt are independently estimated by

the hybrid ARIMA and ANN model or ARIMA-ARCH model. On the other hand, the

sum of squares S2 takes account of correlations between y
ocm
t and yocrt , and between

yhlmt and yhlrt . In this case, the intercepts of yocmt and yocrt in both the hybrid and

ARIMA-ARCH models become the same because of the model identi�ability. The

intercept of yhlmt and yhlrt also become the same. The S3 takes account of correlation

between all four variables. In this case, the intercepts in all four models become the

same. By considering the information which cannot be presented by classic statistical

method, we can analysis the stock indices time series more implicitly. It implies that

the proposed approaches based on the CTS is a useful tool for summarization and

visualization of huge stock indices data, and thus it is helpful for traders in real stock

market.

5.4 Applications: Stock market indices of �ve major

Asian countries

We illustrate the proposed methods for the CTS through the analysis of the stock

market indices of �ve major Asian countries (Japan, Korea, China, Singapore, Hong
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Figure 5.1: Part of the candlestick chart of the stock market index of �ve major Asia
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Kong). The databases are composed of the daily open, close, highest, and lowest

indices of each of the �ve countries from January 2009 to April 2011. Figure 5.1

presents the candle chart of the stock indices of �ve major Asian countries (Japan:

Nikkei 225, Korea: Kospi 200, China: SSE, Singapore: STI, Hong Kong: HSI). We

estimate the model using the dataset from January 2009 to December 2010, and then

forecast future stock indices from January 2011 to April 2011.

We apply the hybrid and ARIMA-ARCH models based on the Akaike informa-
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Figure 5.2: Direction of stock index based on the candlestick chart

tion criterion (AIC) (Akaike, 1974). The proposed approaches are compared with a

method using only the close index based on the root mean square error (RMSE) and

a correctness of the forecasted direction of stock index.

In this study, the stock index direction is forecasted based on following candle

chart forms which are widely used in real stock market (see Figure 5.2):

• The stock index will fall : 1, 3, 5, and 7.

• The stock index will rise : 2, 4, 6, and 8.

Table 5.3 shows the proportions of correctly forecasted future stock direction.

From Table 5.3, it can be seen that the ARIMA-ARCH model with the MMRR

method based on S1 is superior for forecasting stock index direction in the viewpoint

of forecast accuracy (i.e., average proportions) and stability. We also compared the

root mean square error (RMSE) in Table 5.4. As shown in Table 5.4, the hybrid

model shows the smaller RMSE than the ARIMA-ARCH model. However, some

indices (i.e., Nikkei 225's yl, SSE's yh, yl, and HSI's yl) show a large RMSE in the
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Table 5.3: Forecasting result of the stock index direction

Kospi 200 Nikkei 225 SSE STI HSI
Average

Up Down Up Down Up Down Up Down Up Down

Close 50.1 50.0 46.4 57.9 31.6 55.6 51.7 55.6 53.6 59.5 51.2

4INDEX 51.9 44.4 64.5 58.1 63.5 . 57.1 48.5 58.5 50.5 55.2

ARIMA-ARCH S1 91.2 84.8 77.4 61.1 89.2 73.1 95.6 91.9 80.0 73.5 81.8

MMRR S2 74.3 73.3 73.5 59.4 89.2 73.1 81.4 75.0 73.8 22.2 69.5

S3 82.1 82.8 50.0 15.4 89.2 73.1 85.4 81.8 50.0 42.0 65.2

Close 49.0 70.4 73.3 64.7 . 100.0 100.0 100.0 81.6 72.7 79.1

4INDEX 96.3 80.8 80.0 64.7 68.4 39.5 100.0 100.0 81.6 75.8 78.7

hybrid S1 85.7 75.0 77.4 61.1 80.0 77.8 100.0 100.0 82.4 73.5 81.3

MMRR S2 100.0 59.5 65.7 53.1 91.4 82.6 100.0 100.0 85.3 78.1 81.6

S3 100.0 42.3 36.4 20.7 91.4 82.6 66.1 100.0 85.7 78.1 70.3

hybrid model. In short, the ARIMA-ARCH model with the MMRR method based

on S2 outperforms others with regard to overall performance and stability as shown

blue values in Table 5.4.

