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Abstract: With the widespread use of O-alkoxyresorufin dealkylation assays since the 

1990s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, 

and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as 

polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially 

be effective inhibitors of these enzymes, however, the details of the structure-activity 

relationships and selectivity of these inhibitors are still ambiguous. In this review, we 

thoroughly discuss the selectivity of many representative P450 family 1 inhibitors reported 

in the past 20 years through a meta-analysis. 

Keywords: cytochrome P450; enzyme inhibitor; stilbenoids; flavonoids; structure activity 

relationships; mechanism-based inhibitor 
 

1. Introduction 

Cytochrome P450 enzymes are a large ubiquitous superfamily of enzymes, playing a significant 

physiological role in the detoxification of xenobiotics, and the biosynthesis of many endogenous 

compounds. P450 families 1, 2, and 3 contribute most extensively to the biotransformation of 

xenobiotics into more polar metabolites that are readily excreted. In humans and most mammals, P450 

family 1 comprises three well-studied monooxygenases, 1A1, 1A2, and 1B1. 

Cytochrome P450 1A1, a well-known aryl hydrocarbon hydroxylase, is implicated in the metabolic 

activation of environmental procarcinogens such as polycyclic aromatic hydrocarbons (PAHs)  
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and polyhalogenated aromatic hydrocarbons (PHAHs). Human P450 1A1 is mainly expressed in 

extrahepatic tissues such as lung, gastrointestinal tract, placenta, and skin, and is present only at low 

levels in the liver [1,2]. P450 1A1 is one of the most important enzymes involved in tumorigenesis 

initiated by environmental pollutants [3]. A number of epidemiological studies have shown that genetic 

variants of human CYP1A1 gene are significantly associated with the susceptibilities to lung and breast 

cancers [4–6]. Because of the significant role of P450 1A1 enzyme in human carcinogenesis, modulation 

of P450 1A1 activity has been considered as a potential target for cancer chemoprevention. 

P450 1A2 is one of the major cytochrome P450 enzymes in human liver (about 13%) responsible 

for the metabolism of a variety of arylamines and heterocyclic arylamines which include numerous 

therapeutic drugs such as phenacetin, lidocaine, tacrine, and theophylline [2,7]. P450 1A2 is  

notable for the capacity to N-oxidize arylamines, bioactivating arylamines such as 2-amino-3-methyl-

imidazo[4,5-f]quinoline (IQ) and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) into 

potent mutagenic or carcinogenic compounds [8]. Procarcinogen activation by P450 1A2 has a 

significant effect on an individual’s susceptibility to cancer [8]. Inhibition of P450 1A2 also has 

implications in cancer prevention. 

Cytochrome P450 1B1 is found mainly in extrahepatic tissues as well as in a variety of human 

tumors. This has important implications for tumor development and progression. Metabolic activation 

of 17β-estradiol (E2) to 4-hydroxy-17β-estradiol by P450 1B1 has been postulated to be an important 

factor in mammary carcinogenesis [9–11]. Like P450 1A1, this enzyme also metabolically activates 

procarcinogens to carcinogenic forms, resulting in mutagenesis and tumorigenesis [9]. Thus, regulators 

of the expression and catalytic activity of P450 1B1 have been suggested to play an important role in 

cancer chemoprevention, especially at the early stage of tumorigenesis [12]. Recently, it has been 

observed that P450 1B1 could generate reactive oxygen species resulting in hypertension, which 

suggested that P450 1B1 inhibitors might be clinically useful in the treatment of hypertension and 

associated cardiovascular diseases [13]. 

To summarize, although P450 family 1 cytochromes are responsible for the metabolism of a wide 

variety of xenobiotics as well as endogenous compounds, the enzymatic reactions also produce 

reactive intermediates which can covalently bond to cellular macromolecules leading to toxicity, 

mutagenicity, and carcinogenicity. Hence, much emphasis has been on the inhibition of these enzymes 

to develop potential cancer preventative and therapeutic agents [2,3,9,14]. The potential anti-cancer 

strategies targeting P450 inhibition were postulated as: (i) preventing the conversion of environmental 

procarcinogens to active carcinogens; (ii) preventing the conversion of hormonal precursors to 

carcinogenic hormone derivatives; and (iii) preventing the metabolic inactivation of anti-cancer  

drugs [15]. Herein we will review multifarious inhibitors of cytochrome P450 family 1 enzymes, 1A1, 

1A2, and 1B1. 

2. Classified Inhibitors of P450s 1A1, 1A2, and 1B1 

Because of their high structural and functional similarity, cytochrome P450s 1A1, 1A2, and 1B1 are 

known to have overlapping substrates, inducers, and inhibitors. Therefore, the development of 

selective inhibitors towards any of these enzymes is a great challenge. To date, thousands of 

compounds (including natural products, pharmaceuticals, and synthetic compounds) have been 
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evaluated for their inhibitory activities toward P450 family 1 enzymes. In an early study, the inhibition 

effects of 12 compounds toward P450s 1A1 and 1A2 were investigated, including α-naphthoflavone, 

ellipticine, 7-ethoxyresorufin, 5-methoxypsoralen, 8-methoxypsoralen, 7-ethoxycoumarin, nifedipine, 

propranolol, caffeine, paraxanthine, theophylline, and theobromine [16]. The comparison between 

groups indicated that polycyclic aromatic hydrocarbons, flavones, and coumarins were highly potent 

P450 inhibitors with IC50 values in the micromolar level. This review mainly focuses on the highly 

potent inhibitor groups, which are more likely to become chemopreventive agents. 

