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abstract
This paper is concerned with the probability density function of the latent vector corresponding

to the largest latent root of Wishart matrix. The latent vector may be expressed by the polar
coordinates. Sugiyama (1966) give the exact expression of the probability density function of the
polar coordinates. The function contained the alternating series, thus the function may not be
converged on the domain of definition, numerically. In this paper we derived an improved expression
of the function to be the positive series, for which we provide graphs of a population latent vector
and latent roots.

1 Introduction

Let x1, . . . , xN be a random sample from the p-variate normal distribution with mean vector μ

and covariance matrix Σ, which is denoted by Np(μ,Σ). Then, the unbiased estimator of Σ is given
by

S =
1

N − 1

N∑
α=1

(xα − x̄)(xα − x̄)′

where x̄ = (1/n)
∑N

α=1 xα. In this case, nS = (N − 1)S is distributed according to the Wishart
distribution with n degrees of freedom and the covariance matrix Σ, denoted by Wp(n,Σ). The latent
roots and vectors of S have important roles for statistical inference. For example, the principal
components analysis results in the linear combination of latent vectors of Σ and of the original
variable vector. The variances of the principal components are given by the latent roots of Σ.
Generally these parameters are unknown, thus we must estimate them using the latent roots and
vectors of S. The statistical inferences containing the asymptotic distribution have been studied
intensely. However, few papers have been published on latent vectors and how they may be expressed
by their polar coordinates. Sugiyama (1965) gave the probability density function of the polar
coordinates when p = 2. Later, Sugiyama (1966) extended this initial result to the general p. The
main aim of this paper is to examine the stability of variation from the graph when p = 3. According
to Sugiyama (1966), the probability density function is expressed by the alternating series, thus the
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function may not be converged on the domain of definition numerically. Initially in this paper, we
shall derive an expression by a positive term series, which is useful for numerical computation. We
then drew the graphs of the probability density function when p = 3 and n = 4, 10 and 50. These
graphs are unimodal on the region of definition.

The related works of this paper are as follows: Anderson (1963) gave an asymptotic distribution
of the latent vectors of a Wishart matrix. Sugiura (1976) gave an asymptotic expansion of the
distribution of the latent vector corresponding to the simple root of Σ. Khatri and Pillai (1969)
derived an exact distribution of the latent vectors corresponding to the largest latent roots in one and
two sample cases. Takemura and Sheena (2007) derived an asymptotic normality of the latent vectors
for the normalized sample latent roots when the population eigenvalues were infinitely dispersed.

This paper is organized as follows: in Section 2, we provide an improved expression of the proba-
bility density function of the latent vector. In Section 3, we show the graph of the probability density
function for the case of p = 3. The conclusion of this paper follows in Section 4.

2 Improvement of the Density Function

In this section, we improve the expression of the probability density function of the latent vector
corresponding to the largest latent root of the Wishart matrix that was given originally by Sugiyama
(1966), modifying his argument.

Let U be distributed as Wp(n,Σ). Then, it is well known that the probability density function of
U is given by

K|U |
n−p−1

2 exp
(
−1

2
trΣ−1U

)
,

where K = |Σ|−n
2 /(2

np
2 Γp(n

2 )) and Γp(u) = π
p(p−1)

4
∏p

i=1 Γ(u − (i − 1)/2). Consider the following
spectral decomposition:

U = HD�H
′, (1)

where D� is the diagonal matrix with diagonal elements �1 > �2 > · · · > �p > 0 and

H = ( h1, h2, . . . , hp )

is p × p orthogonal matrix. Let Rν(t) be the single rotation matrix defined by

Rν(t) =

⎛
⎜⎜⎜⎜⎝

Iν−1 0 0 0
0 cos t − sin t 0
0 sin t cos t 0
0 0 0 Ip−ν−1

⎞
⎟⎟⎟⎟⎠ ,

where Iν is the ν × ν identity matrix. Then, H may be expressed as

L1(t1.) · · ·Lp−1(tp−1,.)

