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Reeb components of leafwise complex foliations
and their symmetries I

Tomohiro HORIUCHI and Yoshihiko MITSUMATSU1

Abstract

We review the standard Hopf construction of Reeb components
with leafwise complex structure and almost determine the group of
leafwise holomorphic smooth automorphisms for Reeb components of
certain type in the case of complex leaf dimension one. In particular,
it contains an infinite dimensional vector space.

0 Introduction

The aim of this article is to begin a study of Reeb components in leafwise com-
plex foliation of codimension one, especially focused on the symmetry in the
real 3-dimensional case. Recall that a (p + 1)-dimensional Reeb component
is a compact manifold R = Dp × S1 with a (smooth) foliation of codimen-
sion one, whose leaves are graphs of smooth functions f : intDp → R where
limz→∂Dp f(z) = +∞, and a compact leaf which is the boundary Sp−1 × S1.
Here we identify R with (Dp × R)/Z.

Foliations of codimension one with complex analytic leaves are draw-
ing attentions in several complex variables because it appears as the Levi
foliations of Levi-flat real hypersurfaces in complex manifolds. A simple con-
struction of Hopf manifolds admits a Levi-flat real hypersurface, whose Levi
foliation consists of a pair of Reeb components. This construction is general-
ized in Nemirovskii’s examples [Ne]. They have non-trivial linear holonomy
along toral leaves. In this paper, from rather topological points of view,
we study mainly Reeb components with flat holonomy, which, for example,
appears in turbulization or in Dehn surgery.

After fixing basic notions in Section 1, Reeb components and the turbu-
lization are reviewed in the context of leafwise complex foliations in Section
2. Then, we study the symmetries of a Reeb component in a leafwise com-
plex foliation on a 3-manifold with flat holonomy along the boundary toral
leaf. In section 4 we study the group of leafwise holomorphic foliated dif-
feomorphisms and determine it for Reeb components obtained by the Hopf
construction with holonomy tangent to the identity to the infinite order at the
boundary (Theorem 4.7). In particular the automorphism group contains an
infinite dimensional vector space. Also depending on the subtle property of
the boundary holonomy, the group can be topologically not complete. These
phenomena are common to, for example, leafwise complex foliations on S3
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(B) No. 22340015.
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or on lens spaces which consist of two Reeb components (see Section 5). The
study of moduli space of tame Reeb component due to Meersseman-Verjovsky
[MV] exhibits similar phenomena to those of compact complex manifolds to
a certain degree. Here the study of automorphisms reveals results which are
contrary to it.

Similar results are obtained for Reeb components of complex leaf dimen-
sion 2. They are explained in a forthcoming paper [Ho]. Also for a Reeb
component whose boundary holonomy is linear or tangent to the identity
at the origin only to a finite order the situations are rather different and
basically easier. They are discussed in separate articles in preparation.

A key step of the proof relies on a study of functional equations con-
cerning flat functions and expanding diffeomorphisms of the half line which
are infinitely tangent to the identity at the origin (Theorem 3.1). In this
direction, in order to prepare for [Ho] as well, we describe the results slightly
beyond the minimum which we need in this paper. These are treated in
Section 3.

Throughout this article, we only consider smooth manifolds and smooth
foliations.

The authors are deeply grateful to the members of Saturday Seminar at
TITech, especially to Takashi Inaba, for exciting discussions and valuable
comments.

1 Basic definitions

LetM be a (2n+q)-dimensional smooth manifold and F be a smooth foliation
of codimension q on M and let p = 2n be the dimension of leaves. We refer
general basics for foliation theory to [CC].

Definition 1.1 (Leafwise complex structure, cf. [MV]) (M,F) is said
to be equipped with a leafwise complex structure if there exists a system of
local smooth foliated coordinate charts (Uλ, φλ) where φλ : Uλ → Vλ ⊂ Cn×
Rq = {(z1, · · · , zn, y1, · · · , yq)} is a smooth diffeomorphism onto an open set
Vλ such that the coordinate change (w1, · · · , wn, t1, · · · , tq) = γµλ(z1, · · · , zn, y1, · · · , yq)
is smooth, tj’s depend only on yk’s (j, k = 1, · · · , q), and when yk’s are fixed
wl’s are holomorphic in zm’s, where γµλ : φλ(Vλ ∩ Uµ) → φµ(Vλ ∩ Uµ). It is
equivalent to that the foliation has complex leaves whose complex structures
vary smoothly in transverse directions. It is eventually equivalent to that
the tangent bundle τF to the foliation is equipped with a smooth integrable
almost complex structure J . We call (M,F , J) a leafwise complex foliation
and quite often, along the context, F might be referred to as well.

Accordingly, a diffeomorphism between two foliated manifolds with leaf-
wise complex structures are said to be an isomorphism between leafwise com-
plex foliations iff it preserves the foliations and gives rise to biholomorphisms
between leaves.
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In this paper we are only concerned with foliation of codimension one.
In particular, our interest will be focused on Reeb components , especially
of real dimension 3, namely in the case of n = 1 and q = 1. As we see from
the examples of Nemirovskii [Ne] even a real analytic Levi-flat hypersurface
in a complex manifold can admit Reeb components in its Levi foliation. In
such a case, the holonomy along the toral boundary leaf can not be tangent
to the identity to the infinite order.

Apart from Levi-flats, for example, if we perform a turbulization we easily
find various leafwise complex foliations admitting Reeb components with
holonomy infinitely tangent to the identity. See the next section for the
detail.