2.1. Polycyclic Aromatic Hydrocarbons 

Since PAHs such as benzo[a]pyrene (B[a]P) are classical substrates of P450 family 1 enzymes, a 

number of PAHs were examined as inhibitors of the three enzymes through 7-ethoxyresorufin  

O-deethylation (EROD) assay by Shimada et al. The simplest PAHs, anthracene and phenanthrene 

(Figure 1), showed stronger inhibition toward P450 1A2 over the other two enzymes. On the other 

hand, the four-ring pyrene structure showed extremely strong inhibition of P450 1B1 with an IC50 of  

2 nM, but not much selectivity relative to P450 1A2 [17]. The most potent inhibitor of P450 1A2 was 

benz[a]anthracene (IC50 = 2 nM), exhibiting 8.9-fold and 7.0-fold more effective inhibition of this 

enzyme relative to P450s 1A1 and 1B1, respectively [17]. A follow-up study showed that the complex 

PAHs (Figure 1), such as chrysene, benzo[e]pyrene, 3-methylcholanthrene (3MC), fluoranthene (FA), 

and benzo[b]fluoranthene (B[b]FA), exhibited nanomolar level inhibition of P450 1B1-mediated 

EROD activity [18]. Mechanism investigation showed that all the studied non-substituted PAHs acted 

as competitive inhibitors [17,18]. 

Figure 1. Polycyclic aromatic hydrocarbons as P450 family 1 inhibitors. 

 

Polycyclic aromatic hydrocarbons appear to be strong inhibitors of P450s 1A1, 1A2, and 1B1. 

However, PAHs (such as benzo[a]pyrene, 3-methylcholanthrene, and 7,12-dimethylbenz[a]anthracene 

(DMBA)) have also been linked to tumor formation and cancer in humans. Thus, even though PAHs 

have already become useful tools to investigate the structure and function of P450 family 1 enzymes, it 

is not logical to design therapeutic agents using them. 
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2.2. Naphthoquinones and Anthraquinones 

Naphthoquinones and anthraquinones could be considered as oxygen-substituted naphthalenes and 

anthracenes, respectively. Various naphthoquinone derivatives, including 1,2-naphthoquinone and  

1,4-naphthoquinone, are known ingredients of Chinese traditional medicines. The inhibitory effects of 

six derivatives of 1,4-naphthoquinone (NQ) on rat cytochrome P450 1A1-dependent EROD activity 

were examined using yeast microsomes containing overexpressed rat P450 1A1. Of these NQs,  

5-hydroxy-2-methyl-NQ, 2-methyl-NQ, 2-hydroxy-NQ, and NQ showed competitive inhibition, 

whereas 5,8-dihydroxy-NQ and 5-hydroxy-NQ showed non-competitive inhibition [19]. The Ki values 

for these compounds are shown in Figure 2. The most potent compound is 5-hydroxy-NQ with a Ki 

value of 1.8 µM [19]. Anthraflavic acid (2,6-dihydroxyanthracene-9,10-dione, Figure 2), a naturally 

occurring plant phenol, inhibited aryl hydrocarbon hydroxylase (AHH) activity in microsomes 

prepared from control and 3-methylcholanthrene-pretreated SENCAR mice with a Ki value of 165 µM, 

and inhibited ethoxycoumarin O-deethylase and EROD activities [20]. 

Figure 2. Structures of naphthoquinone and anthraquinone derivatives. 
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Fourteen commercially available naphthoquinone and anthraquinone derivatives were evaluated  

for their inhibition of N-hydroxylation activity of P450 1A1 toward Trp-P-2 (3-amino-1-methyl-5H-

pyrido[4,3-b]indole). Among these derivatives, alizarin (IC50 = 0.98 µM, Figure 2) and emodin  
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(IC50 = 0.96 µM, Figure 2) showed the most effective inhibition of P450 1A1 [21]. An in vitro assay 

also suggested that anthraquinones (especially quinizarin) affected the mutagenicity of IQ mainly 

through inhibiting the microsomal activating enzyme (P450 1A2) which metabolized IQ to active 

metabolite N-hydroxy-IQ [22]. 

Using emodin as a lead compound, 12 synthetic naphthoquinone and anthraquinone  

derivatives were investigated. Compounds 4-amino-1-chloro-3-methylanthraquinone, 4-amino-1-

hydroxy-anthraquinone, and 4-((3-methylbutan-2-yl)oxy)-3,4,4a,9a-tetrahydroanthracene-2,9,10(1H)-

trione were the most potent among the 12 derivatives, with IC50 values of 0.40, 2.09, and 0.89 µM  

for P450 1A1 and 0.53, 0.53, and 1.62 µM for P450 1A2, respectively. 4-Amino-1-chloro-3-methyl-

anthraquinone showed mechanism-based inhibition of both P450s 1A1 and 1A2 [23]. 

Since naphthoquinones and anthraquinones are natural products some of which have been used in 

Chinese traditional medicine for hundreds of years, their toxicity is much lower than that of PAHs. 

However, their efficacies for inhibiting P450 family 1 enzymes are also lower than those of PAHs and 

their structures need to be optimized to obtain highly potent and selective inhibitors of these enzymes. 

2.3. Stilbenoids 

trans-Stilbene, (E)-1,2-diphenylethene, is another main structural type of non-nitrogen P450 family 

1 inhibitors. The first studied stilbenoid as a P450 inhibitor was resveratrol (3,5,4'-trihydroxystilbene), 

which is a natural product found in red grapes. Resveratrol showed chemopreventive effects in both 

cardiovascular disease and cancer [24]. Resveratrol exhibited mild inhibition of human P450 1A1 in a 

dose-dependent manner, with an IC50 value of 23 µM for EROD and an IC50 value of 11 µM for 

methoxyresorufin O-demethylation (MROD). However, the inhibition of human P450 1A2 by 

resveratrol was over 50-fold weaker than that of P450 1A1 (IC50 1.2 mM for EROD and 580 µM for 

MROD) [24]. Mechanism investigation showed that resveratrol inhibited human P450 1A1 activity in 

a mixed-type inhibition (competitive-noncompetitive) with Ki values of 9 µM (for competitive 

inhibition) and 89 µM (for non-competitive inhibition). Resveratrol is also a noncompetitive inhibitor 

of human P450 1B1 (with Ki = 23 µM) [24] and a mechanism-based inactivator of cytochrome P450 

3A4 (KI and kinact values of 20 µM and 0.20 min−1, respectively) [25]. On the other hand, resveratrol 

was shown to be an arylhydrocarbon receptor (AhR) antagonist, inhibiting the induction of P450  

1A1 [26]. Resveratrol inhibited TCDD-induced CYP1A1 expression in HepG2 cells (in vitro) through 

blocking the induction of DRE (dioxin-responsive element)-driven transcription by AhR [27]. In an 

animal model, resveratrol was able to abrogate B[a]P-induced P450 1A1 activity and subsequent 

formation of B[a]P-DNA adducts [28]. 

