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abstract
This paper presents a study of the parameter identification of period by the superposition of wave in

the actuator model using the finite element method. In this research, the period of superposed wave
is identified so as to minimize the performance function. As the state equation, the Navier-Stokes
equations are used for the analysis of flow in the actuator model. The quasi-linear approximation
of advection velocity is given by the Adams-Bashforth formula which has second order accuracy.
To solve the state equation, the implicit time integration is applied to the temporal discretization.
The bubble function element using the stabilized bubble function method is utilized for the spatial
discretization.
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1 INTRODUCTION

In this research, a numerical analysis is performed using an actuator model. The various actuators
are used as an equipment that convert electric energy, thermal energy, chemical energy and pressure
into a mechanical movement in the control system. For example, the actuator is important equipment
which performs vibratory control of various motors, an oil pressure pump, air pressure pump, oil
pressure cylinder and so on. In this research, attention is paid to the mechanism of actuator model
that does the vibration control([1]). If this structure is used, and the actuator gives vibration to
a flow, the wave of the periodic velocity is generated. Therefore, what wave can have significant
influence on the flow can be examined. The parameter identification ([2]) is to obtain the optimal
control parameter so as to minimize or maximize the objective variable. In this paper, the purpose
is to identify the period of superposed wave so as to maximize the objective velocity at the objective
point in the actuator model using the finite element method. To obtain the control variable, it is
important to perform the stable computation and to know the phenomenon of forward analysis.
The problem is observing the velocity influenced by the superposed wave at the objective point.
The bubble function interpolation of the finite element method ([3]-[5]) is capable of eliminating the
barycenter point by using the static condensation. The discretized form derived from the bubble
function element is equivalent to those from the SUPG (Streamline-Upwind / Petrov Galerkin).

∗Department of Civil Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
E-mail : jin526@kc.chuo-u.ac.jp

†Department of Civil Engineering, Chuo University, Kasuga 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
E-mail : kawa@civil.chuo-u.ac.jp

― 35―

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/229730419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Jinya KOBAYASHI Mutsuto KAWAHARA

Therefore, the stabilized parameter which is derived from the bubble function element is obtained
and determines the magnitude of the streamline stabilized term. Generally, the stabilized parameter
is not equal to the optimal parameter. Thus, the bubble function which gives the optimal viscosity
is defined by using the stabilized control parameter. The fractional step projection scheme is a
discretized method for the incompressible Navier-Stokes equations. It is possible to employ the same
interpolation that a linear or bilinear homogeneous function is used to velocity and pressure fields.
As for the numerical example, a flow analysis in the actuator model is carried out in this paper. The
velocity can be simulated in case of the optimal control parameter. The superposed wave with a
short period dose not necessarily enlarge the velocity at the objective point.

2 STATE EQUATIONS

The Navier-Stokes equation is used to calculate the fluid flow, which is:

u̇i + ujui,j + p,i − ν(ui,j + uj,i),j = 0, (1)

ui,i = 0, (2)

where ui, p and ν are the water velocity, the kinematic pressure and the inverse of Reynolds number,
respectively. The boundary and initial conditions of the Navier Stokes equations is given as follows:

ui = ûi on Γ1, (3)

ti = {−pδij + ν(ui,j + uj,i)} · nj = t̂i on Γ2, (4)

ui(0) = ûi(0) on Ω, (5)

where ti is the flux on the boundary, in which δij denotes the identity tensor and nj is the outward
normal on the boundary. The boundary Γ is divided into subset Γ1 and Γ2, which mean the Dirichlet
and the Neumann boundaries, respectively. Ω means the computational domain.

