

24

International Journal of Computer (IJC)
ISSN 2307-4523 (Print & Online)

© Global Society of Scientific Research and Researchers

http://ijcjournal.org/

Upgraded Deadlock Averting Algorithms in Distributed

Systems

Abdullah Jana*, Syed Atif Ali Shahb, Zafar Khanc, Sakin Jand, Adnan Haroone,

Imad Khanf, HabiburRahman Tariqg

a,b,cNorthern University Nowshera, Peshawar, Pakistan
d,e,f,gAbasyn University Peshawar, Peshawar, Pakistan

aEmail: abdullah@northern.edu.pk, bEmail: atif@northern.edu.pk
cEmail: Zafarkhan@northern.edu.pk, dEmail: sakinjan100@gmail.com

eEmail: safanktk44@gmail.com, fEmail: khanimad082@gmail.com
gEmail: habiburahmantariq@gmail.com

Abstract

Distributed system deadlock is like ordinary deadlock but it is difficult to prevent or detect when it is traced

down. In the distributed system all, the related information is distributed over many machines. However,

deadlock in distributed systems is tremendously serious. Therefore, it is important to understand how this

deadlock is different from the ordinary deadlock and how to prevent it. To prevent deadlock in the distributed

system there are two techniques to prevent it one wound-wait and other is wait-die. Therefore, the problem in

these algorithms are that they just attend to the timestamp of the process but not the priority of them but in the

real operating system priority of the process is very important. In this paper, we present upgraded deadlock

averting algorithms and these algorithms are deal with both priority and time stamp of processes.

Keywords: Deadlock averting; Distributed Systems Deadlock averting; Distributed Systems; Deadlock averting

Algorithms.

* Corresponding author.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Computer (IJC - Global Society of Scientific Research and...

https://core.ac.uk/display/229656437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

International Journal of Computer (IJC) (2019) Volume 34, No 1, pp 24-33

25

1. Introduction

Distributed system is a group of independent nodes that seems to its user as a single intelligible system. This

definition mention two feature of the distributed system. The first feature of the distributed system is that a

distributed system is a group of computing nodes, which behave independently of each other. A node is

generally referred to as a computing element that can either be hardware or software process. The second

feature of the distributed system is that when a user uses distributed systems they think they are dealing with a

single intelligible system [1]. Benefits of the distributed system are sharing of data mean that the distributed

environment provides facilities to users if the users at one site may be able to access the data be present in at

other sites, Autonomy means of data distribution each site is able to hold a degree of control over data that are

stored locally. In addition, availability means that if one site crash in a distributed system the other sites may be

able to continue working. Thus, a crash of one site does not essentially imply the shutdown of the whole system

[2]. The weakness of distributed systems is software development cost because it is very difficult to implement

a distributed database system. In addition, distributed database work in parallel it is difficult to guarantee the

correctness of algorithms. Specially operation during failure of part of the system and recovery from failures.

The possibility exists for extremely subtle bugs. Enhanced processing overhead problem arise in distributed

systems [2]. In the past not too far away on the server, two devices combined and created first distributed

system.at the very start, one computer can perform one task at a time. If we need multiple tasks to be performed

at a time, so we need to run multiple computers at a time. However, running the computers in parallel at a time

in not building a truly distributed system since it needs a method to build communication between different

computers. Therefore, the evolution of distributed systems start form message-oriented communication and then

Service Oriented Architecture and then ESB (Enterprise Service Bus) and then Application Programming

Interface (API) and then Virtual machines and then Container-based application deployment [3]. Nowadays

distributed system is originated everywhere and their design is simple and there are many scopes to develop

more service and application. Designing distributed system many challenges arise related to design like

Heterogeneity, Openness, Security, Scalability, Failure handling, Concurrency, Transparency, Quality of

service, Reliability, Performance [4]. The rest of the paper organized as follow. Section 2 related work. Section

3 briefly explain what is deadlocks and the scope of deadlocks in distributed system/distributed operating

system and the overview of distributed system deadlock averting algorithms. Section 4 provide the complete

details of proposed algorithms for deadlock averting. Section 5 the proposed algorithms are to be implemented

using C++ programming language. Section 5 provide complete summarization.

2. Related Work

Review the techniques related to deadlock averting in the first method it locks complete data item before each

transaction begins to execute in the second method allocating global timestamp to each transaction to

preventing deadlocks [6]. Review two deadlock-averting techniques. Wait-die is based on the non-preemptive

method and the other one wound wait is based on preemptive method so both the techniques can avoid

starvation.so the major problem exist in these techniques is that unnecessary rollbacks may occur[7]. Try to

averting deadlock in a grid environment to standby the data consistency then improve amount by exploiting the

accessibility of resource and to the potential that all the resource available in the grid are efficiently used [8].

