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ABSTRACT 

In this paper we modeled a bivariate Pareto I distribution using the method 

of principle of maximum entropy probability distribution. Properties of the 

model are discussed. Further the estimation of the parameters involved in the 

model is done in two stages using two different methods namely, principle of 

maximum entropy estimation (POME) and maximum likelihood estimation. 

From the simulation study conducted to compare the performance of the 

estimates obtained by the above two methods, we conclude that POME 

method is performing better than MLE and the two methods are comparable. 

Keywords: Bivariate Pareto I, Maximum Entropy probability Distribution, 

POME, MLE, Bivariate Failure Rate. 

1. Introduction  

Every probability distribution has some uncertainty associated with it. 

Accordingly, for some given partial information about some characteristics of 

the distribution or the random variate, we wish to derive a model that best 

approximate the distribution which is consistent with the given information. 

An approach to produce a model for the data generating distribution is the 

well-known maximum entropy method. 

Let X  be a non-negative random variable representing the lifetime of a 

component with distribution function ( ) [ ],F x P X x   survival function 

( ) 1 ( )F x F x   and probability density function ( )f x . Then the entropy 

function (Shannon (1948)) which provides a quantitative measure for the 

uncertainty of the random variable X  is given by 
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0

( ) ( ) log ( ) .H f f x f x dx



                       (1.1) 

The maximum entropy distribution is the distribution whose probability 

density function (.)f  maximizes ( )H f  in a set of distributions with given 

constraints. In maximum entropy principle, we begin with the fact that the 

distribution function is unknown. It is well known that among the set of 

distribution, the most uncertain distribution is the uniform. Thus in maximum 

entropy procedure, we have access to some information regarding the 

characteristic properties of the life time of the component or system. The 

additional information or constraints help us to obtain an appropriate model 

that maximizes the entropy function ( )H f  (see Kapur (1989)). 

In reliability studies, the problem of interest is the residual life time of a 

component which has survived beyond an age t . Ebrahimi (1996) has defined 

the residual entropy function applicable to such situations. The maximum 

entropy distribution for the univariate residual life time distributions has been 

discussed in Ebrahimi (2000) and Asadi et. al. (2004).  

Now let 
1 2( , )X X represents the life time of a two component parallel system 

with survival function  1 2 1 1 2 2( , ) , ,F x x P X x X x    the bivariate density 

function 
1 2( , )f x x  and total failure rate ( )t  

Cox’s (1972). Then the bivariate 

residual entropy function (Asha et. al (2009)) 
1 2( , , , )H f t t t  is given by 

 1 2 12 1 2 21 1 2( , , , ) ( , ), ( , , ), ( , , )XH f t t t H f t H f t t H f t t    (1.2) 

where 

1
( , ) 1 ( ) ( ) log ( ) ;    0

( )
X X

X t

H f t x F x x dx t
F t

 


           (1.3)  

21

2

1
12 1 2 12 1 2 12 1 2 1 1 2

1

( , )1
( , , ) 1 ( | ) log ( | ) ;

( , )
u tt

u t

F x u
H f t t x t x t dx t t

uF t u

u

 






 
   

   
  

  

(1.4) 

12

1

2
21 1 2 21 2 1 21 2 1 2 1 2

2

( , )1
( , , ) 1 ( | ) log ( | ) ;

( , )
u tt

u t

F u x
H f t t x t x t dx t t

uF u t

u

 






 
   

   
  


 

(1.5) 
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 The paper is organized into seven sections. In section 2, we derived a 

bivariate Pareto model and discussed its properties. In section 3, we focused 

on the estimation of only the scale parameter by using the principle of 

maximum entropy estimation (POME) and maximum likelihood estimation 

(MLE) from the density of minimum. The estimation of the rest of the 

parameters are obtained by substituting the estimate of the scale parameter 

obtained from the univariate minimum density in the MLE for the bivariate 

Pareto I distribution. Also an asymptotic property of the model is also 

discussed in section 4. In section 5, simulation studies for the estimates of the 

parameters by using the two methods are done and root mean square errors of 

the estimates have also been discussed. In section 6, a discussion based on the 

simulation is given and finally concluding remarks is given in section 7. 

2. Maximum Entropy Probability Distribution 

In this section, we formalized a bivariate maximum entropy distribution. The 

model is obtained by maximizing the bivariate residual entropy function 

1 2( , , , )H f t t t  given in (1.2) subject to a series of constraints and is discussed 

as follows. 

