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Let Sn+p(c) be an (n+ p)-dimensional Euclidean sphere of constant curvature c
and M an n-dimensional minimal submanifold isometrically immersed in Sn+p(c).
We denote by Aξ the Weingarten endomorphism associated a normal vector field ξ
and T the tensor defined by T (ξ, η) = traceAξAη.

Yuan and Matsuyama [13] proved the following: Let M be an n-dimensional
compact minimal submanifold isometrically immersed in Sn+p(c). Let σ and ψ are
the second fundamental form ofM in Sn+p(c) and the immersion respectively. Then

|σ|2 ≤ np(n+ 2)

2(n+ p+ 2)
c and T = k⟨ , ⟩

if and only if one of the following conditions is satisfied:

(A) |σ|2 ≡ 0 and M is totally geodesic.

(B) |σ|2 = np(n+ 2)

2(n+ p+ 2)
c and M is isotropic and has parallel second fundamental

form.

Hence if ψ is full, then ψ is one of the following standard ones: Sn(c) →
Sn(c); PR2(

1

3
c) → S4(c); S2(

1

3
c) → S4(c); CP 2(c) → S7(c); QP 2(

3

4
c) → S13(c);

CP 2(4
3
c) → S25(c).

Moreover, they obtain the reseult of the case of M being complete: Let M be
an n-dimensional complete minimal submanifold isometrically immersed in Sn+p(c).
Then

|σ|2 ≤ np(n+ 2)

2(n+ p+ 2)
c and T = k⟨ , ⟩.

Then if and only if one of the following conditions is satisfied:

(A) |σ|2 ≡ 0 and M is totally geodesic.

(B) |σ|2 = np(n+ 2)

2(n+ p+ 2)
c and M is isotropic and has parallel second fundamental

form.

Rerated to these results, Li and Li[2] obtained without assumption of T = k⟨ , ⟩,
the following: Let A1, A2, ..., Ap be symmetric (n × n)-matrices (p ≥ 2). Denote
Sαβ = trace tAαAβ, Sα = Sαα = N(Aα), S = S1 + · · ·+ Sp. Then we have∑

α,β

N(AαAβ − AβAα) +
∑
α,β

S2
αβ ≤ 3

2
S2,

and the equality holds if and only if one of the following conditions holds:
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1) A1 = A2 = ... = Ap = 0,

2) only two of the matrices A1, A2, ..., Ap are different from zero. Moreover, as-
suming A1 ̸= 0, A2 ̸= 0, A3 = ... = Ap = 0, then S1 = S2, and there exists an
orthogonal(n× n)-matrix T such that

tTA1T =

√
S1

2

 1 0
0 −1

0

0 0

 ,

tTA2T =

√
S1

2

 1 0
0 1

0

0 0

 .

Using the result, they proved the following: LetM be an n-dimensional compact
minimal submanifold in Sn+p, p ≥ 2. If |σ|2 ≤ 2

3
n everywhere on M , then M is

either a totaly geodesic submanifold or a Velonese surface in S4.

Now let v ∈ UMx, x ∈M . If e2, ..., en are orthonormal vectors in UMx orthogonal
to v, then we can consider {e2, ..., en} as an orthonormal basis of Tv(UMx). We
remark that {v = e1, e2, ..., en} is an orthonormal basis of TxM . If we denote the
Laplacian of UMx

∼= Sn−1 by ∆, then ∆f = e2e2f + · · · + enenf , where f is a
differentiable function on UMx.

Define functions f1(v), f2(v), · · · , f16(v) on UMx, x ∈M , by

f1(v) =
n∑

i=1

⟨Aσ(v,ei)v,Aσ(v,v)ei⟩

f2(v) =
n∑

i,j=1

⟨Aσ(ej ,ei)ej, Aσ(v,v)ei⟩,

f3(v) =
n∑

i=1

⟨Aσ(v,v)v,Aσ(v,ei)ei⟩,

f4(v) =
n∑

i,j=1

⟨Aσ(ej ,ei)ej, Aσ(v,ei)v⟩,

f5(v) =
n∑

i,j=1

⟨Aσ(ei,v)ei, Aσ(v,ej)ej⟩,

f6(v) =
n∑

i=1

⟨Aσ(v,v)ei, Aσ(v,v)ei⟩,

f7(v) = |σ(v, v)|2,

f8(v) =
n∑

i,j=1

⟨Aσ(v,ei)ej, Aσ(ej ,v)ei⟩,

f9(v) =
n∑

i,j=1

⟨Aσ(ej ,v)ei, Aσ(ej ,v)ei⟩,

f10(v) =
n∑

i=1

⟨Aσ(v,ei)ei, v⟩,

f11(v) = |Aσ(v,v)v|2.

f12(v) =
n∑

i=1

⟨Aσ(v,ei)v, Aσ(v,ei)v⟩

f13(v) = |σ(v, v)|4

f14(v) =
n∑

i=1

⟨Aσ(v,ei)ei, v⟩|σ(v, v)|2

f15(v) = (
n∑

i=1

⟨Aσ(v,ei)ei, v⟩)2

f16(v) = |σ|2|σ(v, v)|2,
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The following generalized maximum principle due to Omori [11] and Yau [18]
will be used in order to prove our theorem.

Generalized Maximum Principle. (Omori [11] and Yau [18])Let Mn be a com-
plete Riemannian manifold whose Ricci curvature is bounded from below and f ∈
C2(M) a function bounded from above on Mn. Then, for any ϵ > 0, there exists a
point p ∈Mn such that

f(p) ≥ sup f − ϵ, ||grad f || < ϵ, ∆f(p) < ϵ.

We have the following (See [7] and [8])

Lemma. Let M be an n-dimensional minimal submanifold isometrically im-
mersed in Sn+p(c). Then for v ∈ UMx we have

1

2

n∑
i=1

(∇2f7)(ei, ei, v) =
n∑

i=1

|(∇σ)(ei, v, v)|2 + nc|σ(v, v)|2

+ 2
n∑

i=1

⟨Aσ(v,v)ei, Aσ(ei,v)v⟩ − 2
n∑

i=1

⟨Aσ(v,ei)ei, Aσ(v,v)v⟩

−
n∑

i=1

⟨Aσ(v,v)ei, Aσ(v,v)ei⟩

=
n∑

i=1

|(∇σ)(ei, v, v)|2 + nf7(v) + 2f1(v)− 2f3(v)− f6(v)

Using this Lemma and the result [2], we obtained: Theorem 1. Let M be an n-
dimensional complete minimal submanifold in Sn+p, p ≥ 2. If |σ|2 ≤ 2

3
n everywhere

on M , then M is isotropic and either a totally geodesic submanifold or a Veronese
surface in S4

On the other hand, in Yuan and Matsuyama [13], we assume codimension = 2
and

traceA2
α ≤ n(n+ 2)

2(n+ 4)
c for ∀α

every where on M , we obtained:

Theorem 2. LetM be an n-dimensional complete minimal submanifold in Sn+2.

If traceA2
α ≤ n(n+ 2)

2(n+ 4)
c for ∀α, then M is isotropic and either a totally geodesic

submanifold or isotropic and has parallel second fundamental form.
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Especially, n = 2 ⇒ S2(
1

3
c) → S4(c) and n = 5 ⇒ S5 → S7(c).
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