3 SPATIAL DISCRETIZATION
3.1 Bubble function

As for the spatial discretization, the bubble function element for the velocity and the linear element
for the kinematic pressure are applied. The bubble function interpolation is expressed as follows:

ui = Φ1ui1 + Φ2ui2 + Φ3ui3 + Φ4ũi4, ũi4 = ui4 −
1
3
(ui1 + ui2 + ui3),

Φ1 = L1, Φ2 = L2, Φ3 = L3, Φ4 = 27L1L2L3,

and the linear interpolation is:

p = Ψ1p1 + Ψ2p2 + Ψ3p3,

Ψ1 = L1, Ψ2 = L2, Ψ3 = L3,
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Fig. 2 Linear element

where Lλ(λ = 1, 2, 3) is the area coordinate, Φα(α = 1, 2, 3, 4) is the bubble function element for the
velocity, respectively. The bubble function element is shown in Fig. 1. The bubble function of C0

continuous can be considered, and Ψλ(λ = 1, 2, 3) is the linear element for the kinematic pressure.
The linear element is shown in Fig. 2.

The criteria for the steady problem is used, in which the discretized form of the bubble function
element is equivalent to those of SUPG (Streamline-Upwind / Petrov-Galerkin). Therefore, in the
bubble function element for the steady problem, the stabilized parameter τeB which determines the
magnitude of the streamline stabilized term. The stabilized parameter τeB is expressed as follows:

τeB =
< φe, 1 >2

Ωe

ν‖φe,j‖2
Ωe

Ae
, (6)

where Ωe is element domain and

< u, v >Ωe=
∫

Ωe

uvdΩ, ‖u‖2
Ωe

=
∫

Ωe

uudΩ, Ae =
∫

Ωe

dΩ,

the integral of bubble function is expressed as follows:

< φe, 1 >Ωe=
Ae

6
, ‖φe,j‖2

Ωe
= 2Aeg, g =

2∑
i=1

|Ψα,i|2.

From the criteria for the stabilized parameter in the SUPG, an optimal parameter τeS can be given
as follows:

τeS =

[(
2|ui|
he

)2

+
(

4ν

h2
e

)2
]− 1

2

, (7)

where he is an element size.
Generally, the stabilized parameter in equation (6) is not equal to the optimal parameter in equation
(7). Thus, the bubble function which gives the optimal viscosity satisfies the following equation
expressed by the stabilized operator control parameter:　

< φe, 1 >2
Ωe

(ν + ν′)‖φe,j‖2
Ωe

Ae

= τeS . (8)

It is shown that equation (8) adds the stabilized operator control term only of the barycenter point
to the equation of motion:

Ne∑
e=1

ν′‖φe,j‖2
Ωe

be, (9)
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where Ne and be are the total number of elements and barycenter point, respectively.

3.2 Finite Element Equation
To solve the state equations, the finite element method that bases on the stabilized bubble function

element is employed for the spatial discretization. Those finite element equations can be expressed
as follows:

Mu̇i + u∗
jSjui − Bp + νHjjui + νHjiuj = 0, (10)

BT ui = 0, (11)

where

u∗
i =

1
2
(3un

i − un−1
i ), (12)

u∗
i which is the linear approximation of particle velocity is given by the Adams-Bashforth formula

which has second order accuracy.

4 PARAMETER IDENTIFICATION
4.1 Performance Function

The parameter identification is formulated on the calculation of variation in this research. The
formulation is to find the optimal control parameter so as to minimize the performance function,
which J is expressed as follows:

J =
1
2

∫
t0

tf

{(u − ureq)
T
Q(u − ureq)}dt +

1
2

∫
t0

tf

ūT Rūdt, (13)

ū =
n∑

k=1

asinωkt, (14)

where ureq , ū and a are the required velocity, the control velocity and the amplitude, respectively,
and Q and R are the weighting diagonal matrix. The superscript T denotes transpose, respectively.

4.2 Minimization Technique
4.2.1 Sakawa-Shindo Method

The Sakawa-Shindo method is applied to the minimization technique. In this method, a modified
performance function which is added to a penalty term to the performance function is introduced.
The modified performance function K(�) is expressed as follows:

K(�) = J (�) +
1
2
{ω(�+1)

k − ω(�)

k }T
W (�){ω(�+1)

k − ω(�)

k }, (15)

[
∂K(�)

∂ωk

]
=
∫

t0

tf

{[
∂u

∂ωk

]T

Q(u − ureq)