⎛
⎜⎝

1 0′ 0
0 Ip−2 0

0 0′ ε

⎞
⎟⎠ , (2)

where ε is 1 or −1, tν. = (tν,p−1, tν,p−2, . . . , tν,ν) and

Lν(tν.) = Rp−1(tν,p−i)Rp−2(tν,p−2) · · ·Rν(tν,ν).
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for 0 ≤ tij ≤ π with 1 ≤ j ≤ p − 1 and 0 ≤ ti,p−1 < 2π. In this case, we may write

H = H(t..) = L1(t1.)

(
1 0′

0 Hp−1(t̄..)

)
,

where t.. = (t1., t2., . . . , tp−1,.), t̄.. = (t2., . . . , tp−1,.) and Hp−1(t̄..) is an orthogonal matrix of degree
p − 1. The jacobian of the transformation U = HD�H

′ is given by

J =
p∏

i<j

(�i − �j)
p−2∏
i=1

p−2∏
j=i

sinp−i−1 tij . (3)

Let L = diag(�2, �3, . . . , �p). Then, we can express trΣ−1U as

tr

[
L1(t1.)′Σ−1L1(t1.)

(
1 0′

0 Hp−1(t̄..)

)(
0 0′

0 L

)(
1 0′

0 Hp−1(t̄..)

)′]
+ �1h

′
1Σ

−1h1. (4)

From (3) and (4) the joint probability density function of tij (i = 1, . . . , p − 1 and j = i, . . . , p − 1)
and (�1, . . . , �p) is

K(�1|L|)
n−p−1

2 exp
(
−1

2
�1h

′
1Σ

−1h1

) p∏
i<j

(�i − �j)

· exp
{

tr
(
−1

2
Σp−1(t1.)Hp−1(t̄..)LHp−1(t̄..)′

)} p−2∏
i=1

p−2∏
j=i

sinp−i−1 tij ,

where Σp−1(t1.) is (p − 1) × (p − 1) matrix obtained from deleting the first row and column of
L1(t1.)′Σ−1L1(t1.). We use the following lemma (see e.g., Muirhead [1982]) to find the joint proba-
bility density function of t1 = (t11, . . . , t1,p−1) and (�1, . . . , �p).

Lemma 2.1 Let S and T be p × p positive definite matrices. Then,

1
c

∫
(trH ′SHT )k

p−2∏
i=1

p−2∏
j=i

sinp−j−1 tij

p−1∏
i=1

p−1∏
j=i

dtij =
∑

κ

Cκ(S)Cκ(T )
Cκ(I)

,

where Σκ stands for the sum of all possible partition κ = {k1, . . . , kp−1} of nonnegative integer k

satisfying k1 ≥ · · · ≥ kp−1 ≥ 0;Cκ(X) stands for the zonal polynomial corresponding to κ and

c = π
p2

2 /Γp(p
2 ).

From Lemma 2.1 the joint probability density function of t1 and (�1, . . . , �p) is given by

K(�1|L|)
n−p−1

2

(
2p−1π

(p−1)2

2

Γp−1(p−1
2 )

)
exp

(
−1

2
�1h

′
1Σ

−1h1

) p−2∏
j=1

sinp−2 t1j

·
p∏

i<j

(�i − �j)
∞∑

k=0

∑
κ

Cκ(−1
2Σp−1(t1.))Cκ(L)
k!Cκ(Ip−1)

, (5)

Let �i = �1xi for i = 2, . . . , p, the joint probability density function of t1, (x2, . . . , xp) and �1 is
given by
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K

(
π

(p−1)2

2

Γp−1(p−1
2 )

)
exp

(
−1

2
�1h

′
1Σ

−1h1

) p−2∏
j=1

sinp−2 t1j

·
∞∑

k=0

∑
κ

�
np+2k

2 −1
1 |Lx|

n−p−1
2

p∏
i=2

(1 − �i)
p∏

i<j=2

(�i − �j) ·
Cκ(−1

2Σp−1(t1.))Cκ(Lx)
k!Cκ(Ip−1)

(6)

where Lx = diag(x2, . . . , xp). In order to derive the joint probability density function of t1 and �1,
we must integrate (6) with respect to (x2, . . . , xp). The following lemma (see e.g., Muirhead [1982])
is used to integrate.