2 Reeb components with complex leaves

In this section we review a particular construction of Reeb component with
complex leaves and a process of turbulization which produces a new Reeb
component in a leafwise complex foliation.

In order to make pasting construction easier, we introduce the following
notions. Let (R,F , J) (or simply R for short) be a Reeb component with
leafwise complex structure of complex leaf dimension n and (H, JH) be its
boundary leaf.

Definition 2.1 The Reeb component R has a tame boundary (or ‘R is tame
at boundary’ for short, or even shorter ‘R is tame’) with respect to a product
coordinate H× [0, ε) of a collar neighborhood of H if it gives rise to a smooth
foliation with leafwise complex structure when it is pasted with the product
foliation (H× (−ε, 0], {H×{x}|x ∈ (−ε, 0]}, JH) along their boundary. Here
each leaf H × {x} has the same complex structure as H when identified
with the natural projection. Namely, the Reeb component is extended to the
outside as a product foliation.

The notion of tameness was introduced in [MV].

Remark 2.2 If we forget the leafwise complex structure and consider the
same notion only as foliation of codimension one, it does not depend on the
choice of product coordinate on the positive side and the tameness implies
exactly that the holonomy is tangent to the identity to the infinite order. This
is because the set of expanding diffeomorphisms of the half line R≥0 which
are infinitely tangent to the identity is an open convex cone and invariant
under conjugation by any diffeomorphism. Also remark that the tameness
depends only on the smooth projection of the collar neighborhood to the
boundary, which the product coordinate defines. If two projections have the
same infinite jets on the boundary, the tameness notion coincides for the two.

Definition 2.3 The leafwise complex structure of a Reeb component R
is simple around boundary (or R has a simple complex structures around

3



boundary) if the boundary has a collar neighborhood U ∼= H × [0, ε) such
that the restriction of the projection U = H × [0, ε) → H to each leaf in U
is holomorphic.

This notion should also be understood relative to the projection from a
collar neighborhood to the boundary.

The notions of tameness and simpleness apply not only to Reeb compo-
nents but also to more general leafwise complex foliations of codimension one
with a compact leaf or a boundary leaf.

Clearly if a Reeb component has simple complex structures around the
boundary and the holonomy of the boundary leaf is infinitely tangent to
the identity, it is tame with respect to the appropriate projection. The
tameness condition prohibits unexpected wild behaviour around boundary.
In particular in the case of complex leaf dimension = 1, it induces a strong
consequence due to Meersseman and Verjovsky. See the following subsection.

2.1 Reeb component by Hopf construction

Let us present a particular construction of a Reeb component with leafwise
complex structure which is tame. If we remove the flat condition on the
holonomy, it gives rise to more general Reeb components. These construc-
tions are a kind of folklore.

Construction 2.4 (Hopf construction) Let φ ∈ Diff ∞(R≥0) a diffeomor-
phism of the half line R≥0 = [0,+∞) satisfying φ(x)−x > 0 for x > 0, namely
the origin is an expanding unique fixed point. Also take a (local) biholomor-
phic diffeomorphism G ∈ Diff hol(Cn, O) which is expanding. This implies
that for some small neighborhood D of the origin O with smooth boundary
G(intD) ⊃ D and lim

k→−∞
Gk(D) = {O}. Now take U = ∪∞

k=1G
k(D) ⊂ Cn.

Then on R̃ = U × R≥0 \ {(O, 0)} ⊂ Cn × R, take the restriction F̃ of the
product foliation {Cn×{x}} together with the natural complex structure on
leaves and a diffeomorphism T = G× φ on U × R≥0 \ {(O, 0)}). Practically
we take fairy simple diffeomorphisms such as linear maps as G so that U
becomes the whole Cn. Then on the quotient R = R̃/T Z a foliation F with
leafwise complex structure is induced.

From the construction, it is simple around the boundary. If the holon-
omy is infinitely tangent to the identity it is also tame with respect to the
coordinate in the construction.

The boundary U \ {O}/GZ is a complex manifold which is a so called
Hopf manifold. In the case n = 1 it is an elliptic curve and the construction
is equivalent to one with linear map as G.

Theorem 2.5 (Meersseman-Verjovsky, [MV]) Any tame Reeb component
with complex leaves of complex dimension 1 is isomorphic to one of those
given by the Hopf construction.
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We present a couple of extensions (variants) of the above construction.

Construction 2.6 Now, let us take the product not with the half line
but with the whole real line R. Let M and Φ ∈ Diff ∞

+ (R) be as follows.

• M = (U × R \ {(O, 0)})/T ′Z, T ′ = G× Φ,

• x = 0 is an expanding unique fixed point of Φ.

M consists of two Reeb components and in exactly the same way as above a
foliation with leafwise complex structure is induced on M .

Note that in this and above construction, the holonomy of the toral leaf
is given by φ and Φ. In these constructions, we can choose them so as to be
tangent to the identity at the origin to the infinite order.

Construction 2.7 Next, we take Φ as a simple linear expansion in order
to extend it to a biholomorphic expansion Φ̃ of C. Note that R is an invariant
subspace. Fix the expansion ratio µ > 1 and take the followings;

W = (U × C \ {O})/T ′′Z, T ′′ = G× Φ̃, Φ̃(z) = µz (z ∈ C),
M = (U × R \ {(O, 0)})/T ′Z, T ′ = G× Φ, Φ(x) = µx (x ∈ R).