To find more effective inhibitors toward P450 1A1, a group of natural and synthetic 

hydroxylstilbenes (Figure 3) were investigated for their P450 inhibition activities by Chun et al. 

Monomethylation of the 4'-hydroxyl group (3,5,3'-trihydroxy-4'-methoxystilbene (rhapontigenin) and 

3,5-dihydroxy-4'-methoxystilbene) increased the inhibitory activities and kept the selectivity for  

P450 1A1, while multi-methylation (3,4'-dimethoxy-5-hydroxystilbene and 3,5,4'-trimethoxystilbene) 

improved the inhibitory potency toward both P450s 1A1 and 1A2, resulting in the loss of selectivity 

toward P450 1A1. The inhibitory activities toward P450 1B1 were also determined in this study [29]. 

Among these stilbenes, rhapontigenin extracted from Rheum undulatum was shown to be a 
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mechanism-based inactivator of P450 1A1 with an IC50 value of 0.4 μM [30]. Rhapontigenin showed 

400-fold selectivity toward P450 1A1 over P450 1A2 (IC50 = 160 μM) and 23-fold selectivity toward 

P450 1A1 over P450 1B1 (IC50 = 9 μM) [29]. 

2,4,3',5'-Tetramethoxystilbene (2,4,3',5'-TMS, Figure 3), a methoxy derivative of oxyresveratrol 

was found to be the most selective competitive inhibitor of P450 1B1, with an IC50 value of 6 nM in a 

group of 3,5-dimethystilbene derivatives [30,31]. 2,4,3',5'-TMS exhibited 50-fold selectivity for  

P450 1B1 over P450 1A1 (IC50 = 300 nM) and 500-fold selectivity for P450 1B1 over P450 1A2  

(IC50 = 3 μM) in EROD assay [30]. 2,4,3',5'-TMS strongly inhibited 4- and 2-hydroxylation of  

17β-estradiol by P450 1B1-expressing membranes or purified P450 1B1 [30]. 2,4,3',5'-TMS also 

showed suppression of TCDD (2,3,7,8-tetrachlorodibenzodioxin)-induced CYP1B1 expression in 

MCF-7 cells and HL-60 cells [32]. In the same study, 3,4,5,3',5'-pentamethoxystilbene (PMS) and 

3,5,3',5'-tetramethoxystilbene were found to be selective inhibitors toward P450 1A1 (Figure 3) [31]. 

PMS, a heavily-studied compound, produced a significant inhibition of EROD activities with IC50s of 

0.14, 934, and 3.2 μM for P450s 1A1, 1A2, and 1B1, respectively. Moreover, PMS significantly 

suppressed P450 1A1-mediated EROD activity and CYP1A1 gene expression induced by TCDD in 

HepG2 cells [33]. 

Figure 3. Stilbenoids as P450 1A1, 1A2, and 1B1 inhibitors. 
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2,4,2',6'-Tetramethoxystilbene is another potent and specific inhibitor of P450 1B1. 2,4,2',6'-TMS 

exhibited potent and selective inhibition of EROD activity of P450 1B1 with an IC50 value of 2 nM. 

2,4,2',6'-TMS exhibited 175-fold selectivity for P450 1B1 over 1A1 (IC50, 350 nM) and 85-fold 

selectivity for P450 1B1 over 1A2 (IC50, 170 nM). 2,4,2',6'-TMS significantly suppressed EROD 

activity and CYP1A1 and CYP1B1 induction by TCDD in human tumor cells such as HepG2 and  

MCF-10A [34]. 

Some stilbene derivatives with a methylthio substituent were shown to be selective and  

potent inhibitors of P450 family 1 [35]. Among this series of compounds studied, 2-methoxy-4'-

methylthiostilbene, 2,3-dimethoxy-4'-methylthiostilbene, and 2,3,4-trimethyoxy-4'-methylthiostilbene 

(Figure 3) were the most potent competitive inhibitors of P450 family 1 enzymes [12,35]. Especially, 

2,3,4-trimethoxy-4'-methylthiostilbene was the most selective inhibitor of P450s 1A1 and 1B1, 

displaying extremely low affinity toward P450 1A2 [12]. 

In summary, 2,4,3',5'-tetramethoxystilbene and 2,4,2',6'-tetramethoxystilbene appear to be potent 

and specific inhibitors of P450 1B1 [30,34]. Rhapontigenin and 2,3,4-trimethyoxy-4'-methyl-thiostilbene 

are the most selective inhibitors toward P450s 1A1 and 1B1 over P450 1A2 [29,34]. Meanwhile, 

3,5,4'-trimethoxystilbene exhibits comparable inhibitory activities toward all of the family 1 P450 

enzymes. Because of the excellent selectivity toward P450s 1A1 or/and 1B1 and the capability of 

inhibiting AhR-induced Phase I metabolizing enzyme expression, trans-stilbenes are considered  

to be promising potential chemopreventive agents for both environmental carcinogen-induced and  

(17β-estradiol) E2-related tumorigenesis. 

2.4. Flavonoids 

Flavonoids are widely present in fruits, nuts, vegetables, and medical herbs. These compounds have 

been described as health-promoting as well as disease-preventing dietary supplements [36]. The 

relative safety of flavonoids has allowed them to be used as therapeutic agents in traditional and 

modern medicine. Evidence indicates that certain flavonoids have high potency and selectivity for 

inhibition of P450 1A enzymes. This fact may have important implications for cancer prevention, as 

well as other pharmacological and toxicological effects [37]. 