Lemma 2.2 Let Λ be a diagonal matrix with diagonal elements 1 > λ1 > · · · > λm > 0 .Then,

∫
1>λ1>···>λm>0

|Λ|t−
m+1

2

m∏
i=1

(1 − λi)u−m+1
2

m∏
i<j

(λi − λj)Cκ(Λ)
m∏

i=1

dλi

=
Γm(m

2 )

π
m2
2

· (t)κΓm(t)Γm(u)
(t + u)κΓm(t + u)

Cκ(Ip−1).

where

(a)κ =
p∏

i=1

(a − 1
2
(i − 1))ki , (b)k =

k∏
j=1

(b + (j − 1)).

Integrating (6) with respect to (x2, . . . , xp) the joint probability density function of t1 and �1 is given
by

|Σ|−n
2

2
np
2 Γp(n

2 )
Γp−1(p+2

2 )Γp−1(n−1
2 )

Γp−1(n+p+1
2 )

�
np
2 −1

1 exp
(
−1

2
�1h

′
1Σ

−1h1

)

·
∞∑

k=0

∑
κ

(n−1
2 )κ

(n+p+1
2 )κ

Cκ(−1
2�1Σp−1(t1.))

k!

p−2∏
j=1

sinp−2 t1j

=
|Σ|−n

2

2
np
2 Γp(n

2 )
Γp−1(p+2

2 )Γp−1(n−1
2 )

Γp−1(n+p+1
2 )

�
np
2 −1

1 exp
(
−1

2
�1h

′
1Σ

−1h1

)

· 1F1(n−1
2 ; n+p+1

2 ;−1
2�1Σp−1(t1.))

p−2∏
j=1

sinp−2 t1j . (7)

where 1F1(a; c;X) denotes the hypergeometric function with the matrix argument defined by

1F1(a; c;X) =
∞∑

k=0

∑
κ

(a)κ

(c)κ

Cκ(X)
k!

.

These calculations are the same as those of Sugiyama (1966). The positive term series of expression of
the joint probability density function is obtained by the Kummer transformation (see e.g., Muirhead
[1982]):

1F1(a; c;X) = etr(X) · 1F1(c − a; c;−X).
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Applying the Kummer transformation and using the fact that h′
1Σ

−1h1 +trΣp−1 = trΣ−1 , the joint
probability density function in (7) can be expressed by

|Σ|−n
2

2
np
2 Γp(n

2 )
Γp−1(p+2

2 )Γp−1(n−1
2 )

Γp−1(n+p+1
2 )

∞∑
k=0

∑
κ

(p+2
2 )κ

(n+p+1
2 )κ

Cκ( 1
2Σp−1(t1.))

k!

·�
np+2k

2 −1
1 exp

(
−1

2
�1trΣ−1

) p−2∏
j=1

sinp−2 t1j .

Integrating with respect to �1, the joint probability density function of t1 is given by

|Σ|−n
2 Γ(np

2 )
Γp(n

2 )(trΣ−1)
np
2

Bp−1

(
p + 2

2
,
n − 1

2

)

·
∞∑

k=0

(np
2 )k

k!

∑
κ

(p+2
2 )κ

(n+p+1
2 )κ

Cκ

(
1

trΣ−1
Σp−1(t1.)

) p−2∏
j=1

sinp−2 t1j , (8)

where Bp(α, β) = Γp(α)Γp(β)/Γp(α + β). We must confirm the uniform convergence of the positive
series. The following lemma is needed to show that

Lemma 2.3 (Poincaré separation theorem) Let A be an p× p symmetric matrix and B be an p×h

matrix satisfying B′B = Ih.Then, for i = 1, . . . , h, it follows that:

λp−h+i(A) ≤ λi(B′AB) ≤ λi(A),

where λj(A) denotes the j-th largest latent root of A.