W is an (n + 1)-dimensional Hopf manifold, M is its Levi-flat real hyper-
surface with Levi foliation consisting of two Reeb components, and a unique
compact leaf is the Hopf manifold (U \ {O})/GZ of dimC = n.

Problem 2.8 The above result by Meersseman and Verjovsky poses the
following questions. We assume the complex leaf dimension to be one. If two
Reeb components with leafwise complex structures have the same boundary
holonomy and their boundary leaves are biholomorphic to each other, are
they isomorphic as leafwise complex foliations? Does there exist a Reeb
component with complex leaves which is not isomorphic to a tame one but
with holonomy infinitely tangent to the identity? Or does there exist one
which is not isomorphic to any of those given by the Hopf construction?
The second form of question seems not difficult to have negative answers.
Anyway, those questions are asking what should be the complete invariants
to determine Reeb components without assuming the tameness.

Construction 2.9 We introduce one more construction, which is pre-
pared for turbulization. Take M̃ = (Cn × R) \ {O} × R≤0 and restrict the

product action T̂ = G × Ψ to M̃ , where Ψ is an orientation preserving
diffeomorphism of R which fixes 0, expanding on R≥0, and contracting on
the negative side R≤0 = (−∞, 0], i.e., Ψ(x) > x for x < 0. On M̃ we
take (the restriction of) the horizontal foliation F̃ . Then take the quotient
(M,F , JF) = (M̃, F̃ , Jstd)/T̂ Z.

The non-negative part is nothing but the Reeb component constructed in
2.4 regarding φ = Ψ|R≥0

. The non-positive side (N,G) = (M,F)|x≤0 remains
non-compact and is in fact a foliated R≤0-bundle with holonomy ψ = Ψ|R≤0

.
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If we remove the boundary compact leaf {x = 0} from the non-positive
side (N,G), it is isomorphic to (Cn \ {O})× S1. For a better description of
turbulization process, let us be more precise about this identification. This
is done by embedding T̂ in a 1-parameter family. Take a smooth curve
Gt in GL(2;C) and also a smooth curve ψt in Diff ∞(R≤0) which is always
tangent to the identity to the infinite order at x = 0, satisfying the following
conditions.

ψk = ψk (k ∈ Z), ψt+1 = ψ ◦ ψt (t ∈ R),
∂ψt(x)

∂t
> 0 (∀x, t),

Gk = Gk (k ∈ Z), Gt+1 = G ◦Gt (t ∈ R).

Then, fixing (any) x0 < 0, x = ψt (x0) gives a diffeomorphism between
(−∞, 0) (∋ x) and R(∋ t). Then the identification of (z, x) ∈ (Cn\{O})×R<0

with (w, t) ∈ (Cn \ {O}) × R by (z = Gt(w), x = ψt(x0)) conjugates T̂ |x<0

into (w, t) 7→ (w, t+ 1).
It is worth remarking that this identification gives rise to a partial com-

pactification of horizontally foliated manifold ((Cn\{O})×S1, {(Cn\{O})×
{t}} by a Hopf manifold N as a boundary leaf so as to obtain (N,G). Around
this boundary the structure is tame. If we take diffeormorphisms ψt infinitely
tangent to the identity at the origin, we obtain a tame structure. Also on
the non-negative side, by taking smilar family φt for φ = φ1, we also obtain
a tame structure on the non-negative side.

2.2 Turbulization in L× S1

Here we review a classic of modification of a foliation of codimension one to
produce a (new) Reeb component, namely a turbulization. We start from a
standard situation.

Construction 2.10 Let (M,F) be a leafwise complex foliation of codi-
mension one and assume that there is an embedded solid torus U = intD2n×
S1 on which the the induced foliation is {intD2n × {∗}} and the induced
complex structure is also the canonical ones on each intD2n × {∗} ∼= intD2n

⊂ Cn. Let (w, t) denote the natural coordinate of U = intD2n × S1 where
S1 is regarded as R/Z. Then we remove {O}×S1 from U and let U∗ denote
the result. Using the coordinate (w, t) U∗ is identified with an open subset
of the negative side of Construction 2.9, together with leafwise complex fo-
liations. Therefore we can compactify this end with the Hopf manifold as
in Construction 2.9 and also if we add positive side of Construction 2.9 we
obtain a leafwise complex foliated manifold without boundary with a new
Reeb component. For this construction we can choose any of Gt, ψt, and Φ
as in Construction 2.9. The above process including adding the positive side
is the leafwise complex version of a turbulization. See also Figure 1 below.
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2.3 General case

It is easy to find a closed transversal to a foliation of codimension one, namely,
an embedded circle which is transverse to the foliation, unless the manifold
is open and the foliation is too simple. If we do not regard the leafwise
complex structure, it is always possible to perform the turbulization in a
tubular neighborhood of the closed transversal. However, even with leafwise
complex structures, the situation is almost the same because of the following
fact, which also belongs to folklore.

Theorem 2.11 Let (M2n+1,F , J) be a smooth leafwise complex foliation
of codimension one and K ⊂M is a closed transvesal, namely there exists a
smooth embedding f : S1 → M which is transverse to the foliation F with
its image f(S1) = K.

Then, there exists a tubular neighborhood U ∼= K × intD2n such that
the restricted foliation (U,FU , J |FU

) is isomorphic to the standard one (S1×
intD2n,F0 = {t}× intD2n, J0) and through this isomorphism K is identified
with S1 × {O}.

In particular, we can perform the standard turbulization 2.10 in U .