 

Result 1: Maximize 
1 2( , , , )H f t t t overall probability density function 

1 2( , )f x x  with support of ( , ) ( , )    satisfying  

(i) 1 2( , ) 0f x x   for all 1 2,x x   

(ii) 
1 2 1 2( , ) 1f x x dx dx

 

 

   and , , 1,2, .i i jp P X X i j i j       

(iii)  

12 1 2 21 2 1

1 2

1 12 1 2 2 21 2 1

12 1 2 21 2 1

( | ) ( | )( )

, , ( ), ( | ), ( | )
( ) ( | ) ( | )

t t t td t

t tdt
k t k t t k t t

t t t t t

 

  
  

      
                 
 
  
 

 

with 
1

( )
k

 


 , 12 2

1

1
( | )t

k
 


  and 21 1

2

1
( | )t

k
 


  is the bivariate 

Pareto I distribution. 

Proof:  

To obtain the maximum entropy function differentiate (1.3), (1.4) and (1.5) 

with respect to 1,t t and 2t and equating to zero. Thus we have 
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 ( , ) ( ) log ( ) 1 ( , ) 0X X

d
H f t t t H f t

dt
      

( , ) 1 log ( )XH f t t              (2.1) 

 12 1 2 12 1 2 12 1 2 12 1 2

1

( , , ) ( | ) log ( | ) 1 ( , , ) 0H f t t t t t t H f t t
t

 


   


 

     
12 1 2 12 1 2( , , ) 1 log ( | )H f t t t t         (2.2) 

 21 1 2 21 2 1 21 2 1 21 1 2

2

( , , ) ( | ) log ( | ) 1 ( , , ) 0H f t t t t t t H f t t
t

 


   


 

 
21 1 2 21 2 1( , , ) 1 log ( | )H f t t t t        (2.3) 

Now we have to obtain the optimum values for ( ),t 12 1 2( | )t t  and 
21 2 1( | )t t

that maximizes (2.1), (2.2) and (2.3). Hence we will maximize the entropy 

functions (2.1), (2.2) and (2.3) subject to the constraints (i), (ii) and (iii). 

From (iii), we have, 

2

( )

( )

d t

dt
k

t





 
 
 

                         (2.4) 

12 1 2

1

12

12 1 2

( | )

( | )

t t

t
k

t t





 
 

 
 

  

                             (2.5) 

21 2 1

2

22

21 2 1

( | )

( | )

t t

t
k

t t





 
 

 
                              (2.6) 

Integrating (2.4) with respect to t  , we get 

1
( )t

kt
   

Using the condition
1

( )
k

 


 in constrain (iii), the inequality becomes 

1
( )t

kt
 

 

Integrating (2.5) with respect to 1t  , we get 

12 1 2

1 1

1
( | )t t

k t
   
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Using the condition 12 2

1

1
( | )t

k
 


  in constrain (iii), the inequality becomes 

12 1 2

1 1

1
( | )t t

k t
 

 

Integrating (2.6) with respect to 2t  , we get 

21 2 1

2 2

1
( | )t t

k t
   

Using the condition 21 1

2

1
( | )t

k
 


 , in constrain (iii) the inequality becomes

  

21 2 1

2 2

1
( | )t t

k t
   

Hence 
1 1 2 2

1 1 1
( ) , ,t

kt k t k t


 
  
 

 and 10 1 20 2( ) ( ), ( ) ( ).t p t t p t      

The Cox’s TFR uniquely determine the distribution through the expression. 

   
1 2

1

1
1 2

2
1 2 2

11 1( , ) exp

x x

x

p
f x x du du

ku k u kx k x


    
     

    
   

   
1 1

1
1 1 11 1

1
1 2 1 2 1 2

2

( , ) ;
k

k k kp
f x x x x x x

kk




    

    

Similarly for 1 2.x x Thus  

   

   

2 2

1 1

1
1 1 11 1

1
2 1 1 2

2

1 2 1
1 1 11 1

2
1 2 2 1

1

;

( , )

;

k
k k k

k
k k k

p
x x x x

kk
f x x

p
x x x x

kk







    
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
  


 

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

      (2.7) 

Writing 1
1 2 1 2 1

1 2

1 1 1
, , ,

p

k k k k
           and 2

2 ,
p

k
 we get 

   

   

1 2 2 21 2

1 2 1 11 2

1 1( )

1 2 1 2 1 2

1 2 1 1( )