Let Σ̃ = diag(1/λp, . . . , 1/λ2), where λj denotes the j-th largest latent root of Σ. Using Lemma 2.3,

Cκ(Σp−1(t1.)) ≤ Cκ(Σ̃),

for any t1 and thus

∞∑
k=0

(np
2 )k

k!

∑
κ

(p+2
2 )κ

(n+p+1
2 )κ

Cκ

(
1

trΣ−1
Σp−1(t1.)

)

≤
∞∑

k=0

(np
2 )k

k!

∑
κ

(p+2
2 )κ

(n+p+1
2 )κ

Cκ

(
1

trΣ−1
Σ̃

)
. (9)

which is bounded by 1F0(np/2; trΣ̃/trΣ−1). Noting that trΣ̃/trΣ−1 is less than 1, infinite series in
(8) is uniformly convergent in the wider sense.

Theorem 2.1 The joint probability density function of t11, . . . , t1p is given by (8).

When p = 2, it can be verified after some calculations that (8) is identical to the probability density
function given in Sugiyama (1965), stating that:

1
π(n + 1)

{
4|Σ|

(trΣ)2

}n
2

{
n + 1

2 2F1

(
1, n;

n + 1
2

;x(t)
)
− n + 3

2 2F1

(
1, n;

n + 3
2

;x(t)
)}

,

where x(t) = (λ1 cos2 t + λ2 sin2 t)/trΣ.

― 23―



14-sugiyama-e 2009/03/18 18:35 page24

Masanori Ishizaki 　　 Yuichi Takeda 　　 Takayuki Yamada 　　 Takakazu Sugiyama

3 Numerical Result

In this section we drew the graphs of the joint probability density function of t1 when p = 3. From
(8), the joint probability density function of t11 and t12 is given by

|Σ|−n
2 Γ( 3

2n)

Γ3(n
2 )(trΣ−1)

3
2 n

B2

(
5
2
,
n − 1

2

)
·

∞∑
k=0

( 3
2n)k

k!

∑
κ

( 5
2 )κ

(n+4
2 )κ

Cκ

(
1

trΣ−1
Σ2(t11, t12)

)
sin t11. (10)

From James (1968), it is known that for any 2 × 2 positive definite matrix A,

Cκ(A)
Cκ(I2)

= (a1a2)
1
2 Pk1−k2

(
1
2
(a1 + a2)(a1a2)−

1
2

)
,

where I2 is the 2 × 2 identity matrix, a1 and a2 are the ordered latent roots of A, and Pk1−k2(u) is
the Legendre polynomials defined by

P2q(u) = (−1)q(2q)!(22q(q!)2)−1 · 2F1

(
−q, q +

1
2
;
1
2
;u2

)

for k1 − k2 = 2q and

P2q+1(u) = (−1)q(2q + 1)!(22q(q!)2)−1u · 2F1

(
−q, q +

3
2
;
3
2
;u2

)

for k1 − k2 = 2q + 1. It is known that

Cκ(I2) = 22kk!(1)κ

m∏
i<j

(2ki − 2kj − i + j)

m∏
i=1

(2ki + m − i)!
,

where m denotes the number of non-zero parts of κ (see e.g.,Muirhead[1982]). We can construct
a spectrum decomposition, whereby: Σ = ΓΛΓ′, where Γ is a 3 × 3 orthogonal matrix and Λ =
diag(λ1, λ2, λ3). From (2), we can write

Γ = ( γ1, γ2, γ3 )