This theorem follows from the following lemma.

Lemma 2.12 The group Diff hol(Cn, O) of germs of holomorphic diffeo-
morphisms of (Cn, O) which fix the origin is pathwise connected.

The lemma immediately follows from the two facts that GL(n;C) is pathwise
connected and that such a germ with identical linear part can be joined by
a straight segment to the identity.

2.4 Dehn surgery in dim = 3 vs. higher dimensional
turbulization

In order to close the section, this subsection provides with some remarks
concerning the possibility of pasting the Reeb component in a different way
in a turbulization. In the rest of this section and in fact that of this paper,
let us assume the holonomy Ψ and thus accordingly φ and ψ as well to be
tangent to the identity to the infinite order at the origin.

Remark 2.13 If we forget the leafwise complex structure and treat foli-
ations only as smooth objects, basically there are two ways to perform the
turbulization. The one has been already described above and is indicated
in Figure 1. For the other one we can reverse the top and bottom of the
Reeb component (Figure 2). This is because the cyclic (universal for n ≥ 2)
covering of the boundary leaf is R2n \ {O} ∼= S2n \ {N,S} and two ends
are exchangeable by a diffeomorphism. However, as a complex manifold,
Cn \{O} has one convex end and one concave. For the case of leaf dimension
n is greater than 1, these two ends are not exchangeable. In particular, for
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n ≥ 2, the turbulization for leafwise complex foliations can not change the
homotopy class of the tangent bundle.

Note that for these arguments we have to pay attentions only to complex
structures of the boundary leaves, because we are dealing with flat structures.

Figure 1 Figure 2

The green lines indicate the bounndary leaves of Reeb components. The

axes of the rotational symmetries of the Reeb components, which are

not drawn but the readers could imagine, correspond to {O} × R+.

Remark 2.14 In the case of complex leaf dimension = 1, the ‘upside-
down’ construction always works. Namely, in Construction 2.4, z ↔ z−1

always induces an biholomorphism on the boundary elliptic curve.
If the boundary elliptic curve admits a complex multiplication, namely

finite but discrete symmetries of order 2, 3 or 4, removing the Reeb compo-
nent and pasting it back with one of those symmetries is a special kind of
Dehn surgeries.

More generally, in the turbulization, remove the Reeb component and
first leave it. We prepare another Reeb component with a different complex
structure. If their boundaries match up through some diffeomophism, we can
fill up the boundary with that Reeb component. In this way, a Dehn twist
corresponding to any element of the mapping class group M1(∼= SL(2;Z))
of a 2-dimensional torus T 2 is realized for a closed transversal in a leafwise
complex codimension one foliation of n = 1.

8



3 Functional equations on flat functions

In this section some preliminaries for the determination of the automor-
phisms of a Reeb component concerning certain functional equations for flat
functions wich involve the holonomy diffeomorphisms. We include slight ex-
tensions of what we minimally need to have in this paper.

Let φ ∈ Diff ∞(R≥0) be a diffeomorphism of the half line R≥0 = [0,∞)
which is tangent to the identity to the infinite order at x = 0 and satisfies
φ(x) − x > 0 for x > 0. Also we fix a complex number λ with |λ| > 1. Let
us consider the following (system of) functional equations on β, β1 and β2
∈ C∞(R≥0;C) concerning φ and λ. In the case where λ is a real number, we
can consider the same equations for β2 ∈ C∞(R≥0;R).
Equation (I) : β(φ(x)) = λβ(x).

Equation (II) : β1(φ(x)) = λβ1(x) + β2(x), β2(φ(x)) = λβ2(x).

First consider these equations on (0,∞). Then, Equation (I) has a lot
of solutions and if we fix any solution β∗(x) ∈ C∞((0,∞);C) which never
vanishes, i.e., β∗(x) ̸= 0 for x > 0, then each solution corresponds to a
smooth function on S1 = (0,∞)/φZ by taking β 7→ β/β∗. This gives a
bijective correspondence between the space Z = Zφ,λ of solutions to (I) on
(0,∞) and C∞(S1;C) as vector space.

Also take the space S = Sφ,λ of solutions to Equation (II) on (0,∞). If
we assign β2 to a solution (β1, β2) ∈ S, we obtain the projection P2 : S → Z.
Here the kernel of P2 is nothing but Z. We also see that the projection P2

is surjective because for any β2 ∈ Z

β1(x) =
1

λ log λ
β2(x) log β

∗(x)

gives a solution (β1, β2) ∈ S, where for log β∗(x) any smooth branch can be
taken. Therefore, as a vector space, S has a structure such that

0 → Z → S → Z → 0

is a short exact sequence.

Theorem 3.1 1) Any solution β ∈ Z extends to R≥0 so as to be a smooth
function which is flat at x = 0, i.e., k-th jet satisfies jkβ(0) = 0 for any
k = 0, 1, 2, · · · .
2) The same applies to any solution (β1, β2) ∈ S.

In the rest of this section we prove the above theorem. In order to clarify
the strategy it might be suggested to the readers to check lim

x→+0
β(x) = 0 and

lim
x→+0

β′(x) = 0 i.e., for k = 0, 1, which are almost trivial, and then the the

second jet k = 2. Looking at the case k = 3 might make the roll of the
following lemma clearer.
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Lemma 3.2 The n-th derivative {β(φ(x))}(n) is written in the following
form for n ∈ N.