By contrast with stilbene, the flavone core is a less potent inhibitor of P450 1A1 (IC50 = 0.14 µM) 

than P450 1A2 (IC50 = 0.066 µM). Hydroxyflavones were investigated as well, however they  

showed diverse selectivity toward P450 1A subfamily members. For example, 5-hydroxyflavone and 

5,7-dihydroxyflavone showed higher inhibition activity and selectivity toward P450 1A2 compared to 

P450 1A1 [37–39]. Whereas, 7-hydroxyflavone and 3,7-dihydroxyflavone exhibited 4–8 fold greater 

selectivity in their inhibition of P450 1A1 over 1A2 [37,38]. 3,5,7-Trihydroxyflavone (galangin, 

Figure 4) showed the highest potency toward P450 1A2. The inhibition of the MROD activity of P450 

1A2 by galangin was mixed-type, with a Ki value of 0.008 µM. Galangin showed a 5-fold selectivity in 

its inhibition of P450 1A2 over 1A1 [37,39]. 2'-, 3'-, and 4'-methyoxyflavones exhibited similar 

inhibitory activities toward P450s 1A1, 1A2, and 1B1 as the flavones core, while the introduction of a 

4'-methoxy- or 3',4'-dimethoxy group(s) into 5,7-dihydroxyflavone yielded active inhibitors of P450 

1B1 with IC50 values of 0.014 and 0.019 µM, respectively [39]. Six flavonyl propargyl ethers were 

also investigated for their inhibitory activities toward P450s 1A1 and 1A2. 3'-Propargyloxyfavone  
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(3'-PF) was the most potent inhibitor among these compounds. 3'-PF exhibited a 33-fold  

greater selectivity in its inhibition of P450 1A1 over P450 1A2, and it inhibited P450 1A1 in a 

mechanism-based manner [38]. 

An intergroup comparative study was carried out on the inhibition of P450 1B1 by flavonoid, 

stilbenoid, pyrene, naphthalene, phenanthrene, and biphenyl derivatives [40]. The results showed that 

3,5,7-trihydroxyflavone, 4'-methoxy-5,7-dihydroxyflavone, and 3',4'-dimethoxy-5,7-dihydroxyflavone 

were more active than flavone in interacting with P450 1B1. In a study of six naturally occurring 

flavonoids (acacetin, diosmetin, eriodictyol, hesperetin, homoeriodictyol, and naringenin), flavonone 

homoeriodictyol selectively inhibited P450 1B1 with a relatively high IC50 of 0.24 µM [41]. 

Figure 4. Structures of flavonoid inhibitors. 

 

Several naphthoflavone compounds acting as inhibitors of P450 family 1 enzymes have been 

investigated. α-Naphthoflavone exhibited a 10-fold higher inhibition of P450 1A2 than P450 1A1. 
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However, α-naphthoflavone did not show selectivity for inhibiting P450 1A2 compared with  

P450 1B1 [17,42]. On the contrary, β-naphthoflavone exhibited higher inhibition of P450 1A1 than 

1A2 [42]. To clarify the relationship between structural characteristic and selectivity, a series of 

pyranoflavone and 5-hydroxypyranoflavone derivatives were synthesized and examined for inhibition 

of P450s 1A1, 1A2, and 1B1. The results showed that α-naphthoflavone-like and 5-hydroxyflavone 

derivatives preferentially inhibited P450 1A2, while β-naphthoflavone-like flavone derivatives 

selectively inhibited P450 1A1. Interestingly, a highly selective P450 1B1 inhibitor, 5-hydroxy-4'-

propargyloxyflavone (5H4'FPE), was identified [42]. A study of four naphthoflavone propargyl ethers 

showed that 4'-propargyloxy-β-naphthoflavone (βNF4'PE, Figure 4) exhibited high inhibitory activity 

and selectivity toward P450 1A1 [39]. In comparison to stilbenes, flavonoids possess more affinity 

toward P450 1A2 compared to P450 1A1. Thus modifying flavone derivatives seems to be a logical 

approach to the design of selective P450 1A2 inhibitors as well as to study this enzyme’s active  

site cavity. 

As well-documented P450 inhibitors, the effects of flavonoids on AhR function and P450 family 1 

enzyme expression were also investigated in many studies [36]. Ciolino et al. reported that galangin 

(3,5,7-trihydroxyflavone) caused an increase in the amount of CYP1A1 mRNA, but inhibited the 

induction of CYP1A1 mRNA by DMBA or by TCDD in MCF-7 human breast cancer cells. Galangin 

also inhibited the DMBA- or TCDD-induced transcription of a reporter vector containing the CYP1A1 

promoter [43]. Quercetin and kaempferol are two of most abundant dietary flavonoids. Quercetin 

caused a time- and concentration-dependent increase in the level of CYP1A1 mRNA and P450 1A1 

enzyme activity in MCF-7 cells. However, kaempferol inhibited the TCDD-induced CYP1A1 

transcription instead of affecting normal CYP1A1 expression [44]. Baicalein (5,6,7-trihydroxyflavone, 

isolated from the plant Scutellariae baicalensis) reduce the CYP1A1/1B1 mRNA expression induced 

by DMBA, and the mRNA abundance for CYP1A1 appeared to be more responsive than that of 

CYP1B1 [45]. A flavone derivative, aminoflavone (Figure 4), also caused induction of CYP1A1 and 

CYP1B1 transcription through the AhR pathway [46]. Because of the two-way action of flavonoids on 

P450 enzyme inhibition and CYP gene expression, the true effects of a certain flavonoid in cell or  

in vivo are complex and need further investigation. 

2.5. Coumarins 

The most investigated coumarins, furocoumarin derivatives, were isolated from grapefruit juice and 

showed the capacity to inhibit the activity of certain human cytochrome P450 enzymes including P450 

family 1 enzymes [47]. Among these compounds, paradisin A, 6',7'-dihydroxybergamottin (DHB), and 

bergamottin (Figure 5) showed considerable inhibition of P450 1B1-mediated EROD activity with IC50 

values of 3.56 µM, 8.89 µM and 7.17 µM, respectively [47]. It has been reported that furocoumarins, 

angelicin, bergamottin, isopimpinellin, and 8-methoxypsoralen (8-MOP), effectively inhibited  

the catalytic activity of P450 1A1, but induced CYP1A1 gene expression via the AhR or non-AhR 

pathway [48]. As a recent study described, bergamottin and DHB inhibited alkoxyresorufin  

O-dealkylase activity of P450s 1A1 and 1A2 as well as the mutagenic effect of 3-MC and B[a]P in the 

Ames Test [49]. Cai et al. reported that several naturally occurring coumarins found in the human diet, 

including coriandrin, bergamottin, isoimperatorin, and ostruthin (Figure 5), were effective inhibitors of 
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hepatic EROD activity in vitro in hepatic tissues from SENCAR mice. Notably, bergamottin  

(IC50 = 0.12 µM) and coriandrin (IC50 = 0.85 µM) were approximately as potent as α-naphthoflavone 

(IC50 = 0.25 µM) [50]. Coriandrin was found to selectively inhibit P450 1A1-mediated EROD activity 

and to be a mechanism-based inactivator of this enzyme in vitro [51]. Contrary to flavonoids, 

coumarins are more efficient inhibitors of P450s 1A1 and 1B1 compared to P450 1A2. 