2 1 2 1 2 1

;
( , )

;

x x x x
f x x

x x x x

    

    

   

   

      

      

   
 

  

         (2.8) 

The model (2.8) has a dependency similar to the Freund’s (1961) bivariate 

exponential distribution. This model is different from all the models 
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discussed in literature in the sense that, it do not have Pareto marginal but 

have mixture Pareto marginal. However, this distribution enjoys the bivariate 

extension of several properties of the univariate Pareto distribution. This 

model is applicable to a two component parallel system. When one of the 

components fails, the other bear an extra load and works with a renewed 

parameter. The survival function of the model (2.8) is given by 

     

     

( ) ( )1 2 1 2
1 2 2 2 1 21 2 2

1 2 2 1 2 2

( ) ( )1 2 1 2
1 2 2 2 1 22 1 1

1 2 1 1 2 1

( ) ( )( )

1 2 2( ) ( )

1 2

1 2
( ) ( )( )

2 1 1( ) ( )

2 1

,

;

( )

;

x x x

x x

x x x

x x
F

x x

   

   

         

     

         

     





   

 

   

 

     

   

     

   

 




 



 


 
  

(2.9) 

Properties of the model: 

1. Let 
1 2( , )X X X  be a random vector in the support of  ( , ) ( , )    

with survival function 1 2( , )F x x  specified in (2.9), then X  follows 

bivariate Pareto I distribution (2.8), if and only if X  is totaly dull at the 

point ,( )t t t  (Asha and Jagathnath (2008)). 

 A distribution of
1 2( , )X X X  is called dull at the point ,( )t t t  whenever  

1 1 2 2 1 2 1 1 2 2
[ , | , ] [ , ]P X s t X s t X t X t P X s X s              (2.10)   

  for all 
1 2
, 1s s  . 

 

2. A bivariate random variable X  has density function specified by (2.8) if 

and only if ( )x  is reciprocal linear given by 1 2 1 2

1 2

( )
( ) ,  ,  x x x x

   
 
 
 

 
  

with  1

10
( )

x
x


     and 2

20
( )

x
x


   (Asha and Jagathnath (2008)).        

The important task after modeling is the estimation of the parameters 

involved in the model. Now we look into the problem of estimation. 

3. Estimation of Parameters from the Density of the Minimum 

In reliability and survival analysis, the distribution of minimum of a set of 

components is of interest to many of the researchers. In this section we 

considered two methods of estimating parameters from the density of the 
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minimum. The methods are Principle of Maximum Entropy estimation 

(POME) and Maximum Likelihood Estimation (MLE). 

The probability density function corresponding to the minimum is given by 

( 1)

1 2( ) , ,X

x
f x x




   
 

 

 
    

 
                (3.1) 

 

3.1. Principle of Maximum Entropy Estimation (POME) 

In this method, using the given constraints (information) we maximize the 

entropy function. To obtain an estimate of the parameters, we proceed as 

follows. 

The entropy function for the density function ( )Xf x given in (3.1) is obtained 

by inserting (3.1) in the definition of entropy function given in (1.1). 

That is  

 ( ) log ( ) 1 log ( )
x

H f f x dx f x dx
 




 

 
   

      
   

      (3.2) 

From (3.2), the constraints are obtained as 

( ) 1f x dx




                  (3.3) 

and  

log ( ) log
x X

f x dx E


 


    

    
    

       (3.4) 

The first constraint specifies the total probability and the second constraint 

represents the geometric mean. These constraints are unique and sufficient to 

explain the model. Using the general expression for the probability density 

function given in Kapur (1989), we have 

0 1( ) exp log
x

f x  


  
    

  
   (3.5) 

where 0 and 1  are lagrangian multipliers. 

By applying conditions (3.3) to (3.5), we obtain 

      0

1

log
1






 
  

 
                           (3.6) 
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Substituting (3.6) in (3.5) yields, 

1

1 1
( )

x
f x




 


  

  
 

                     (3.7) 

Comparing (3.7) with (3.1), we get
1 1   . 