{β(φ(x))}(n) = (φ′(x))n · β(n)(φ(x)) +
n−1∑
k=1

Φn,k · β(k)(φ(x)) .

Here, Φn,k is an integral polynomial in φ′(x), φ′′(x),· · · , φ(n)(x), without
constant term and no term is of monomial only in φ′(x).

This lemma is easily seen by the induction, but in fact it is a corollary
to the well-known formula of Faà di Bruno (e.g., see [Ri], [Ro], or textbooks
on calculus). It is independent of our assumption on φ and is valid for any
composite functions. On the other hand the flatness of φ at the origin implies
(φ′(x))n → 1 and Φn,k → 0 when x→ 0 + 0.

Now let us prove 1) of Theorem 3.1. Let β be a solution to (I) on (0,∞).
From the equation it is easy to see that β(x) → 0 when x→ 0 + 0.

Now fix any integer N . β′(x) → 0 is also easy to see, but for higher
derivatives, in a natural estimate the lower derivatives are involved. Thus
the basic strategy is not to estimate the higher derivatives by induction on
the order, but to estimate them all together up to the fixed order N .

From Equation (I) and the above lemma we have the following computa-
tion.
N∑
n=1

|β(n)(x)| =
1

|λ|

N∑
n=1

∣∣{β(φ(x))}(n)∣∣
≤ 1

|λ|

N∑
n=1

{
(φ′(x))n · |β(n)(φ(x))|+

n−1∑
k=1

|Φn,k| · |β(k)(φ(x))|

}

≤ 1

|λ|

N∑
k=1

(
(φ′(x))k +

N∑
n=k+1

|Φn,k|

)
· |β(k)(φ(x))|

As is remarked above, we know (φ′(x))k → 1 and
∑N

n=k+1 |Φn,k| → 0 when
x→ 0. Therefore there exists bN > 0 such that for x ∈ (0, bN ] we have

(φ′(x))k +
N∑

n=k+1

|Φn,k| ≤
√

|λ| for k = 1, 2, · · · , N.

This implies for any x ∈ (0, bN ]

N∑
n=1

|β(n)(x)| ≤ 1√
|λ|

N∑
n=1

|β(n)(φ(x))|.

Put M = max{
∑N

n=1 |β(n)(x)| ; x ∈ [bN , φ(bN)]} and define m(x) ∈ N for
x ∈ (0, bN) so that φm(x) ∈ [bN , φ(bN)). Then, the above inequality implies

N∑
n=1

|β(n)(x)| ≤M ·
√

|λ|
−m(x)
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for x ∈ (0, bN). Because ‘x→ 0+0’ is equivalent to ‘m(x) → ∞’, we obtained
the convergence

β(n)(x) → 0 (x→ 0 + 0) for n = 1, · · · , N.

This completes the proof of 1).

Let us outline the proof of 2). We extend the basic strategy of the proof of
1) in the following sense. When we estimate the derivatives of β1, naturally
those of β2 are involved. Therefore we will estimate the derivatives of β1
and β2 all together up to a fixed order N , even though the flatness of β2 is
already proved in 1).

First we fix ε > 0 so small that ε ≤ |λ|
5
4 − |λ| is satisfied. Now take any

solution (β1, β2) ∈ S and put β̃2 = ε−1β2. Then instead of Equation (II), β1
and β̃2 satisfy

Equation (ĨI) : β1(φ(x)) = λβ1(x) + εβ̃2(x), β̃2(φ(x)) = λβ̃2(x).

Then, from (ĨI) we have

β1(φ(x)) +
eiθλ− ε

λ
β̃2(φ(x)) = λβ1(x) + eiθλβ̃2(x)

and consider the n-th derivatives of both sides. For any θ ∈ R and n =
1, · · · , N , we have

|β(n)
1 (x) + eiθβ̃

(n)
2 (x)| ≤ 1

|λ|

(
|{β1(φ(x))}(n)|+

|λ|+ ε

|λ|
|{β̃2(φ(x))}(n)|

)
Because the right hand side is independent of θ, using the inequality∣∣∣∣eiθλ− ε

λ

∣∣∣∣ ≤ |λ|+ ε

|λ|
≤ |λ|

1
4 for any θ ∈ R

we obtain

|β(n)
1 (x)|+ |β̃(n)

2 (x)| ≤ 1

|λ| 34

(
|{β1(φ(x))}(n)|+ |{β̃2(φ(x))}(n)|

)
.

Applying Lemma 3.2 to β1(φ(x)) and to β̃2(φ(x)) for n = 1, · · · , N , from
the same argument as in 1) we obtain

N∑
n=1

(
|β(n)

1 (x)|+ |β̃(n)
2 (x)|

)
≤ 1

|λ| 14

N∑
n=1

(
|β(n)

1 (φ(x))|+ |β̃(n)
2 (φ(x))|

)
for x ∈ (0, bN ], where bN is exactly the same as in the proof of 1). □

Now it is almost straight forward to generalize these facts to the following
case. Let β(x) be a Cn-valued function on the open halfline (0,+∞) and
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consider the equation β(φ(x)) = Aβ(x) where A = (aij) is an n× n matrix
any of its eigenvalues has the absolute value greater than 1. Of course it is
enough to consider the case where A is a nontrivial Jordan block, i.e., aij = λ
for i = j, aij = 1 for i+ 1 = j, and aij = 0 otherwise.

