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1 INTRODUCTION
Vertebrate vision is still superior to the current technol-
ogy, this can come from different sources: faster com-
putation speed (brain), superior information processing
algorithms (brain, retina), better hardware (eyes), etc.
As step toward improving our understanding why it is
better, this thesis investigates how the signal is formed
by the rods and cones of the retina as a reaction to light
and what it means from a signal processing perspective.

According to my results, the first part of the cone’s
signal forming can be characterized as an approxima-
tion to a fractional integral. This behavior does not
disappear in the subsequent image processing steps and
directly affects the output of the cell. As a signal pro-
cessing step, this provides noise reduction and improves
adaptation abilities. Moreover, these findings have also
lead to a novel approximation method for the fractional
integral.

The second part of the cone’s signal forming can
be characterized as a nonlinear, slightly underdamped
second-order system, with only one overshoot. There
might be various reasons for this, it is possible however,
that this plays a role in how the signal propagates within
the retina. This signals propagation is determined by
the frequency characteristics of the subsequent cells have
different properties, therefore different frequency com-
ponents of the signal might be processed differently.

2 THEORETICAL BACKGROUND
2.1 Fractional calculus
2.1.1 Definition
Fractional calculus is a generalization of “traditional”
calculus, the same way as real and complex numbers
are generalizations of integers. This means, for example,
that it is possible to integrate a function real or com-
plex number of times. The fractional integral has mul-
tiple, different definitions, one of which is the Riemann-
Liouville definition:

Iαf(x) =
1

Γ(α)

∫ x

a

f(t)(x− t)α−1dt, (1)

where the Γ(α) is the gamma function, the generaliza-
tion of the factorial function. This can be omitted from
the approximation, since in signal processing it only
plays a role of a gain.

As an operator, the fractional integral is linear, there-
fore the response to an impulse (bright flash of light)
fully defines its response to any signal. To reflect
this property, the Riemann-Liouville definition can be
rewritten using convolution (1):

Iαf(x) =
1

Γ(α)
f(t) ⊗ tα−1, (2)

which emphasizes, that impulse response of the frac-
tional integral is

h(t) =
1

Γ(α)
tα−1. (3)

2.1.2 Interpretation
This paper works with fractional integrals of an order
between 0 and 1. In case of these orders, during the
course of integration of a signal, more recent values get
higher weights (given by tα−1), which can be interpreted
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Fig. 1: Piecewise approximation (solid lines) of f(t) =
t−0.5 (dashed) on a log–log plot.
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Fig. 2: Approximation of f(t) = t−0.5 (dashed) with
feedback loops on the log–log plot. Gray lines: contri-
bution of each feedback loop. Black lines: sum of the
feedback loops.

as signal’s past values are gradually forgotten (2).

2.1.3 Approximation

The linearity property allows approximation by finding
a system that approximates the impulse response of the
fractional integral, therefore approximating its response
to any signal. As it is a power-function, the impulse re-
sponse is always a straight line on the log–log plot, thus
it can be approximated by a piece-wise constant func-
tion, see Fig. 1, however it would be inefficient to store
all the input values and assign them different weights.

Consecutive feedback loops (also linear), with loga-
rithmically decreasing poles, can be used to store each
time interval’s data within a single variable. This can
be thought of as multiple leaky cups held above one an-
other, with successively smaller holes on their bottom:
after pouring water into the top cup multiple times, the
levels in each cup can be used to see the signal’s his-
tory. Similarly to water levels within each cup, internal
variables of feedback loops can be used to construct a
weighted sum of the signal history. See Fig. 2 for an
example.

With differential equations:
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ẋ0 = input(t) − cx0 (4a)

ẋ1 = cx0 − c2x1 (4b)

ẋ2 = c2x1 − c3x2, (4c)

...

where, the output is:

y =
∑
i

(ci(1−α)xi), (4d)

“c” is the spacing of the feedback loops, optimally c ≈
1
10 .

This approximation is a hybrid between the feedback
loop and the fractional integral: on the frequency range
of the approximation it behaves as a fractional integral,
while on both ends of the frequency range it behaves as
a feedback loop, see Fig. 2. The significance of this is
that there is always a definite maximum how long signal
stays in the system, regardless of how big or long it is,
however it can be considerably shorter.

2.2 Cone model
2.2.1 Phototransduction
In rods and cones the signaling starts when a photon hits
one of the visual pigments (VPs) thus activating it. As
long as they are active, VPs activate their corresponding
G-proteins known as “transducins” that are responsible
for activating the next step of the signaling. The stages
of a VP’s activity can be modeled with four feedback-
loops:

• freshly activated VPs: with a relative activity of 1
and a pole at ∼ 60 1/s,

• phosphorylated VPs: with an activity of 1/64 and
a pole at ∼ 2.5 1/s,

• arrestin bound VPs: with an activity of 1/640 and
a pole at ∼ 0.3 1/s,

• inactive VPs, with only spontaneous activity and a
pole ∼ 1/30 1/s (activity not modeled).