The effect of furocoumarins on P450 expression was compared to flavones. Bergamottin and 

coriandrin were found to inhibit metabolism of B[a]P and DNA adduct formation in cultured mouse 

epidermal keratinocytes [52]. Bergamottin inhibited DMBA metabolism and blocked DNA adduct 

formation in Hepa-1 cells, but had little effect in 10T1/2 cells. In contrast, α-naphthoflavone 

completely blocked DMBA metabolism and DNA adduct formation in 10T1/2 cells, but had little 

effect in Hepa-1 cells [53]. However, imperatorin and isopimpinellin (Figure 5) inhibited DMBA 

bioactivation in both cell lines [53]. 

Figure 5. Coumarin derivatives as P450 family 1 inhibitors (MLM, mice liver microsome). 

 

The investigated synthetic coumarins included 6-substituted 3,4-benzocoumarins [54] and  

7-ethynylcoumarins [55]. A group of ethynyl coumarin derivatives was found to effectively inhibit 

P450 1A enzymes. Specifically, 7-ethynyl-4-trifluomethylcoumarin and 7-ethynyl-4-methylcoumarin 

exhibited higher inhibition of P450 1A2 over 1A1, while 7-ethynyl-3-phenylcoumarin showed higher 

potency of inhibition for P450 1A1 over 1A2 [55]. 

2.6. Alkaloids 

Alkaloids are a large group of naturally occurring N-containing compounds. Since some of these 

compounds possess planar structural characteristics, they have the potential to be P450 inhibitors [16]. 
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Ellipticine, a pyridocarbazole, was the first identified alkaloid inhibitor of P450 family 1 enzymes. It 

was isolated from Ochrosia elliptica Labill, well-known as an antineoplastic agent [56]. Although 

ellipticine showed a strong inhibition of EROD activity in rat liver microsomes (IC50 = 0.11 µM), its 

inhibitory potential was non-specific and P450s from subfamilies 2B, 2D, and 3A were also inhibited 

by this compound [57]. 

A caffeine analog, furafylline, was the first selective P450 1A2 inhibitor identified. The first 

indication that it might inhibit P450 1A2 in vivo was that furafylline dramatically increased the  

half-life (7- to 10-fold) of caffeine in healthy volunteers [58]. Furafylline is a potent inhibitor of P450 

1A2 phenacetin O-deethylase activity (IC50 = 0.07 µM) in human liver microsomes. However, P450s 

1A1, 2A6, 2C8, 2D6, and 3A3/4 were not inhibited by furafylline (IC50 > 500 µM) [59]. In another 

study, furafylline was found to be a mechanism-based inhibitor of P450 1A2 [60]. The inactivation of 

P450 1A2 by this compound was characterized by a Ki of 23 µM and a kinact of 0.87 min−1. 

The indole alkaloid melatonin (N-acetyl-5-methoxytryptamine) is an endogen, which is a secretory 

product of the pineal gland [60]. Melatonin inhibited P450 family 1 enzymes, with apparent Ki values 

of 59 (1A1), 12 (1A2), and 14 µM (1B1). Treatment of MCF-10A human mammary epithelial cells 

with 300 μM of melatonin did not affect basal or B[a]P-inducible CYP1A1 or CYP1B1 expression [61]. 

Luotonin A, a pyrroloquinolinequinoline alkaloid originally isolated from Peganum nigellastrum, is 

a natural inhibitor of DNA topoisomerase I. Luotonin A inhibited P450 1A2-catalyzed phenacetin  

O-deethylation with an IC50 of 6.3 μM in human liver microsomes, but did not inhibit it in a  

time-dependent manner. Luotonin A was found to decrease human recombinant cDNA-expressed 

P450 1A1- and 1A2-catalyzed phenacetin O-deethylase activities simultaneously, with IC50 values of 

4.05 and 7.35 μM, respectively (Figure 6) [62]. 

Of the alkaloids, quinazolinocarboline rutaecarpine (a COX-2 inhibitor) showed the most potent and 

selective inhibitory effects on P450-catalyzed MROD and EROD activities in untreated mouse liver 

microsomes. The IC50 ratio of MROD (IC50 = 0.08 µM) to EROD (IC50 = 0.51) was more than 6 [63].  

A series of synthetic rutaecarpines were evaluated for inhibition of P450s 1A1, 1A2, and 1B1. Among 

the derivatives, 10- and 11-methoxyrutaecarpine (Figure 6) were the most selective P450 1B1 

inhibitors. 1-Methoxyrutaecarpine and 1,2-dimethoxyrutaecarpine were the most selective P450 1A2 

inhibitors [64]. 

Berberine, palmatine, and jatrorrhizine are antimicrobial protoberberine alkaloids, present in several 

medicinal herbs, such as Coptis chinensis (Huang-Lian) and Hydrastis canadensis (goldenseal). These 

protoberberines inhibited P450 1A1- and 1B1-catalyzed EROD activities, whereas CYP1A2 activity 

was barely affected. Kinetic analysis revealed that berberine noncompetitively inhibited EROD 

activities of P450s 1A1 and 1B1, whereas palmatine and jatrorrhizine caused either competitive or 

mixed-type inhibition. Among protoberberines, berberine caused the most potent and selective 

inhibitory effect on P450 1B1 with the lowest Ki value of 44 nM [65]. In vivo assays showed that AhR 

was activated by high doses of berberine (10–50 µM) after 6 and 24 h of incubation as revealed by 

CYP1A1 mRNA expression (HepG2 cells) and AhR-dependent luciferase activity (H4IIE.luc cells). 