Let Sn denote the set of solutions. For 1 ≤ m < n, Sm is naturally
identified with a quotient {t(βn−m+1 · · · βn) | t(β1 · · · βn) ∈ Sn} of Sn. Each
projection Sm → Sm−1 is surjective because the multiplication × 1

λ log λ
β∗ is

a linear right inverse and its kernel coincides with Z. S1 is nothing but Z
and S2 the above S as well. Then any β ∈ Sn extends to R≥0 by defining
β(0) = 0 and is then flat at x = 0.

The proof of this generalization is also easy and is left to the readers.
It appears if we deal with higher dimensional Reeb components, while it is
described mainly because of the curiosity, its easiness, and clarity.

4 Symmetries of 3-dimensional Reeb component

In this section we compute the group of automorphisms of a Reeb compo-
nent of dimension 3 which is given by a Hopf construction. In order to fix
notations, we present our objects again. Let R̃ be C × R≥0 \ {(0, 0)}, take
λ ∈ C with |λ| > 1 and a diffeomorphism φ ∈ Diff ∞(R≥0) which is tan-
gent to the identity to the infinite order at 0 and satisfies φ(x) − x > 0 for
x > 0. Let G denote the linear expansion of C defined as the multiplication
by λ and T : R̃ → R̃ be T = G × φ. Then we obtain a Reeb component
(R,F , J) = (R̃, F̃ , Jstd)/T Z as the quotient, as well as the boundary elliptic
curve H = C \ {0}/GZ. Here, on the upstairs the leaves of the foliation
F̃ = {C× {x}|x > 0} ⊔ {C∗ × {0} } are equipped with the natural complex
structure Jstd which is inherited by those of F .

4.1 Lift to R̃ and restriction to H

Let us consider the group Aut(R,F , J), which is also denoted by AutR for
short, of all foliation preserving diffeomorphisms of R whose restriction to
each leaf is holomorphic. Also we consider the group of holomorphic dif-
feomorphisms AutH of the boundary elliptic curve H as well as its identity
component Aut0H which is isomorphic to T 2 and can be identified with H
itself.

Propoition 4.1 The image of the restriction map rH : AutR → AutH is
exactly Aut0H.

Proof. If we regard AutH/Aut0H as a subgroup of SL(2;Z), in most cases
it is just {±E} where E denotes the identity matrix. In a few cases where
the elliptic curve H admits complex multiplications, they are of order 3,4, or
of 6 and a kind of ‘rotations’ on the universal covering, i.e., elliptic matrices
in SL(2;Z). In any of those cases, no element in AutH \Aut0H preserves the
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direction of holonomy and thus none extends to R as a foliation preserving
diffeomorphism.

On the other hand, any element in Aut0H is obtained as the quotient of
the scalar multiplication ma : C∗ → C∗ by some nonzero complex number
a. The automorphism ma × idR≥0

of R̃ clearly descends to R and defines an
element in AutR. □

By this proposition, the study of the structure of AutR breaks into two parts,
that of the kernel Aut(R,H) and the study of the restriction map rH .

Now it is easier to look at the lifts of automorphisms on R̃. Any element
f ∈ AutR has a lift f̃ ∈ Aut(R̃, F̃ , Jstd) (= AutR̃) which takes the form

f̃(z, x) = (ξ(z, x), η(x))

in C × R≥0-coordinate. A lift f̃ should commutes with the covering trans-
formation T , because, T ◦ f̃ = f̃ ◦ T k for some k ∈ Z but it is easy to see
that k = 1 when it is restricted to the boundary. Therefore an element in
AutR̃ is a lift of some element in AutR if and only if it commutes with T .
Let Aut(R̃;T ) denote the centralizer of T in AutR̃, namely, the group of all
such lifts. It contains an abelian subgroup {ma × idR≥0

|a ∈ C∗} ∼= C∗. This
subgroup injectively descends to a subgroup of AutR which restricts exactly
to Aut0H ∼= C∗/λZ. It is important to remark that whether Aut0H admits
a homomorphic section is not a trivial question. Postponing this question
until the end of this section, we go on an easier way.

Let us introduce one more subgroup Aut(R̃, H̃;T ) of Aut(R̃;T ) which
consists of all elements which act trivially on the boundary H̃. Any element
f ∈ Aut(R,H) has a unique lift to an element f̃ ∈ Aut(R̃, H̃;T ) Namely,

Corollary 4.2 Aut(R,H) is isomorphic to Aut(R̃, H̃;T ).

Again, let us present an element g ∈ AutR̃ in the form g(z, x) = (ξ(z, x), η(x)).

Lemma 4.3 The element g belongs to Aut(R̃;T ) if and only if it satisfies
the following conditions.

(1) ξ(z, x) = az + b(x), b(0) = 0 for some b ∈ C∞([0,+∞),C) and a ∈ C∗.

(2) b(φ(x)) = λb(x).

(3) φ ◦ η = η ◦ φ, namely, η ∈ Zφ = the centralizer of φ in Diff ∞(R≥0).

Further more, g belongs to Aut(R̃, H̃;T ) if and only if the above conditions
are satisfied with a = 1.

Proof. Let us first show the only if direction, then the if direction will
become almost trivial.

Assume g ∈ Aut(R̃;T ). ξ(z, x) is smooth and holomorphic in z. If x
is fixed, ξ( · , x) : C → C is a holomorphic automorphism even in the case
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where x = 0 because the origin is a removable singularity, it is a linear map
with nontrivial linear term. Therefore it is written in the following form;
ξ(z, x) = a(x)z + b(x) where a(x), b(x) ∈ C∞(R≥0,C) with a(x) ̸= 0 and
b(0) = 0. These also apply to elements in AutR̃.