=

⎛
⎜⎝

1 0 0
0 cos θ12 − sin θ12

0 sin θ12 cos θ12

⎞
⎟⎠

⎛
⎜⎝

cos θ11 − sin θ11 0
sin θ11 cos θ11 0

0 0 1

⎞
⎟⎠

·

⎛
⎜⎝

1 0 0
0 cos θ22 − sin θ22

0 sin θ22 cos θ22

⎞
⎟⎠

⎛
⎜⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟⎠ ,

where 0 ≤ θ11, θ12 ≤ π, 0 ≤ θ22 < 2π. It follows that

γ1 =
(

cos θ11, sin θ11 cos θ12, sin θ11 sin θ12

)′
. (11)

We can choose θ11, θ12 to characterize γ1. In this paper, we drew the density function for the following
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cases (A to D). Multiple root (Λ = diag(3, 2, 2)):

Case A1: γ1 = (0, 0, 1)′,

Case B1: γ1 =
(

−1/
√

2, 0, 1/
√

2
)′

,

Case C1: γ1 =
(

1/
√

2, 0, 1/
√

2
)′

,

Case D1: γ1 =
(

1/
√

3, 1/
√

3, 1/
√

3
)′

;

Simple root (Λ = diag(3, 2, 1)):

Case A2: γ1 = (0, 0, 1)′,

Case B2: γ1 =
(

−1/
√

2, 0, 1/
√

2
)′

,

Case C2: γ1 =
(

1/
√

2, 0, 1/
√

2
)′

,

Case D2: γ1 =
(

1/
√

3, 1/
√

3, 1/
√

3
)′

;

Case A1 represents the transformation of the first element of the original variable to the first
principal component. Cases B1 and C1 represent the subtraction and sum of the first and third
variables, respectively. Case D1 represents the total variation in the matrix. Cases A2, B2, C2, and
D2 represent the same transformations to principal components and variability as in Cases A1, B1,
C1, D1, respectively, when Σ is simple. We drew the graphs when p = 3 and n = 4, 10, 50.
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3.1 Multiple roots

We checked the numerical convergence of the infinite series of (8). Table 1 shows that the sum up
to k = 70 is sufficient to obtain 3 digits of accuracy for n = 4, k = 200 for n = 10, and k = 210 for
n = 50.
3.1.1 Case A1: γ1 = (0, 0, 1)′

The probability density function in (8) is shown in Figures 1-3 when γ1 = (1, 0, 0) for n = 4, 10, 50.
The graphs are symmetric with respect to (π/2, π/2).
3.1.2 Case B1: γ1 = (−1/

√
2, 0, 1/

√
2)′

The probability density function in (8) is shown in Figures 4-6 when (θ11, θ12, θ22) = (3π/4, π/2, π/4)
for n = 4, 10, 50.
3.1.3 Case C1: γ1 = (1/

√
2, 0, 1/

√
2)′

The probability density function in (8) is shown in Figures 7-9 when (θ11, θ12, θ22) = (π/4, π/2, π/4)
for n = 4, 10, 50.
3.1.4 Case D1: γ1 = (1/

√
3, 1/

√
3, 1/

√
3)′

The probability density function in (8) is shown in Figures 10-12 when (θ11, θ12, θ22) = (arccos(1/
√

3), π/4, π/4)
for n = 4, 10, 50.

Table 1: Right-hand side of (9) for n = 4, 10, 50, p = 3 and Λ = diag(3, 2, 2).

n = 4 n = 10 n = 50

0 ∼ 10 73.1265 398.2075 3144.8170
10 ∼ 20 35.3206 638.4612 34827.9060
20 ∼ 30 5.5627 254.3336 93050.2335
30 ∼ 40 0.6156 57.4889 124883.2652
40 ∼ 50 0.0574 9.5579 109915.2269
50 ∼ 60 0.0048 1.3080 71552.3132
60 ∼ 70 0.0004 0.1564 36875.6823
70 ∼ 80 0.0000 0.0169 15730.9644
80 ∼ 90 0.0000 0.0017 5733.9068
90 ∼ 100 0.0000 0.0002 1828.7816
100 ∼ 110 0.0000 0.0000 519.8977

...
...

...
...

