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1. Introduction
In recent several decades, topics on electromagnetics

scattering have been widely studied with several target
shapes and models using rigorous analytical calculation
in some cases and approximations in other cases. Ex-
act solution is desirable everywhere, however, it is not
always possible to obtain exact solution for a problem.
Besides, asymptotic high frequency methods provides

powerful and fast ability in analysing a wide variety of
electromagnetic scattering problems of electrically large
objects [1] [2].
Among high frequency methods, Kirchhoff approxi-

mation is a powerful group of methods that has been
under study for several years. A well-known member
of this group is the Physical Optics (PO). This conven-
tional PO is based on surface electric current excited
by incident wave. Several efforts were contributed to
improve the methods. For example, Kobayashi and his
colleagues offered an extended version of the PO and
treated the scattering from impedance surface [4]. Yet,
this method is still limited to metallic surface and has
certain defects. One good point of the process in PO is
the use of equivalent current. Not like in the approach
in ray optics, which requires attention on any possible
ray path, or in the approach of of numerical methods
like Finite Difference Time Domain method with a large
amount of calculation, the equivalent current method
help one calculate speedily scattering field by direct in-
tegration of the current over the scattering body.
This thesis is an effort to obtain a 3D solution for

scattering from dieletric surfaces, from which one can
make further analysis for other information of the target.
Awared of the merits of the equivalent current method,
the thesis proposes and uses a modification of the equiv-
alent currents which are, now, based on the reflected
wave. The currents consist of electric and magnetic cur-
rents flowing on a hypothetical plane. This makes the
method applicable on even dielectric surface.

2. Scattering from a surface - 2D

problem

The problem will be first formulated on a two dimen-
sional surface with the incidence of a transverse mag-
netic polarized plane wave to a surface AB as depicted
in Fig.1. θ0 is the incident angle. The medium above AB

Figure 1: Scattering from a dielectric surface

is free space, while the lower part has relative permittiv-
ity ǫ = ǫ0ǫr. A Cartesian and a cylindrical coordinates
are set up at the center of the surface. Here, the time
harmonic factor e−iωt is used, but suppressed through-
out the context. Then the incident wave will take the
following forms:

Hi
z = e−ik0xcosθ0−ik0ysinθ0 , (1)

Ei
x =

√

µ0

ǫ0
sinθ0e

−ik0xcosθ0−ik0ysinθ0 , (2)

Ei
y = −

√

µ0

ǫ0
cosθ0e

−ik0xcosθ0−ik0ysinθ0 . (3)

Fig.2 depicts the assumption that the surface AB of
the dielectric body belongs to an infinite surface of the
same nature. Consequently, reflections at both ends of
the surface are similar to reflection else where on the

Figure 2: Equivalent currents
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surface. The reflected wave is given by the following
form:

Hr
z = ΓTM (θ0)e

−ik0xcosθ0+ik0ysinθ0 , (4)

Er
x = −

√

µ0

ǫ0
sinθ0Γ

TM (θ0)e
−ik0xcosθ0+ik0ysinθ0 , (5)

Er
y = −

√

µ0

ǫ0
cosθ0Γ

TM (θ0)e
−ik0xcosθ0+ik0ysinθ0 . (6)

Here, ΓTM (θ0) is the reflection coefficient. On the sur-
face AB, ΓTM (θ0) can be calculated by

ΓTM (θ0) =
ǫrsinθ0 −

√
ǫr − cos2θ0

ǫrsinθ0 +
√
ǫr − cos2θ0

. (7)

On surface y = b with −a ≤ x ≤ a, assume that there
are magnetic current M and electric current J are de-
scribed by the following equations:

J = Hr
z x̂ = ΓTM (θ0)e

−ik0xcosθ0 x̂, (8)

M = Er
xẑ = −

√

µ0

ǫ0
sinθ0Γ

TM (θ0)e
−ik0xcosθ0 ẑ. (9)

From the Maxwell’s equations, one can establish wave
equations.

∇2
A+ k20A = −µ0J, ∇2

F+ k20F = −ǫ0M (10)

Based on which the scattering farfield can be derived.