Activate transducins bind to one of the γ subunits of
a nearby phosphodiesterase (“PDEs”), which hydrolyze
cGMPs as long as the transducin is bound to it. This
drops the concentration of cGMPs it within the cells,
that causes the closing of the cGMP-gated cation chan-
nels in the cell. These channels provide an influx of
Ca2+ ions into the cell, while the NCKX transport pro-
vides an efflux of Ca2+ from the cell. The rate of this
is dependent on the [Ca2+] within the cell. Therefore
as a summary, the activation of transducins result in a
decrease of [Ca2+] within the cell.

2.2.2 Extension of the Visual Pigments’ Mathe-
matical model

For simulations we have extended the model described
in (3) with the equations of arrestin bound VPs (Equa-
tion 5e):

˙nVP0 = input(t) − γ · nVP0 (5a)

˙nVP1 = γ · VP0 − (γ · 0.9 + 0.5)nVP1 (5b)

˙nVP2 = γ · 0.9nVP1 − (γ · 0.92 + 1)nVP2 (5c)

...

˙nVP6 = γ · 0.95nVP5 − 5 · 0.5nVP6 (5d)

˙nVParr =
∑
i

(i0.5nVPi) − 0.3nVParr (5e)

VP =
∑
i

(2−inVPi) + 2−6 · c · nVParr, (5f)

where nVPi is the number of VPs with the phosphoryla-
tion level i, and γ is the rate of phosphorylation. “VP”
is the sum of the VPs’ activities: the number of trans-
ducins activated per second. “c” is the inhibition after
arrestin binding (c=0.1 for a 90% inhibition).

As these equations describe a fractional integral, the
model can be reduced to the following without affecting
the output:

˙nVP0 = input(t) − γ · 0.95nVP0 (6a)

˙nVP6 = γ · 0.95nVP5 − 2.5nVP6 (6b)

˙narrVP = 2.5 · nVP6 − 0.3narrVP (6c)

VP = nVP0 + 2−6nVP6 + 2−6 · c · narrVP.(6d)

Extending the full cone model of (3) with arrestin
bound VPs increases the fit to the experimental data,
however it decreases the fit from the steady state val-
ues. This deviation from the steady state values was
also mentioned in (3), where it was fitted by allowing
one of the poles to decrease with time as an adaptation.
While this is omitted from our simulations, it implies
that there might be an adaptive process that can make
the steady-state values constant.

As more and more VPs are in an active or deactivated
state, there is less and less chance of a photon actually
hitting a default state VP. This can be modeled as de-
creasing the input sensitivity for each missing VP:

input∗(t) = input(t) · (1 − nVPused

nVPall
), (7)

where nVPall = 107 as reported by Lamb (4).
However VPs are recycled in the retinal pigment ep-

ithelium, a row of cells behind the photoreceptors, each
of these cells actually regenerate multiple cone’s VPs.
Therefore this model is cumbersome to use for mul-
tiple photoreceptors (in a video), as they affect each
other, the differential equations cannot be calculated in-
dependently for each pixel. Furthermore, cones have two
sources of VP regeneration one is the same as rods, the
other is just for cones (5), this however is omitted from
my model.

For computation on videos, the retinoid cycle can be
approximated as a separate pre-processing step for the
whole video. In this case, all the used VPs can be com-
puted separately with one feedback loop, blurring each
image frame to imitate the effect of neighboring cones
affecting each other.

3 RESULTS AND DISCUSSION
3.1 Bode Plots
Bode-plots fully define a linear system’s behavior, they
describe the relationship between the input’s frequency
and the output’s phase and amplification. For a frac-
tional integral (Iα), the phase shift is constant at −90α
degrees and the amplification has a slope of −20α
dB/dec (6). This is achieved by the approximation which
provides a further proof that it is indeed a proper ap-
proximation.

The VPs activity approximate the fractional integral,
as seen on Fig. 3. The quality of this approximation
mainly depends on the relative activities of different
stages: with most of the published activities it fits the
approximation.

When compared to a feedback loop, the fractional in-
tegral’s constant phase shift of −90α degrees could alter
the perception of patterns or position of moving objects,
however we have failed to show any deviation from it
(that originates from the phase).
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Fig. 3: Bode-plots of the VPs activity, where the inhi-
bition of ArrVPs is 90%.

