高野紘一、1

8,9 族錯体上における金属中心の遠隔転位

Remote Rearrangement of the Metal Center in Group 8 and 9 Metal Complexes

応用化学専攻 高野 紘一 TAKANO Koichi

1. Introduction

Intramolecular remote metal migration (mostly 1,4migration), in which the metal center in an alkyl, vinyl, or aryl complex exchanges its position with a remote CH hydrogen, has recently emerged as a potential C-H activation method.¹⁾ Prior to our study,²⁾ only d^8 and d^9 metal complexes of group 9 and 10 elements have been known to serve as an effective reaction site. We have recently demonstrated that the vinyl complexes, which are formed from the reactions of $[Cp*M(Ph)(PMe_3)]^+$ (M = Rh, Ir) with PhC=CPh, are transformed to the o-(vinyl)aryl complexes by the intramolecular 1,4-metal migration, which clearly indicates that metal centers with a d^6 electron configuration can promote the remote metal migration.^{2a, c)} On the other hand, Gunnoe recently reported treatment that of [Cp*FePh(CO)(NCMe)] with MeC=CMe led to the formation of [Cp*Fe(n⁵-1-hydroxy-2,3-dimethyindenyl)], where the 1,4-migration of the Fe(II) center was suggested to be involved, although no experimental evidence has been obtained.³⁾ To broaden the scope of the remote metal migration, this study was aimed at developing 1,4-metal migration in $[(\eta^6\text{-arene})M(Ph)(PMe_3)]^+$ type group 8 metal complexes.

2. Results and Discussion

<u>Reaction of η^6 -C₆Me₆ complexes with PhC=CPh⁴</u>

When $[(\eta^6-C_6Me_6)RuCl(Ph)(PMe_3)]$ (1a) was allowed to react with PhC=CPh in the presence of NaBAr^F₄ (Ar^F = 3,5-(CF₃)₂C₆H₃) at room temperature for a few minutes, *o*-(vinyl)aryl complex 2a was obtained as the sole product (Scheme 1). In the ¹H NMR spectrum, the vinyl proton of 2a appeared as a doublet at δ -4.47 (d, ²*J*_{PH} = 13.7 Hz), indicating the presence of an agostic interaction. The molecular structure of **2a** determined by a single-crystal X-ray diffraction study confirmed that **2a** was formed by the 1,4-Ru migration from the vinylruthenium intermediate **3a** which was generated by the insertion of PhC=CPh into the Ru–Ph bond in **1a**. Thus, the present reaction provides the first experimental evidence of remote rearrangement of a group 8 metal center. A preliminary DFT study suggests that the present 1,4-Ru(II) migration proceeds via the σ -complex assisted metathesis process (σ -CAM).

By contrast, the reaction of **1b** with NaBAr^F₄ and PhC=CPh at 50 °C for 2 h afforded the cyclometallated hydrido complex **4** (Scheme 2). The ¹H NMR spectrum of **4** showed a doublet at δ –12.3 (d, ²*J*_{PH} = 47.3 Hz) diagnostic of a hydrido complex, and its molecular structure was further established by an X-ray diffraction study. **4** is considered to be generated by the alkyne insertion into the Os–Ph bond in **1b** to form the vinyl complex **3b** and the subsequent oxidative addition of an *ortho* C–H bond of the Ph group. While **4** may be viewed as an intermediate in 1,4-Os migration, no further structural change of **4** was observed

even by heating at 100 °C.

Interestingly, when **4** was reacted with 'BuNC at 50 °C for 2 h, **5b** which corresponds to the 1,4-Os migration product was formed (Scheme 3). Complex **5b** could not be isolated in a pure form but was characterized by ¹H NMR measurement (δ 6.28 (s), vinyl CH) as well as a single-crystal X-ray diffraction study. It should be point out that, unlike in the 1,4-Ru migration, the oxidative addition–reductive elimination mechanisum is operative in the 1,4-Os migration.

<u>Reaction of η^6 -p-cymene complexes with PhC=CPh</u>

To examine the effects of the η^6 -arene ligand, a similar reaction of the *p*-cymene complex [(η^6 -*p*-cymene)-RuCl(Ph)(PMe₃)] (**6a**) was performed (Scheme 4). When **6a** was allowed to react with PhC=CPh in the presence of NaBAr^F₄ at room temperature, tether-type complex **7a** was obtained via incorporation of two PhC=CPh molecules concomitant with η^6 -arene ligand exchange. Similarly, Os complex **7b** was obtained from the reaction of **6b** with NaBAr^F₄ and PhC=CPh. These reactions may be view as a unique model for the "merry-go-round" multiple alkylation reaction.⁵)

A plausible mechanism for the formation of **7a** is shown in Scheme **4**. Initially, the *o*-(vinyl)aryl complex **9a** is formed by way of the insertion of one alkyne molecule into the Ru– Ph bond to generate the vinyl intermadiate **8a** followed by the 1,4-Ru migration. The subsequent dissociation of the *p*cymene ligand and the η^6 -corrdination of a Ph group give rise to a coordinatively undersaturated species **10a**. Then the insertion of a second PhC=CPh molecule followed by the haptotropic change at the η^1 -(α -stylyl) ligand to a η^3 -mode completes the formation of tether-type complex **7a**.

To confirm the above mechanism, isolation of an intermediate complex was attempted (Scheme 5). Although complexes **10a** and **10a'** were failed to be isolated, complex **11**, the stabilized form of **10a** with PPh₃, was isolated from a reaction of in situ generated **10a** (**6a**, NaBAr^F₄, and one equivalent of PhC=CPh) with PPh₃ and structurally characterized. This result is in full accordance with the mechanism shown in Scheme 4.

3. Conclusion

The first experimental evidence for the remote rearrangement of a group 8 metal center was provided by the reaction of 1 with PhC=CPh. In addition, the tether-type complex 7 was formed from the reaction of 6 with PhC=CPh through the second alkyne insertion accompanied by dissociation of the *p*-cymene ligand.

4. References

Shi, F.; Larock, R. C. *Top. Curr. Chem.* 2010, 292, 123.
a) <u>Takano, K</u>; Ishii, Y. *et al. Chem. Commun.* 2013, 49, 11104.
b) <u>Takano, K</u>; Ishii, Y. *et al. Organometallics* 2014, 33, 2142.
c) <u>Takano, K</u>; Ishii, Y. *et al. Organometallics* 2014, 33, 3998.
Gunnoe, T. B. *et al. Organometallics* 2014, 33, 5457.
Takano, K; Ishii, Y. *et al. Chem. Commun.* 2015, *51*, 4981.
Miura, M. *et al. J. Am. Chem. Soc.* 2000, *122*, 10464.