Whereas, berberine was a potent inhibitor (IC50 = 2.5 µM) of P450 1A1 catalytic activity (EROD) in 

HepG2 cell culture and in recombinant P450 1A1 protein [66]. 
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Figure 6. Structures of alkaloids as P450 family 1 inhibitors (RLM, rat liver microsome; 

HLM, human liver microsome; MLM, mouse liver microsome). 

 

2.7. Other Natural Products 

Ueng et al. isolated and identified a group of P450 inhibitors from danshen (the dried root of  

Salvia miltiorrhiza), which is used in the treatment of angina pectoris, hyperlipidemia, and acute 

ischemic stroke. Among the seven components of danshen extract, tanshinone I, tanshinone IIA, and 

cryptotanshinone (Figure 7) were shown to be potent competitive inhibitors of P450 1A2 (IC50 = 0.75, 

1.3, and 0.75 µM, respectively) [67]. In Escherichia coli membranes expressing bicistronic human 

P450 1A enzymes, tanshinone IIA inhibited EROD activity of P450 1A1 with an IC50 48 times higher 

than that for P450 1A2 [68]. In vitro assays showed that tanshinones caused a significant time- and 
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concentration-dependent increase in the amount of CYP1A1 and CYP1A2 expression in HepG2 cells 

through a transcriptional activation mechanism [69]. Oral treatment of tanshinone IIA caused a  

dose-dependent increase of liver microsomal MROD activity in the arylhydrocarbon (Ah)-responsive 

C57BL/6J (B6) mice but not in (Ah)-nonresponsive DBA/2J (D2) mice. These results demonstrated 

that induction of P450 1A2 by tanshinone IIA depended on the Ah-responsiveness and occurred at  

pre-translational level [70]. 

Figure 7. Other naturally occurring products as P450 family 1 inhibitors.  

 

The compounds silybin and dehydrosylibin purified from the extract of the fruit of  

Silybum marianum showed considerable inhibition of human recombinant protein P450 1A1, with  

IC50 values of 22.9 µM and 0.43 µM, respectively. Silybin and dehydrosylibin inhibited basal and 

dioxin-inducible P450 1A1 catalytic activity in human keratinocytes (HaCaT) and human hepatoma 

cells (HepG2). The inhibitory effects of tested compounds were more pronounced in HaCaT cells than 

in HepG2 cells, and dehydrosilybin was a much stronger inhibitor than silybin [71]. 

Inhibitory effects of cannabidiol (CBD) and cannabinol (CBN), the two major constituents in 

marijuana, on catalytic activities of human cytochrome P450 family 1 enzymes were investigated. 

These cannabinoids inhibited EROD activity of recombinant P450s 1A1, 1A2, and 1B1 in a 

competitive manner. CBD most potently inhibited P450 1A1; the apparent Ki value (0.16 µM) was at 

least one-seventeenth of the values for the other P450 1 enzymes. On the other hand, CBN decreased 

the activity of P450s 1A2 and 1B1 (Ki = 0.079 and 0.15 µM, respectively) more effectively than P450 

1A1 (Ki = 0.54 µM) [72]. ε-Viniferin, a dimer of resveratrol, has also been studies and showed higher 

inhibitory activities toward P450s 1A1 and 1A2 than resveratrol [73]. 

2.8. Drugs 

Because of potential drug-drug interactions, the effects of drugs on P450 enzymes are of great 

importance in pre-clinical pharmacological studies as well as clinical trials. Since P450 1A2 is one of 

the major drug metabolizing enzymes, it has been the most investigated enzyme for the inhibitory 

effect of drugs. 
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Pifithrin α (PFTα, Figure 8), a p53 inhibitor, decreased P450s 1A1, 1A2 and 1B1 catalytic activities 

in a concentration-dependent manner. PFTα showed a selective inhibitory effect on P450 1B1 activity  

(IC50 = 0.021 µM), compared with the activities of P450s 1A1 (IC50 = 1.53 µM) and 1A2  

(IC50 = 0.77 µM) [74]. The contraceptive agent 17α-ethinyl estradiol (EE, Figure 8) appeared to cause 

selective inhibition of P450 1A1 (IC50 = 2.7 µM) over P450 1A2 (IC50 = 14 µM) [75]. The amiloride  

(a diuretic drug) derivative EIPA (5-(N-ethyl-N-isopropyl)amiloride, Figure 8) was found to cause a 

potent and dose-dependent inhibition of P450 1-related EROD activity in both liver cells and 

microsomes [76]. The antidepressant fluvoxamine (Figure 8) was a potent inhibitor of P450 1A2-mediated 

EROD activity (IC50 = 0.3 μM) in human liver microsomes, but caused weak inhibition of P450  

1A1-mediated EROD activity in human placental microsomes [77]. Anti-arrhythmic agent mexiletine 

(Figure 8) preferentially inhibited P450 1A enzymes in hepatic microsomes. The P450 1A2-mediated 

MROD activity was inhibited by mexiletine with a Ki of 6.7 μM [78]. The antifungal drug miconazole 

(Figure 8) appeared to be a competitive inhibitor against P450 1A2-mediated EROD and P450  

2D6-mediated debrisoquine 4-hydroxylation with IC50 values of 2.90 and 6.46 µM, respectively [79]. 

Figure 8. Drugs as P450 family 1 inhibitors. 

 

The chemoprotective agent oltipraz (OPZ, Figure 8) was a potent inhibitor of xenobiotic and 

procarcinogen oxidation activities in recombinant human P450 enzymes, with P450 1A2 being more 

affected than P450s 1A1, 1B1, 2E1, or 3A4 [80]. The success of OPZ as a chemoprotective agent 
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against the induction of hepatocarcinogenesis by aflatoxin B1 (AFB1) in rats depended principally on 

its ability to enhance detoxification by inducing phase II enzymes, especially glutathione transferases. 

However, OPZ also had an important inhibitory effect on the major P450 enzymes responsive for 

AFB1 metabolism, in primary cultures of human hepatocytes [81,82]. 