µ0H = ∇×A+ iω0µ0F− 1

iω0ǫ0
∇(∇ ·F) (11)

In the upper half plane (y >b), one may get

Hs
z = − i

4

∫ a

−a

Jx(x0)
∂

∂y
H

(1)
0 (χ)

∣

∣

∣

∣

y0=b

dx0

− ω0ǫ0

4

∫ a

−a

Mz(x0)H
(1)
0 (χ)

∣

∣

∣

∣

y0=b

dx0, (12)

where χ = k0
√

(x − x0)2 + (y − y0)2, and H
(1)
0 (χ) de-

notes the zero-th order Hankel function of the first kind.
Spectral representation of this Hankel function is given
by

H
(1)
0 (x, y, x0, y0) =

∫ ∞

−∞

eiξ(x−x0)+i
√

k2

0
−ξ2|y−y0|

π
√

k20 − ξ2
dξ. (13)

When one applies the Saddle Point Method to the
the integral for farfield, there is a pole singularity at
ξ = −k cos θ0, whose residue recovers the reflected wave.
Meanwhile, each saddle point contribution gives us
diffracted field. For the backscattering farfield, contri-
bution from the saddle points become dominant. Thus,
the backscattering farfield can be represented by

H
′s
z (ρ, φ) = (−2i)

eik0ρ+iπ/4

2
√
2πk0ρ

sinφ+ sinθ0
cosφ+ cosθ0

ΓTM (θ0)

·e−i2k0b(sin θ0+sinφ)

·sin[k0a(cosφ+ cosθ0)], (14)

where (ρ, φ) denotes the cylindrical coordinate as in
Fig.2.

3. 3D extension of the problem

3.1 General treatment

Figure 3: Scattering from surface S

Let’s consider a general surface of relative permittivity
ǫr being illuminated by an incident wave as illustrated in
Fig.3. The incident wave is defined by an unit propaga-
tion vector îi and an unit direction vector of the electric
field îE . Similarly the reflected wave is defined by îr

and î’E according to the Snell’s law of reflection. n̂, J
and M are the unit normal vector, electric equivalent
current and magnetic equivalent current at the point of
reflection respectively. r’ is the displacement vector of
the current and r points from the origin to the observa-
tion point at infinity. Vector potentials A and F can be
represented using 3D Green function.

F = ǫ0

∫

S

M(r’)
eik|r−r’|

4π|r− r’|dS (15)

A = µ0

∫

S

J(r’)
eik|r−r’|

4π|r− r’|dS (16)

Then the scattering farfield can be calculated by

µ0H = ∇×A+ iω0µ0F− 1

iω0ǫ0
∇(∇ · F), (17)

ǫ0E = −∇× F+ iω0ǫ0A− 1

iω0µ0
∇(∇ ·A). (18)

3.2 Application to dielectric slab

The case of a TE incidence to a dielectric slab is de-
picted in Fig.4. One may notice that an arbitrarily linear
polarized wave can be well disintegrated to transverse
electric and transver magnetic components. Further-
more, these two components can be treated in a similar
manner. In this resume, the formulation will be pro-
ceeded for TE wave. Solution for TM wave can be found
in the thesis.
As shown in Fig.4, the coming wave impinges the sur-

face at elevation angle θ0 and azimuth angle φ0. Others
vectorial notions are the same as explained in the general
case above.



Figure 4: Scattering from a dieletric slab

Figure 5: Scattering from a dieletric slab

n̂ = (0, 0, 1)

îi = (−sinθ0cosφ0,−sinθ0sinφ0,−cosθ0)

îr = îi − 2n̂(̂ii · n̂)
îE = î

′

E = (−sinφ0, cosφ0, 0)

Beside the Cartesian coordinate, one local spherical co-
ordinate is also located at the origin O as in Fig.5.

îR = (sinθcosφ, sinθsinφ, cosθ)

îθ = (−cosθcosφ,−cosθsinφ,−sinθ)

îφ = (−sinφ, cosφ, 0)

The incident and reflected fields can be represented by

Ei =E0îEe
ik0 îi.r,

Er=Γ(θ0)E0î
′

Ee
ik02bcosθ0eik0 îr.r,

Hr=
1

Z0
Γ(θ0)E0(̂ir × î

′

E)e
ik02bcosθ0eik0 îr.r,

in which Γ(θ0) is the reflection coefficient of the surface.
Accordingly, equivalent currents are provided by

J =
1

Z0
Γ(θ0)E0

(

n̂× (̂ir × î
′

E)
)

eik02bcosθ0eik0 îr .r(19)

M = Γ(θ0)E0(̂i
′

E × n̂)eik02bcosθ0eik0 îr.r (20)

Explicit formulae for vector potential A and F can be
derived.