Taking logarithm of equation (3.7), 

 1 1log ( ) log 1 log log
x

f x   


 
     

 
             (3.8) 

The negative expected value of equation (3.8) gives the entropy function 

 1 1( ) log 1 log log
X

H f E  


  
       

  
                (3.9) 

Now the lagrangian multipliers are obtained by taking the partial derivative of 

(3.9) with respect to 1  and equating to zero. Thus we have the equation,  

1

1
log

1

X
E

 

  
  

  
              (3.10) 

Differentiating (3.6) with respect to 1  and using (3.10), we get 

0

1 1

1
log

1

X
E



  

   
    
   

                  (3.11) 

From Tribus (1969), we have 

 

2

0

22

1 1

1
log

1

X
V



  

   
   

      

        (3.12) 

Hence the parametric estimation of POME consists of two equations (3.11) 

and (3.12). Inserting
1 1   , (3.11) and (3.12) becomes, 

   
1

log
X

E
 

  
  

  
    (3.13) 

2

1
log

X
V

 

  
  

  
    (3.14) 

The estimates of the parameters   and   can be obtained by solving the 

equations (3.13) and (3.14) numerically. 
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3.2. Maximum Likelihood Estimation (MLE) 

To obtain the maximum likelihood estimate for the parameters   and  , 

considering the log-likelihood function. 

 
1

log log log ( 1) log
n

i

i

L n n x   


      

According to Arnold (1983) for a fixed , the likelihood is maximized when 

 is set equal to 
1 2( , ).Min X X  Differentiating with respect to   can then be 

used to obtain the maximum value of  . Thus we have, 

1 2
ˆ ( , )Min X X      and   

1

ˆ

log
ˆ

n
i

i

n

X





 
 
 


 

4. Maximum Likelihood Estimation for the Bivariate Pareto I 

Model. 

Estimation of the parameters 
1 2 1 2, , , ,       by the method of MLE is a 

tedious job. By considering 
1 2

ˆ ( , )Min X X  for some fixed ' ,s the problem 

of estimation becomes easier. In this section we obtain the estimates for the 

shape parameters by considering the estimate of  obtained in section 3. 

Consider a random sample of size n from a population having bivariate 

density function given in (2.8). Let 1n and 2n  be the sample sizes 

corresponding to 1 2x x  and 1 2x x , where 
1X  and 

2X  are life times of the 

components. Now the likelihood function of the sample is given by 
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Considering the log-likelihood, 
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The estimates are obtained by solving the five simultaneous normal 

equations. Unfortunately, the solutions shows convergence problem. Hence 

we have to estimate the parameters either by considering some of the 

parameters to be known or to be estimated from some other methods. The 

estimate of the scale parameter estimated from the density of the minimum by 

the method of POME and MLE discussed in section 3 are used to estimate the 

rest of the parameters. Thus the estimates of the shape parameters are given 

by 

   
1 2

1
1

1 2

1 1
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ˆlog log log
n n

i i

i i

n

x x n
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Where ̂  is the estimate of   which is obtained by two methods discussed 

in section 3. 

5. Simulation Study 

Bivariate Pareto I random samples are generated from Freund (1961) 

bivariate exponential distribution by using the transformation given in the 

following theorem. 

Theorem 5.1. Let X  be a random vector with i i
X rT

e


  for , 0.r   Then 

X  is distributed as in (2.8) if and only if 1 2
( , )T T  is distributed as Freund 

(1961) bivariate exponential distribution with , , 1,2.
i

i i
i

i
r r
 

  


  

For each population, 10000 random samples of sizes 25, 50 and 100 were 

generated and the parameters are estimated in two phases as discussed in 

section 3 and section 4. Several combinations of parameters were considered 

for the simulation study. From the simulation study, it is observed that when 
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the parameters are having higher values, i.e. for   greater than 3 and rest of 

the parameters above 5 is giving comparatively large bias or root mean 

square error values compared to that of parameters with smaller values. But 

still the estimates obtained using POME is performing better than that of 

MLE. For illustration, root mean square error and variance of the estimates 

for two different sets of parameters are obtained and are given in Table 6.1 

and Table 6.2.  

6. Results and Discussion 

The simulation study has been conducted for different set of parameters. 

Simulation studies for two sets of parameters are given in Table 6.1 and table 

6.2.   