Now look at the commutation relation with T . g ◦ T = T ◦ g implies

(a(φ(x))λz + b(φ(x)), η(φ(x)) = (λa(x)z + λb(x), φ(η(x))) .

Thus we obtain (2) and (3). This also tells us that a(φ(x)) = a(x), so that
for any x ≥ 0 we have a(x) = lim

n→∞
a(φ−n(x)) = a(0) and (1) is concluded.

For g ∈ Aut(R̃, H̃;T ) we just need to confirm that a = 1. □

Corollary 4.4 AutR is naturally isomorphic to Aut(R̃;T )/T Z.

4.2 Centralizer of φ in Diff ∞(R≥0)

In general, the centralizer Zφ of φ in Diff ∞(R≥0) is known to be fairy wild
(see [Ey]). Under our assumption on φ it is known that there exists a unique

C1-vector field Xφ = ρ(x)
d

dx
on the half line R≥0, which is of class C∞ on

(0,+∞), in such a way that the exponential map expXφ (namely the time
one map of the generated flow) coincides with φ (see [Sz] and [Na]). This
vector field is often called the Szekerez vector field of φ. If the Szekerez
vector field Xφ is of class C∞ on R≥0, namely ρ(x) is flat at x = 0, then the
centralizer Zφ coincides with the 1-parameter family {exp(tXφ) = φt ; t ∈ R}
generated by Xφ.

In general case, using the order of real numbers, the centralizer Zφ turns
out to be a totally ordered abelian group which contains {φZ} ∼= Z. Therefore
it is uniquely identified with a certain subgroup of the additive group R under
the identification {φZ} ∼= Z. Depending on φ, Zφ can be Z, Q, or e.g., Z⊕Zα
where α is a Liouville number [Ey], or far more complicated. The topology
on Zφ through this identification with natural topology of R coincides with
the one induced from the C0-topology on Diff ∞(R≥0).

We should also remark that any element of Zφ is tangent to the identity
at the origin to the infinite order.

At present it is not known whether Zφ ∼= R implies the smoothness of Xφ

at x = 0.

4.3 Structure of AutR

Upon all the previous preparations we are able to describe the structure of
AutR as follows.

Propoition 4.5 Let R be a Reeb component of real dimension 3 which is
given by the Hopf construction as indicated in the beginning of this section.
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1) The group AutR of automorphisms of the Reeb component R admits a
following sequence of extensions by abelian groups,

0 → Aut(R,H) → AutR → Aut0H → 0

0 → Zφ,λ → Aut(R,H) → Zφ → 0

where Aut0H ∼= C∗/λZ is represented by the constant linear part a described
in Lemma 4.3, Zφ is the centralizer of φ which is explained in the previous
subsection, and Zφ,λ is an infinite dimensional vector space described in
Section 3 which is the set of functions b(x) in Lemma 4.3.

The following can be regarded as a corollary to the arguments already done
up to the previous subsection, in particular to those done on the space Zφ,λ

in the previous section.

Corollary 4.6 If we paste H × (−ε, 0] to R along the boundary H, any
element of AutR extends to the other side, being the identity on H× (−ε, 0],
as a diffeomophisms of class C∞.

The first step of the extensions is obtained by looking at the action on the
boundary, and once we assume that the action on the boundary is trivial,
the second extension is obtained by looking at the action on the vertical line
{0} × R≥0. We can interpret it as an action on the leaf space. However,
the first extension does not yield non-abelian group. Using the identification
AutR ∼= Aut(R̃;T )/T Z in Corollary 4.4, we obtain a better description not
only from the above point of view but also from that of the question whether
the restriction map rH : AutR → Aut0H admits a homomorphic section.
Note that Zφ admits a section to Aut(R,H) ⊂ AutR.

An element f ∈ Aut(R̃;T )/T Z admits a presentation f(z, x) = (az +
b(x), η(x)) up to T Z where T (z, x) = (λz, φ(x)). Therefore ignoring b(x)
from this presentation and assigning f 7→ (a, η) (mod (λ, φ)Z), we obtain a
surjective homomorphism Aut(R̃;T )/T Z ↠ (C∗ × Zφ)/(λ, φ)

Z to an abelian
group. Also, by setting b(x) = 0, we see this abelian group can be realized
as a subgroup of Aut(R̃;T )/T Z. This enables us to describe the structure of
AutR as follows.

Theorem 4.7 The automorphism group AutR ∼= Aut(R̃;T )/T Z is iso-
morphic to the semi-direct product

Zφ,λ ⋊
{
(C∗ × Zφ)/(λ, φ)

Z}
where a ∈ C∗ acts on b(x) ∈ Zφ,λ by multiplication b(x) 7→ a−1b(x), i.e., the
conjugation in the affine transformations of each leaf, and η ∈ Zφ acts by
b(x) 7→ b(η(x)).

proof. Let us only verify the action of a. The conjugation by the multipli-
cation by a is [z 7→ z + b(x)] 7→ [z 7→ a−1(az + b(x)) = z + a−1b(x)]. □
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To close this section, consider the liftability of Aut0H to AutR. This is
nothing but the liftability of the surjective homomorphism

(C∗ × Zφ)/(λ, φ)
Z ↠ C∗/λZ .