190 ∼ 200 0.0000 0.0000 0.0002
200 ∼ 210 0.0000 0.0000 0.0000

Total 114.6880 1359.5323 498236.7287
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· Case A1 : γ1 = (0, 0, 1)′
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Figure1: n = 4
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Figure3: n = 50
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√
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Figure6: n = 50
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Figure9: n = 50
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Figure10: n = 4
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3.2 Simple root

We checked the numerical convergence of the infinite series of (8) when Λ = diag(3, 2, 1). Table 2
shows that the sum up to k = 110 is sufficient to obtain 3 digits of accuracy for n = 4, k = 170 for
n = 10, and k = 370 for n = 50.
3.2.1 Case A2: γ1 = (0, 0, 1)′

We studied the case in which Figures 13-15 show the probability density function (8) when Σ =
diag(3, 2, 1) for n = 4, 10, 50. The graph shows that large amount of probability mass is concentrated
on the line t11 = π/2.
3.2.2 Case B2: γ1 = (−1/

√
2, 0, 1/

√
2)′

The probability density function in (8) is shown in Figures 16-18 when (θ11, θ12, θ22) = (3π/4, π/2, π/4)
for n = 4, 10, 50. These figures show that the curve of the points of the highly concentrated proba-
bility density is not linear. This is the case in all subsequent Figures.
3.2.3 Case C2: γ1 = (1/

√
2, 0, 1/

√
2)′

The probability density function in (8) is shown in Figures 19-21 when (θ11, θ12, θ22) = (π/4, π/2, π/4)
for n = 4, 10, 50.
3.2.4 Case D2: γ1 = (1/

√
3, 1/

√
3, 1/

√
3)′

The probability density function in (8) is shown in Figures 22-24 when (θ11, θ12, θ22) = (arccos(1/
√

3), π/4, π/4)
for n = 4, 10, 50.

Table 2: Right-hand side of (9) for n = 4, 10, 50, p = 3 and Λ = diag(3, 2, 1).

n = 4 n = 10 n = 50

0 ∼ 10 133.3410 894.7891 9866.7591
10 ∼ 20 141.1833 3411.4462 478120.5372
20 ∼ 30 52.6759 3338.7759 5212000.6417
30 ∼ 40 13.8721 1820.6691 23858193.0181
40 ∼ 50 3.0813 725.3823 61828279.8142
50 ∼ 60 0.6186 237.3524 108276386.5542
60 ∼ 70 0.1161 67.8066 142851150.8319
70 ∼ 80 0.0208 17.5365 151898163.2695
80 ∼ 90 0.0036 4.2029 135975058.7892
90 ∼ 100 0.0006 0.9484 105579380.5341
100 ∼ 110 0.0001 0.2038 72670899.3408
110 ∼ 120 0.0000 0.0421 45083190.6042

...
...

...
...

150 ∼ 160 0.0000 0.0001 2968699.9101
160 ∼ 170 0.0000 0.0000 1279348.1454

...
...

...
...

350 ∼ 360 0.0000 0.0000 0.0002
360 ∼ 370 0.0000 0.0000 0.0000

Total 344.9133 10519.1656 904210197.6290
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· Case A2 : γ1 = (0, 0, 1)′
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Figure19: n = 4

0 Π
4 Π

2 3 Π
4 Π

t11 0

Π
4

Π
2

3 Π
4

Π

t12

0.5
1

Figure20: n = 10
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Figure21: n = 50
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Figure22: n = 4
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Figure24: n = 50
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4 Conclusion

In this paper, we have derived an improved expression of the probability density function of
the latent vector corresponding to the largest latent root of Wishart matrix given originally in
Sugiyama(1966). To illustrate our improvement, we drew the graph of the probability density func-
tion of the polar coordinates of the latent vectors when p = 3 and confirmed that the concentration
of the distribution of the latent vector increases as n increases. As a future study, we will provide
the exact confidence region of the vector. This study is currently underway in our laboratory.
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