The phenothiazine neuroleptic perazine (Figure 8) showed potent inhibition of caffeine  

3-N-demethylation (Ki = 3.5 μM) and caffeine 1-N-demethylation (Ki = 5 μM) in both human liver 

microsomes and cDNA-expressed P450 1A2 (supersomes) [83]. Other investigated drugs (Figure 8) 

included rofecoxib [84,85], 1-aminobenzotriazole (ABT) [86,87], tacrine [88], isoniazid [89],  

lidocaine [90], and zileuton [91], etc. Since a large number of drugs are metabolized by P450 1A2, 

concerns have been raised about the potential interactions between these inhibitors and other P450 1A2 

substrate drugs. 

2.9. Other Synthetic Compounds 

DMPVT (2-[2-(3,5-dimethoxyphenyl)vinyl]thiophene), an analog of stilbene, significantly inhibited 

EROD activities with IC50 values of 61, 11, and 2 nM for P450s 1A1, 1A2, and 1B1, respectively. The 

DMBA-induced EROD activity in rat lung microsomes was also significantly inhibited by DMPVT in 

a dose-dependent manner. The mechanism of inhibition by DMPVT were non-competitive for the 

three enzymes [92]. 

The compound 343 (Figure 9) described by Sienkiewicz et al. caused a concentration-dependent 

decrease in the EROD activity of P450 1A1 (IC50 = 2 µM) and 1B1 (IC50 = 6.5 µM). There was only a 

modest inhibition of P450 1A2 activity [93]. Compound 343 also inhibited the upregulation of 

cytochrome P450 enzyme activities and CYP mRNA levels in cells treated with the AhR ligands, 

DMBA or TCDD [93]. 

Figure 9. Other synthetic inhibitors. 

 

Some chalcone, tetralone, and benzosuberone derivatives as well as 6-methyl-1,3,8-trichloro-

dibenzofuran (MCDF) exhibited inhibition of metabolic activation of carcinogen DMBA by P450 

family 1 enzymes and TCDD-induced CYP1A expression, respectively. [94,95]. 
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2.10. Mechanism-Based Inhibitors (MBIs) 

As hemoprotein monooxygenases, cytochrome P450s are responsible for the oxidation of a wide 

variety of xenobiotics and endogenous compounds. Once the oxidation reaction with a potential 

inhibitor produces reactive intermediate(s) that can covalently bond to the P450 active site, irreversible 

inactivation occurs [96,97]. This is the basis of mechanism-based inactivation, and these potential 

inhibitors are known as mechanism-based or suicide inhibitors. Because of the complete irreversible 

inactivation of the P450 enzyme, a mechanism-based inhibitor is much stronger than a competitive 

inhibitor with the same affinity for the enzyme. Thus, mechanism-based inhibitors are used in the 

design of specific enzyme-targeted drugs since they only affect the enzyme which can metabolize them 

into oxygenated active intermediate(s). Mechanism-based inhibitors are also of great interest to 

researchers because of their utility in elucidating the characteristics of enzyme active site cavities and 

enzymatic reaction mechanisms. 

Since mechanism-based irreversible inactivation (suicide inhibition) is characterized by a  

pseudo-first-order time-dependent and NADPH-dependent loss of the enzymatic activity, a large 

number of MBIs (Figure 10) have been identified according to these criteria. Some of these compounds 

have been reviewed in the earlier sections of this review. These MBIs include anthraquinone derivatives  

(4-amino-1-chloro-3-methylanthraquinone [23]), stilbenoids (rhapontigenin [29]), flavones  

(7-hydroxyflavone, 3-flavon propargyl ether [38]), coumarins (coriandrin [51]), alkaloids (furafylline [60]), 

synthetic drugs (1-aminobenzotriazole [86], tacrine [88], and oltipraz [80]). 

Many mechanism-based inhibitors were intentionally designed and synthesized employing a basic 

reactive unit, acetylene. The triple bond of these terminal acetylenes is oxidized by the P450 enzyme to 

form a reactive ketene intermediate by a 1,2-hydrogen shift. The ketene intermediate can then react 

with the heme nitrogen resulting in a time-dependent destruction of the heme [98–100] or covalently 

bond with a nucleophilic residue of the active site protein, thereby inactivating the enzyme [101,102]. 

The other important component of these compounds is a planar conjugated system, fitting the narrow 

active site cavity of P450 family 1 enzymes. A large group of ethynyl and 1-propynyl pyrenes, 

phenanthrenes, naphthalenes, and biphenyls were investigated in a series of studies on P450s 1A1, 

1A2, and 1B1 [17,18,103,104]. The results showed that inhibition mechanism varied for the different 

compounds and different enzymes. For example, 1EP (1-ethynylpyrene) is a mechanism-based 

inhibitor of P450 1A1, but a competitive inhibitor of P450s 1A2 and 1B1. While 1PP  

(1-(1-propynyl)pyrene) is a mechanism-based inhibitor of P450s 1A1 and 1A2, but a competitive 

inhibitor of P450 1B1 [18,103]. It was generally observed that replacing the terminal hydrogen of aryl 

acetylenes with a methyl group to convert ethynes into propynes enhanced the inhibition of  

P450 1A enzymes; in some instances, this modification converted a reversible inhibitor into a  

suicide inhibitor [103]. It was also observed that 2EPh (2-ethynylphenanthrene) and 2PPh  

(2-(1-propynyl)phenanthrene) more potently inhibited P450 1A1 than 1A2, whereas 9EPh  

(9-ethynylphenanthrene) and 9PPh (9-(1-propynyl)phenanthrene) selectively inhibited P450 1A2 over 

1A1 [17,103]. This suggests that the molecular shape of an inhibitor is critical for the inhibitor’s 

selectivity towards P450s 1A1 and 1A2, which will be further discussed in the following section. The 

studies on the 7-ethynylcoumarins and flavonyl propargyl ethers also provided mechanism-based 
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inhibitors of P450 1As, and certain structural characteristics of P450 1A1 and 1A2’s active site  

cavities [38,55]. 

Figure 10. Selective MBIs with acetylenic group. 