Table 6.1: Comparison of Estimation Methods - Simulation Study 1 

Sample Size Parameters Measures POME MLE 

n=25 

  (1.8) 
RMSE 0.1034 0.2532 

Variance 0.0107 0.0641 

1 (1.73) 
RMSE 0.2008 0.4411 

Variance 0.0403 0.1946 

2  (1.04) 
RMSE 0.1887 0.3756 

Variance 0.0356 0.1411 

1  (1.38) 
RMSE 1.0825 1.0825 

Variance 1.1718 1.1718 

2  (0.69) 
RMSE 0.3484 0.3484 

Variance 0.1214 0.1214 

n=50 

  (1.8) 
RMSE 0.0743 0.2253 

Variance 0.0055 0.0508 

1 (1.73) 
RMSE 0.1135 0.3017 

Variance 0.0129 0.0910 

2  (1.04) 
RMSE 0.1085 0.2567 

Variance 0.0118 0.0659 

1  (1.38) 
RMSE 0.6239 0.6239 

Variance 0.3893 0.3893 

2  (0.69) 
RMSE 0.2259 0.2259 

Variance 0.0510 0.0510 

n=100 

  (1.8) 
RMSE 0.0535 0.2006 

Variance 0.0029 0.0402 

1 (1.73) 
RMSE 0.0671 0.2089 

Variance 0.0045 0.0436 

2  (1.04) 
RMSE 0.0647 0.1774 

Variance 0.0042 0.0315 

1  (1.38) 
RMSE 0.4032 0.4032 

Variance 0.1626 0.1626 

2  (0.69) 
RMSE 0.1532 0.1532 

Variance 0.0235 0.0235 
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Table 6.2: Comparison of Estimation Methods - Simulation Study 2 

Sample Size Parameters Measures POME MLE 

n=25 

  (2) 
RMSE 0.2340 0.3364 

Variance 0.0548 0.1132 

1 (4) 
RMSE 0.1484 0.3299 

Variance 0.0220 0.1088 

2  (3.3) 
RMSE 0.1401 0.2829 

Variance 0.0196 0.0801 

1  (4.6) 
RMSE 0.7488 0.7488 

Variance 0.5608 0.5608 

2  (2.7) 
RMSE 0.2464 0.2464 

Variance 0.0607 0.0607 

n=50 

  (2) 
RMSE 0.1220 0.2940 

Variance 0.0149 0.0865 

1 (4) 
RMSE 0.0831 0.2180 

Variance 0.0069 0.0475 

2  (3.3) 
RMSE 0.0784 0.1820 

Variance 0.0061 0.0331 

1  (4.6) 
RMSE 0.4441 0.4441 

Variance 0.1972 0.1972 

2  (2.7) 
RMSE 0.1612 0.1612 

Variance 0.0260 0.0260 

n=100 

  (2) 
RMSE 0.0800 0.2471 

Variance 0.0064 0.0611 

1 (4) 
RMSE 0.0486 0.1510 

Variance 0.0024 0.0228 

2  (3.3) 
RMSE 0.0466 0.1269 

Variance 0.0022 0.0161 

1  (4.6) 
RMSE 0.2925 0.2925 

Variance 0.0855 0.0855 

2  (2.7) 
RMSE 0.1104 0.1104 

Variance 0.0122 0.0122 

 

From the Table 6.1 and Table 6.2, it is evident that irrespective of the values 

of the parameters and the sample sizes, the estimates obtained by method of 

POME for the minimum probability density applied in MLE for a bivariate 

Pareto distribution performs better than the method of MLE for all the 

parameter. The RMSE seems to be comparatively smaller for POME than 

MLE. 
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From Table 6.1 it can be observed that, for smaller parametric values, as the 

sample size increases the estimates obtained for scale parameters using 

POME as a plug in estimator is giving least RMSE, whereas the RMSE for 

the estimates obtained from MLE is higher. Simulation study is also 

conducted for larger parameter values. From Table 6.2, we can observe that 

the estimates obtained for all the parameters are giving least RMSE values as 

the sample size increases for both the method of estimation. This shows that 

whatever be the choice of parameter values, higher the sample values the 

least is the RMSE. From the simulation study carried out, we recommend 

POME method of estimation for estimating parameters to MLE. 

7. Conclusion 

In this paper, a bivariate Pareto I distribution has been modeled using the 

principle of maximum entropy distribution method. The parameters involved 

in the model are estimated using two phases, the first phase corresponding to 

the density of the minimum and the second phase by MLE corresponding to 

bivariate random variable. A simulation study has been conducted to study 

the performance of these methods. From the simulation study, it can be seen 

that POME performs better than that of MLE. Here in this study, we 

considered two method of estimation of the parameters namely, POME and 

MLE. POME method is applied only for estimating   and is being used as a 

plug in estimate in MLE. Instead of that if a bivariate conditional POME 

method is derived, it may give more efficient estimates than those obtained 

from the methods discussed in this article.  
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