}(�)

dt − W (�)(ω(�+1)

k − ω(�)

k ). (16)
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where � is the iteration number for the minimization, ωk and W (�) are the control value and the
weighting parameter. Applying the stationary condition

[
∂K(�)

∂ωk

]
= 0 , the following equation can be

obtained. The control parameter is renewed by the following equation:

W (�)ω(�+1)

k = W (�)ω(�)

k +
∫

t0

tf

{[
∂u

∂ωk

]T

Q(u − ureq)

}(�)

dt. (17)

4.2.2 Sensitivity Equation

The sensitivity matrix is denoted by
[

∂u
∂ωk

]
, which is obtained from equations (1) and (2) differen-

tiating with respect to ωk as follows:

∂

∂ωk
{u̇i + ujui,j + p,i − ν(ui,j + uj,i),j} = 0, (18)

∂

∂ωk
{ui,i} = 0, (19)

In this research, the sensitivity equations derived from the finite element equations of governing
equations are calculated. The boundary conditions and initial conditions should be defined to solve
the sensitivity equations (18) and (19). Therefore, those are differentiated with respect to ωk. The
boundary conditions for the sensitivity equations are expressed as follows:

∂ui

∂ωk
=

∂ûi

∂ωk
on Γ1, (20)

∂un

∂ωk
=

∂ui

∂ωk
ni =

∂ûi

∂ωk
on Γ2. (21)

Similarly, the initial conditions for the sensitivity equations are expressed as follows:

∂ui(0)

∂ωk
=

∂ûi(0)

∂ωk
in Ω. (22)

Usually, a lot of computational storage is required to treat the inverse problem. However, it is
not necessary for the calculation of sensitivity equations to store the much computational memory
because the boundary and initial conditions can be defined. Therefore, the parameter identification
technique using the sensitivity matrix can be applied to the problems that long calculation time is
required.

4.2.3 Algorithm of Sakawa-Shindo Method

The algorithm of the Sakawa-Shindo method is shown as follows:

�1. Select initial identified vector ω(�)

k , set weighting parameter W (�) = 1.3 and set � = 0 .
�2. Solve ui

(�) and p(�) by using the finite element equations.
�3. Compute the initial performance function J (�).

�4. Solve the sensitivity matrix
[

∂K(�)

∂ωk

]
= 0 by using the sensitivity equations.

�5. Compute the identified vector ω(�+1)

k .

�6. Check the convergence: Compute ε = ‖ω(�+1)

k − ω(�)

k ‖,
and if ε < ε then stop, else go to step �7.

�7. Solve ui
(�+1) and p(�+1) by using the finite element equations.
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�8. Compute the performance function J (�+1).

�9. Renew a weighting parameter W (�) :
if J (�+1) ≤ J (�) , then set W (�+1) = 0.85W (�) and go to step �4,

else W (�+1) = 2.0W (�) and go to step �5.

5 TEMPORAL DISCRETIZATION

In this section,the fractional step projection finite element scheme is employed for the Navier-
Stokes equations. To solve the state equations, the implicit time integration is used for the temporal
discretization. This method is capable of taking the long time increment and superior in stability.
Therefore, many time cycles can be taken in the computation.

The Navier-Stokes equations can be discretized as:

M
ũn+1

i − un
i

Δt
+ u∗

jSiũ
n+1
i + νHjj ũ

n+1
i + νHjiũ

n+1
j = 0, (23)

M
un+1

i − ũn+1
i

Δt
− BT pn+1 = 0, (24)

BT un+1
i = 0. (25)

Equation (23) shows that the intermediate velocity ũn+1 is computed as solution of the discretized
momentum equation without the pressure term. On the other hand, equations (24) and (25) show
that the intermediate velocity ũ is decomposed into velocity un+1

i and the pressure pn+1.

6 NUMERICAL EXAMPLE

In this section, an analysis of flow in the actuator model is carried out using the Navier-Stokes
equations. The bubble function using the stabilized function method is employed for the comparative
purpose. The computational model is shown in Fig. 3. The finite element mesh is illustrated in Fig. 4.
The total number of nodes and elements are 2351 and 4400, respectively. The total number of control
points and objective point are 7 and 1, respectively. On the left side, u is given as the Poiseuille flow
as the boundary condition.