A ≈ µ0
1

Z0
Γ(θ0)E0

eik0r

4πr
eik02bcosθ0

·
∫

S

(

n̂× (̂ir × î
′

E)
)

eik0 (̂ir−îR)r’ds (21)

F ≈ ǫ0Γ(θ0)E0
eik0r

4πr
eik02bcosθ0

·
∫

S

(̂i
′

E × n̂)eik0 (̂ir−îR)r’ds (22)

Because of the plane wave assumption, one can ap-
proximate the electric farfield scattering in the spherical
coordinate as

ǫ0E ≈ iω0

(

A− îR(̂iR ·A)− Z0îR × F

)

(23)

Projecting the electric scattering farfield on θ and φ

axes, one receives these corresponding components.

E
θ = iω0[A.̂iθ + Z0F.̂iφ] (24)

E
φ = iω0[A.̂iφ − Z0F.̂iθ] (25)

One substitutes Eqs.(21), (22) into Eqs.(24), (25), then
executes the scattering integrals on surface S to have the
electric scattering farfield. Because of the limited space,
the expressions are suppressed here. Regarding reflec-
tion coefficient, the reflection which takes place only at
the surface S has the following coefficient for the TE
wave.

Γ(θ0) =
cosθ0 −

√

ǫr − sin2θ0

cosθ0 +
√

ǫr − sin2θ0
(26)

However, the multiple boucing effect inside the slab also
needs to be considered. In this current configuration of
the dieletric slab sandwiched by air,the multiple reflec-
tion coefficients are given by

Γm(θ0) =
Γ(θ0)− Γ(θ0)e

i4k0b
√

ǫr−sin θ02

1− Γ2(θ0)ei4k0b
√

ǫr−sin θ02

(27)

4. Method Validation and Con-

clusion

The proposed method is different from the PO at the
point that PO use only electric current; meanwhile the
proposed solution uses both electric and magnetic cur-
rents. This procedure opens the potential use of the
method on dielectric surface. Solutions by the two meth-
ods for a PEC surface coincide exactly under monos-
tatic condition. However, difference can be observed
in bistatic calculation. Around the specular reflection
beam, the results by GTD and our method show good
agreement. However, our method and the PO are not
accurate in bistatic back scattering and both fall near



the grazing angles. See Fig.6. Monostatic RCS mea-
surement of scattering of a TM wave from a metal plate
at different frequencies reinforces this conclusion. An
example is given in Fig.7.
Monostatic RCS measurements of scattering of a TM

wave from dielectric boxes show that the proposed mul-
tiple reflection coefficient Γm explains well the scattering
property around specular reflection directions. Around
the edge region, the approximation failed to explain the
RCS pattern of the boxes. One example is shown in
Fig.8.
Fig.9 shows the a comparison of estimated and mea-

sured peak RCS of a 100 mm× 40 mm×100 mm di-
electric box’s large surfaces. The RCS estimations with
and without multiple bouncing effect included are rep-
resented by the black solid line and the blue dashed line,
respectively. The dark olive green dot line and the red
dot line show the measured RCS data. The mean RCS
values of the two faces is indicated by the dark green
line. As can be seen, the RCS estimated with single re-
flection coefficient express a linear behavior through the
frequency range. Meanwhile, the RCSm shows oscilla-
tion in accordance with the measured data.

Figure 6: Bistatic RCS of a 10λ× 10λ metal plate with
incident angle θ0 = 30◦

Figure 7: Scattering from a metal plate (100 mm× 100
mm × 0.3 mm) - 19 GHz

Figure 8: Angular monostatic RCS of a 80 mm× 80
mm×80 mm dielectric box at 19 GHz

Figure 9: Peak RCS of a 100 mm× 40 mm×100 mm
dielectric box’s large surfaces with respect to frequency
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