We observed through analysis of the stock market indices of �ve major Asian

countries that the proposed approaches outperform for forecasting stock index. Fur-

thermore, the proposed approaches are useful tools for not only specialist but also

non-specialist on stock market since it has advantages on summarization and visual-

ization of information about huge stock indices not a theoretical approach.
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Chapter 6

Summary and concluding remarks

In this chapter, the �ndings of the present thesis are summarized, and some ideas for

future study are listed.

We have mainly discussed the robust regression modeling via L1 regularization

in chapter 3. In order to robust regression modeling, we have �rst proposed the

robust L1-type regularization, called a least trimmed squares elastic net. After the

replacement of the least squares loss function with the least trimmed squares loss

function, the proposed LTS-Ela performed well variable selection and estimation,

even in the presence of outliers. We have also introduced a method for choosing

an optimal set of the regularization parameters and tuning constant by using the

e�cient bootstrap information criterion. The simulation results showed that the

proposed LTS-Ela based on the e�cient bootstrap information criterion is a useful

tool for robust sparse regression modeling in the viewpoint of sparsity and forecasting

accuracy. In the real world example through the McDonald and Schwing dataset, the

proposed robust sparse regression modeling strategy also showed the outstanding
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performance.

We have derived an information criterion (GICR.la) for evaluating the robust L1-

type regularized regression models in line with the generalized information criteria. In

practice, an information criterion for lasso-type approaches cannot be derived, since

the in�uence function of the lasso-type approaches cannot be calculated due to the L1-

type penalty. To derive the in�uence function which plays a key role in an information

criterion, we used the local quadratic approximation of the L1-type penalty terms,

and then derived an information criterion. From the Monte Carlo experiments, it can

be seen that the proposed modeling procedure based on the GICR.la is e�ective for

choosing the tuning parameters.

We have also proposed the robust coordinate descent procedures via robust inner

product and pre-treatment technique for the robust L1-type regularized regression

modeling. In order to outlier-resistant procedure, we use the Winsorization and trim-

ming techniques based on the robust Mahalanobis distance. Monte Carlo simulations

and a real data analysis were used to investigate the e�ciency of the proposed robust

procedures. It was observed that the proposed robust coordinate descent procedures

are stable and e�cient in the viewpoint of forecasting accuracy and sparsity.

We have considered the robust model evaluation for choosing the tuning parame-

ters robustly. Although the e�cient bootstrap information criterion showed e�ective-

ness for robust sparse regression modeling, it may produce biased results, since the

bootstrap information criterion may be obtained from the contaminated bootstrap

sample in the presence of outliers due to the randomly drawn bootstrap technique. To

overcome the problem, we have proposed the robust bootstrap information criterion

via Winsorizing technique in line with the e�cient bootstrap information criterion.
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We observed through Monte Carlo experiments that the proposed robust e�cient

bootstrap information criterion is more e�cient and stable against outliers than the

existing one.

The second topic of the present thesis is the lag weighted lasso for time series

model as shown in chapter 4. In order to consider the properties of time series data,

we have proposed the lag weighted lasso based on weights which re�ect not only co-

e�cients size but also lag e�ects, unlike the adaptive lasso. By using these weights,

estimators of variables in the distant past and with small e�ects were considerably

shrunk. This implies that the lag weighted lasso can re�ect the properties of time se-

ries, and thus we can e�ectively perform time series modeling. Our simulation studies

and real world data analysis through the cerebrovascular mortality data conducted

herein showed that the lag weighted lasso outperforms the lasso and adaptive lasso

for time series modeling.

The �nal topic of this thesis is the new type of symbolic data as shown in chapter

5. We have introduced the candle chart composed with open, close, highest and lowest

stock indices as a new symbolic data, called a candle chart-valued time series (CTS).

To forecast the CTS, we proposed novel approaches in the viewpoint of the symbolic

data analysis. The proposed approaches were illustrated through the analysis of the

stock market indices of �ve major Asian countries (Japan, Korea, China, Singapore,

Hong Kong). We observed that the proposed approaches for CTS provide a useful

tool for forecasting future stock indices.
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For the future studies,

• The present thesis can be extended to robust non-linear regression modeling.

• To improve the time series modeling procedure, the group lasso version of the

lag weighted lasso can be considered, because both lag selection and variable

selection should be performed in the time series modeling, especially in the ADL

model. Also, the algorithm for group lasso can be considered via the coordinate

descent procedure.

• Furthermore, further work remains to be done for constructing a model for high

dimensional data analysis (e.g., genomic data analysis).
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