2 m

2 m

12 m

u = 1.0
Control points (7)

Objective point (1)

Poiseuille flow

Fig. 3 Computational model

nodes : 2351 elements : 4400

Fig.4 Finite element mesh
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In this numerical example, five waves are imposed changing the velocity given at the control
points. They are referred to as the fixed wave and the superposed waves. These waves are given as
the entrance velocity at the control points, respectively. The fixed wave which is employed as the
wave of 1.8(s) period is shown in Fig. 5 as in case-[1]. In this case, the time increment Δt is set to
0.03(s), the Reynolds number is set to 400 ( ν = 0.0025 ), the amplitude is set to 0.1, the weighting
diagonal matrix Q and R are set to 1.0I and 0.0I and the required velocity ureq is set to 2.3(m/s).
As results of this research, the optimal control parameter is obtained. The component wave of
superposed waves is shown in Fig. 9. This wave is given from the control points. In case of Fig. 9,
the velocity becomes the largest at the objective point. The velocity is obtained at the objective
point in Fig. 11. Fig. 10 shows the variation of periods of wave-[1], [2], [3] and [4], respectively.
Fig. 12 shows the variation of performance function. The performance function is almost decreased
and converged in Fig. 12. The velocity vector is shown in Fig. 13. The velocity can be simulated in
the optimal case.
As in case-[2], the initial waves are changed. These waves are longer periods than that in case-[1]
like Fig. 6. The fixed wave is employed the same wave of case-[1]. In case of Fig. 16, the velocity is
obtained at the objective point in Fig. 18. Fig. 17 shows the variation of periods of wave-[1], [2], [3],
and [4], respectively in case-[2]. Then, the performance function and the velocity vector are Fig. 19
and Fig. 20, respectively.

Table 1 Initial value of period

Case-[1] Case-[2]

Wave-[1] 9.000[s] 18.00[s]

Wave-[2] 8.100[s] 12.00[s]

Wave-[3] 7.200[s] 9.000[s]

Wave-[4] 6.300[s] 7.200[s]
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Fig. 5 Initial wave in Case-[1]
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Fig. 6 Initial wave in Case-[2]
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6.1 Case-[1]
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Fig. 7 Fixed wave
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Fig. 8 Superposition of wave at control points
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Fig. 9 Control velocity at control points
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Fig. 10 Period of wave-[1][2][3][4]
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Fig. 11 Velocity at objective point
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Fig. 12 Performance function
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― 42―



Parameter Identification of Wave Period by Superposition Method

6.2 Case-[2]
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Fig. 14 Fixed wave
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Fig. 15 Superposition of wave at control points
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Fig. 16 Control velocity at control points
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Fig. 18 Velocity at objective point
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Table 2 Periods in Case-[1]

INITIAL WAVE IDENTIFIED WAVE

Wave-[1] 9.000[s] 5.423[s]

Wave-[2] 8.100[s] 1.372[s]

Wave-[3] 7.200[s] 0.491[s]

Wave-[4] 6.300[s] 2.630[s]

Table 3 Periods in Case-[2]

INITIAL WAVE IDENTIFIED WAVE

Wave-[1] 18.00[s] 7.750[s]

Wave-[2] 12.00[s] 4.897[s]

Wave-[3] 9.000[s] 0.683[s]

Wave-[4] 7.200[s] 2.099[s]

7 CONCLUSION

In this paper, the parameter identification of period by the superposition of wave in the channel
of actuator shape. The bubble function using the stabilized bubble function method was applied to
the Navier-Stokes equations. As the numerical example, a flow in the channel of actuator shape was
employed. In this research, the optimal periods of the superposed waves are identified and the velocity
can be simulated. It is shown that the superposed wave with a short period dose not necessarily
enlarge the velocity at the objective point. By the parameter identification using sensitivity equation,
the optimal wave will surely be able to be found. It is important to superpose a lot of waves and
what kind of wave is fixed. To determine the appropriate position of the objective point is very
important.
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