 

3. Structural Characteristics of P450s 1A1 and 1A2 Inhibitors 

The crystal structures of P450s 1A1, 1A2, and 1B1 have been elucidated in the recent years, and the 

apparent active site sizes ranked as 1A1 (524 Å3) > 1B1 (469 Å3) > 1A2 (441 Å3) [1,105,106]. These 

crystal structures are very useful for exploring active sites, enzyme-ligand binding, and related 

interactions. P450s 1A1 and 1A2 are most similar, sharing 72% amino acid sequence identity, while 

P450 1B1 has relatively low amino acid sequence identity with both P450s 1A1 (38%) and 1A2  

(37%) [1]. However, in terms of the 3D structures and the function of enzymes, P450 1A1 shows much 

more similarity to P450 1B1 than P450 1A2. In fact, P450 1A2 is largely responsible for the 

metabolism of aromatic amines, whereas P450s 1A1 and 1B1 metabolize polycyclic aromatic 

hydrocarbons and polyhalogenated aromatic hydrocarbons [2,107–109]. Furthermore, observations of 

crystal structures also show that similarity of active site cavities of P450s 1A1 and 1B1 is considerably 

more than that of P450s 1A1 and 1A2, indicating that selectively inhibiting P450s 1A1 and 1B1 is 

much more difficult than P450s 1A1 and 1A2 [1]. On the other hand, the P450 1A1 and 1A2 encoding 

genes (CYP1A1 and CYP1A2) are located head-to-head on human chromosome 15q24.1, suggesting a 

close correlation of CYP1A1 and CYP1A2 expression, while CYP1B1 gene is located on human 

chromosome 2p22.2. Thus, a certain gene expression regulator, such as an AhR ligand, that leads to 

the same effects on CYP1A1 and 1A2 transcription, probably leads to less or reverse effect on 

transcription of CYP1B1. Since some P450 inhibitors also regulate CYP gene expression, the effects of 

a single chemical entity on the level and activity of a P450 enzyme are complex and hard to predict. 

Herein, we attempted to explore the inhibitors’ selectivity toward P450s 1A1 and 1A2 by a  

meta-analysis. Due to the variations of the inhibitory activity data, originated from the use of different 

experimental methods in different research groups, the absolute IC50 values are not usable for this 

analysis. Thus, we defined the selectivity ratio (the ratio of IC50 values for P450s 1A1 and 1A2)  

in the same study as a parameter. The selective inhibitors were classified into two groups, 

IC50(1A1)/IC50(1A2) < 0.2 as selective 1A1 inhibitors (Group 1), and IC50(1A1)/IC50(1A2) > 5 as selective 
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1A2 inhibitors (Group 2), respectively. An alignment was carried out in each group, and the aligned 

images exhibited the structural characteristics of each group, which showed the features of the active 

site cavities of P450s 1A1 and 1A2. Twenty-seven compounds were selected as potential 1A1 inhibitor 

group, and 23 compounds were selected as potential 1A2 inhibitor group. Group 1 included berberine, 

palmatine, jatrorrhizine, rutaecarpine derivative 10, coriandrin, 7-ethynyl-3-phenylcoumarin, 17α-ethinyl 

estradiol, EIPA, 7-hydroxyflavone, isorhamnetin, 3'-propagyloxyflavone, β-naphtho- flavone, 

βNF4'PE, 6,5-pyranoflavone, 2PPh, CBD, resveratrol, rhapontigenin, 3,5-dihydroxy-4’-

methoxystilbene, oxyresveratrol, 3,4'-dimethoxy-5-hydroxystilbene, 2,4,3',5'-tetramethoxystilbene, 

3,4,5,3',5'-pentamethoxystilbene, 3,5,3',5'-tetramethoxystilbene, 2-methoxy-4'-methylthiostilbene,  

2,3-dimethoxy-4'-methylthiostilbene, and 2,3,4-trimethoxy-4'-methylthiostilbene. Group 2 included 

pyrene, 4PP, phenanthrene, 2EPh, 2PPh, benz[a]anthracene, furafylline, rutaecarpine, rutaecarpine 

derivative 5, rutaecarpine derivative 8, 7-ethynyl-4-methylcoumarin, 7-ethynyl-4-trifluomethyl-coumarin, 

melatonin, fluvoxamine, flavone, 5-hydroxyflavone, 3,5,7-trihydroxyflavone, tanshinone IIA,  

α-naphthoflavone, 7,8-pyranoflavone, 5-hydroxy-7,8-pyranoflavone, CBN, and DMPVT. 

The inhibitor structures were sketched in ChemDraw 13.0 (PerkinElmer, Inc., Waltham, MA, 

USA), and alignment was performed manually. The aligned images (Figure 11) obviously show that 

the skeleton of selective P450 1A1 inhibitors is a long strip shape with 12.3 Å in length and 4.6 Å in 

width, reflecting the narrow and long cavity of P450 1A1. While the skeleton of selective P450 1A2 

inhibitors is a triangle with side lengths 9.3 Å, 8.7 Å, and 7.2 Å, respectively, suggesting a narrow 

compact cavity for P450 1A2. These results demonstrate the structural characteristics of P450s 1A1 

and 1A2 inhibitors as well as the differences of P450s 1A1 and 1A2’s active site cavities, which could 

not be determined through the analysis of X-ray crystal structures of the two enzymes. 

Figure 11. Alignment images of group 1 and group 2 inhibitors. (A) Group 1 represents 

selective P450 1A1 inhibitors; (B) Group 2 represents selective P450 1A2 inhibitors. 

 

4. Conclusions 

In this paper, we have reviewed a large number of P450 family 1 enzyme inhibitors and determined 

the differences between P450s 1A1 and 1A2’s active site cavities by a meta-analysis, which will 

benefit the future inhibitor development. Since some P450 enzyme inhibitors are inducers of CYPs 

expression, the evaluation of selective P450 family 1 inhibitors should also consider their effects on 

the expression of CYP1s and other related genes. Thus, an integrated in solution, in cell, and in vivo 
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bioassay system should be established to comprehensively evaluate the effects of a P450 inhibitor on 

the enzymes, on the other drugs, and on the related diseases. In addition, because of the notable 

relationship between P450 1B1 and carcinogenesis, the development of highly selective P450 1B1 

inhibitors should be an important focus of research on the family 1 P450 enzymes. Due to the limited data 

about the selectivity toward P450 1B1, more comparative studies on P450 family 1 inhibitors are needed. 
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