Here we assume the continuity of splitting, otherwise the question should
include thinking about non-continuous homomorphism R → R with 1 7→ 1.
If the centralizer Zφ is the total of R, it implies Zφ is a C0-family of 1-
parameter subgroup {ηt ; t ∈ R} in Diff ∞(R≥0) with φ = η1. Then we
obtain easily a lift defined as

a(modλZ) 7→ (a, ηt(a)) (mod (λ, φ)Z) , t(a) =
log |a|
log |λ|

.

The converse is almost the same. If we have a continuous lift toAut(R̃;T )/T Z,
choose a value of log λ and look at the lift of a circle subgroup et log λ (0 ≤
t ≤ 1) to a continuous path in Aut(R̃;T ) starting from the identity. Then its
projection to Zφ gives rise to a 1-parameter family in Zφ starting from the
identity which ends at φ. If this curve is smooth, it implies that the Szekeres
vector field Xφ of φ is smooth. Thus we obtain the following.

Theorem 4.8 The restriction map rH : AutR → Aut0H admits a contin-
uous [resp. smooth] homomorphic section if and only if the centralizer Zφ is
isomorphic to R as an ordered abelian group [resp. the Szekeres vector field
Xφ is smooth].

Moreover in this case, AutR admits a structure of semi-direct product of
two abelian groups as follows;

AutR ∼= Zφ,λ ⋊ (Aut0H × Zφ).

5 Reeb foliations

The automorphism group of a leafwise complex foliation on a closed 3-
manifold which consists of two Reeb components is now easy to compute.

Let Rφ,λ be the Reeb component which we dealt with in the previous
section. For another diffeomorphism ψ ∈ Diff ∞(R≥0) which is also expanding
and tangent to the identity at the origin to the infinite order and another
constant µ ∈ C with |µ| > 1, take the Reeb component Rψ,µ and let Rψ,µ

denote the mirror of Rψ,µ, namely the one which we obtain by reversing the
the transverse orientation. It is done by replacing x with −x in the Hopf
construction.

For example if λ = µ we can paste Rφ,λ and Rψ,µ along the common
boundary H = C∗/λZ by the identity of H to obtain a leafwise complex
foliation on S2 × S1. In general according to the pasting element ∈ SL(2;Z)
we can choose appropriately λ and µ and paste them. The foliation on S3

obtained in such a way is called the Reeb foliation.
Corollary 4.6 yields the following results.
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Theorem 5.1 Let (M,F , J) be a leafwise complex foliation which is ob-
tained by pasting Rφ,λ and Rψ,µ. Then its group of automorphism is natu-
rally isomorphic to the fibre product of AutRφ,λ and AutRψ,µ with respect
to Aut0H.

If the centralizer Zψ is isomorphic to R as an ordered abelian group,
then AutRφ,λ is continuously realized as a subgroup in the resulting group
of automorphisms.

Theorem 5.2 If (M3,F1, J1) is obtained from (M3,F0, J0) by turbuliza-
tion along a closed transversal and the resulting Reeb component is isomor-
phic to AutRφ,λ, the group Aut(M3,F1, J1) naturally contains a subgroup
which is isomorphic to Aut(Rφ,λ, H).

Remark 5.3 In both of above theorems, the automorphism group con-
tains an infinite dimensional vector space Z or one more copy and can be
incomplete when the holonomy is not nice. Thus even in the case of closed
manifolds, the automorphism group of leafwise complex foliation can be fairy
large. This presents a clear contrast between the study of leafwise complex
foliations and that of compact complex manifolds or to that of moduli space
of leafwise complex foliations with compactness properties such as tameness.
It might be also possible to interpret that the largeness of the automorphism
group mirrors the finite dimensionality of the moduli space in the tame case.

References

[CC] A. Candel and L. Conlon. Foliations I. Graduate Studies in Mathe-
matics A. M. S., vol. 23,

[Ey] H. Eynard On the centralizer of diffeomorphisms of the half-line. Com-
ment. Math. Helv. 86, no. 2, (2011), 415 – 435.

[Ho] T. Horiuchi. Reeb components of leafwise complex foliations and their
symmetries II. in preparation.

[MV] L. Meersseman and A. Verjovsky. On the moduli space of certain
smooth codimension-one foliations of the 5-sphere by complex surfaces.
J. Reine Angew. Math. 632, (2009), 143 – 202.

[Ne] S. Yu. Nemirovskii. Stein domains with Levi-flat boundaries on compact
complex surfaces. Mathematical Notes, vol. 66, No. 4, (1999), 522 – 525.

[Na] A. Navas, Groups of Circle Diffeomorphisms, Translation of the 2007
Spanish edition. Chicago Lectures in Mathematics Series. University of
Chicago Press, Chicago, IL, 2011.

[Ri] J. Riordan. Derivatives of composite functions. Bull. A. M. S. vol. 52,
(1946), 664 – 667.

17



[Ro] S. Roman. The Formula of FAA Di Bruno. Amer. Math. Monthly. vol.
87, No. 10 (1980), 805 – 809.

[Sz] G. Szekeres. Regular iteration of real and complex functions. Acta Math.
100 (1958), 203 – 258.

Tomohiro HORIUCHI
Department of Mathematics,

Chuo University

1-13-27 Kasuga Bunkyo-ku, Tokyo,

112-8551, Japan

horiuchi@gug.math.chuo-u.ac.jp

Yoshihiko MITSUMATSU
Department of Mathematics,

Chuo University

1-13-27 Kasuga Bunkyo-ku, Tokyo,

112-8551, Japan

yoshi@math.chuo-u.ac.jp

18