3.2 Noise reduction and movement
According to my results, the approximation of a frac-
tional integral in signal processing reduces noise. When
compared to a first-order feedback loop, this noise re-
duction, it is a lot more subtle, however affects signals
on wider frequency ranges. Therefore it is possible to
retain some of the high-frequency data: fast moving ob-
jects are not disappear or are not blurred. The fractional
integrals noise suppressing ability can be seen, for ex-
ample, during snowfall: it is important to be aware of
the phenomena, however individual snowflakes should
be suppressed as long as we are not focusing on them.
In case of a first order filter, the snowflakes might com-
pletely disappear or are unaffected depending on their
speed. See Fig. 4 on how the response is built.

3.3 Adaptation
Adaptive processes can benefit from this behavior:
higher input ranges can only be achieved by sustained
strong inputs, as the maximal input is constrained by
the pupils and the “charging” of residual activities take
time. Therefore it is possible to differentiate between
light conditions and input signals. Similar conclusions
were drawn in (7), where the adaptation of auditory-
nerve model was extended by similar power-law com-
ponents.

3.4 Deviations from the approximation
If in Equation 6d the arrestin-bound VP’s activity is a
biological constraint (achieving a perfect shut-of is dif-
ficult), the possible values of VP6 activity can be put
into three categories, it can be:

Fig. 4: Effects of the fractional integral on a moving ob-
ject (from left to right): Top: effects of a fast feedback
loop. Middle: effect of a slow feedback loop. Bottom:
Weighted sum of the top and middle images: approxi-
mation of fractional integral I0.2, the same as the VPs
activity.

• just right for the approximation (the experimental
values),

• too high for the approximation (∼ 400% of the ex-
perimental),

• too low for the approximation (∼ 10% of the exper-
imental).

If it is too high, the feedback-loop’s pole dominates the
response making it sluggish. If it is too slow then on
off part of the signal, there will be a residual activity
(afterimage) that does not fade well. See Fig. 5 for
comparison.

Through the slow settling of step responses, the frac-
tional integral also affects the the size of the overshoots
and the speed of the next processing steps. In this case
the approximation seems to be an acceptable trade-off
between speed and accuracy, see Fig. 6.

3.5 Short-Term Visual Memory
Afterimages can used as a short-term visual memory;
this phenomena is stronger in rods than cones (8). This
is consistent with our results: in rods the slow phospho-
rylation is the source of afterimages; while in cones only
the residual activities are the sources of afterimages.

3.6 Eye movements
Eye movements play a special role in image processing
by choosing and changing focus a few times per second.
Focus makes the objects of interests to be projected on
the same spot on the retina (fovea), therefore a series of
static images that change with a few Hz are processed
instead of a moving image. In relation to this, it might
play a role, that the neurons responsible for stabilizing
eye movements also show a fractional integral-like be-
havior (9).
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Fig. 5: Normalized 10 sec. step-responses of different
VP activities: fractional integrals and deviations from
it. Black line: fractional integral. Grey: low VP6 activ-
ity. Dashed: strong VP6 activity. The top and bottom
images are the same step response, but plotted on dif-
ferent timescales. The y-axis is the relative activity of
VPs (dimensionless).
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Fig. 6: Responses of the full model described in (3).
Normalized, 10 sec. step-responses of different VP
activities: fractional integrals and deviations from it.
Black line: fractional integral. Grey: low VP6 activity.
Dashed: strong VP6 activity. Dashed gray: no residual
activities (original model).

3.7 Neighboring cells and frequency ranges
The subsequent cells in processing are either low-pass or
band pass (high-pass with biological constraints) (10,11).
The cones’ response can also be divided into two similar
groups: high frequency (overshoots) and low frequency
(steady state) parts. The significance of this distinction
is that the sizes of the overshoots are unaffected by the
adaptive processes, and as it is indicative of a derivative
component reflect the size of the change in the input
signal.

My hypothesis is that low frequency values also act as
an internal variable or reference value that can change
with the input, while the signal can be reconstructed
more accurately using the higher frequency data (at a
later stage). For example, when transitioning from a
dark area to a brighter area the retinoid cycle adjusts
the sensitivity of the cell within a second or so, while it
can still be understood how the different colors relate to
each other.

3.8 Retinoid cycle
As mentioned before, the temporary “disappearance” of
VPs (as they are used up) decreases the sensitivity of
the cell. This process only affects the output on longer
timescales and across groups of cells, as the adaptation
affects higher input ranges more than lower ones. There-
fore, a group of different colors (red green and blue) will
approach a less saturated (grey) color. This appears as
a negative afterimage after changing the input image.

4 CONCLUSIONS
We have shown how residual activities are connected to
fractional integrals, how this affect the signaling and its
possible advantages. Although the validity of residual
activities in modeling seem to be supported by biologi-
cal data, it introduces new questions (steady state val-
ues should remain constant), therefore the topic requires
further investigation.
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