International Journal of Computer (IJC) (2019) Volume 34, No 1, pp 24-33

26

Present a new method for averting resource deadlock in a distributed system. Deadlock averting using well-

ordered and atomic multicast in a distributed system. Ordered and atomic multicast (OAM) suggestion

communication services with the help of these services deliver communication or message to their endpoint

with an assurance of well-ordered and atomicity so he shows that well-ordered and atomicity is top in an

existing condition to prevent deadlocks [9]. Deadlocks averting methods for services oriented transaction

processing. Deadlock problem is more difficult in the service-oriented architecture. Present a replication based

approach to evade the local deadlocks and a timestamp based technique to indirectly release the global

deadlocks. So usually, the algorithm is intended for both local and global deadlock prevention [10].

3. Distributed Deadlock System

Distributed system present a high quality of resource and data sharing, a condition in which deadlocks may

happen. [6] Deadlock state arises in a distributed system. When two or more processes waiting for state

incessantly for an event and which is pretentious by one of the waiting processes [11]. A deadlock can be ensure

if the four conditions grip concurrently the first one is Mutual exclusion. In mutual exclusion condition in which

one resource be, able to allocated to one process. The second condition is Hold and wait. In Hold and wait, the

processes can grip resources and demand new resources. Third condition is Non-preemption. In Non-

preemption, resources cannot be forcefully isolated from a process. The fourth condition is Circular wait. In

Circular, wait condition in which individual process wait for resource that the subsequent process in chain holds

[12]. There are four methods for handling deadlocks. The first method is Ignore the deadlock. The second

method is Deadlock detection. In deadlock detection, first find the deadlock and then break them. The third

Method is Deadlock prevention. In deadlock prevention, create the structure of a system in such a manner those

three conditions for deadlock cannot occur. The forth method is Deadlock avoidance. In Deadlock, avoidance

explains methods that try to control if a deadlock will happen at the time a resource is request and respond to

the request in a method that avoids the deadlock. In this paper, we concentrate on deadlock prevention, which is

the best usually implemented deadlock solution. The two popular techniques for deadlock presentation in

distributed system is wait-die and wound-wait. Transactions are well order by timestamps. When a transaction

is create, a timestamp field is attach to it. For example, let assume two transaction are Ti and Tj and these two

transaction marked with timestamp Ts (Ti) and Ts (Tj). In the following wait-die algorithm [13]. if old process

waiting for the young process so the old process continues to wait otherwise if the young process is waiting for

the old process so the young process will expire and restarted again with the same timestamp so this algorithm

just attend timestamp of the process but not the priority of the processes [5].

3.1. Wait-die

 If (Ts (Ti) < Ts (Tj))

 Print (Ti is older than Tj, so Ti is allowed to wait)

 Else

 Print (Ti younger than Tj, so Ti is terminate and is resume later with the same timestamp) attend timestamp of

International Journal of Computer (IJC) (2019) Volume 34, No 1, pp 24-33

27

the process but not the priority of the processes [5].

Figure 1: Wait-Die Algorithm

3.2. Wound-Wait Algorithm

In the following wound-wait algorithm is the old process is to be wait for young process so the old process

damaged the young process and acquire it resources otherwise young process is to be wait for the old process so

the young process continue to wait [5].

If (Ts (Ti) < Ts (Tj))

 Print (Ti is older than Tj so Ti wound Tj and acquire it resources)

Else

 Print (Ti earlier than Ti so Tj is allow to wait)

International Journal of Computer (IJC) (2019) Volume 34, No 1, pp 24-33

28

Figure 2: Wound-Wait Algorithm

4. Proposed Algorithms

In the proposed upgraded wait die algorithm if the old process is to wait for the young process so the old

process continues to wait but the priority of the older process is higher than younger process so the young

process should be wait. Else, if the old process is to wait for the young process so the old process continues to

wait but the priority of the young process is higher than Old process so the Young process continues to wait. In

the proposed upgraded wound wait algorithm if the old process is waiting for young and the priority of the old

process is higher than young process so old process wound young process and acquire its resource. Else, if the

old process is to wait for young process and the priority of the young process is higher than the old process so

the old process should be wait.

4.1. Proposed Wait-Die

If (TS (Ti) < TS (Tj) && PTi > PTj)

 Print ((Tj) is to allowed to wait because (Ti) is older than (Tj) but priority of (Ti) is greater than (Tj))

 Else If (TS (Ti) > TS (Tj) && PTi > PTj)

 Print (Tj is allowed to wait because Tj priority is less than Ti)

International Journal of Computer (IJC) (2019) Volume 34, No 1, pp 24-33

29

 Else If (TS (Ti) > TS (Tj) && PTi < PTj)

 Print ((Ti) is allowed to wait because priority of (Tj) is greater than (Ti))

 Else If (TS (Ti) < TS (Tj) && PTi < PTj)

 Print ((Ti) is allowed to wait because priority of (Tj) is greater than (Ti))

Figure 3: Wait-Die Algorithm

International Journal of Computer (IJC) (2019) Volume 34, No 1, pp 24-33

30

4.2. Proposed Wound-Wait

If (TS (Ti) < TS (Tj) && PTi > PTj)

 Print (Ti wound Tj and get it resource)

 Else If (TS (Ti) < TS (Tj) && PTi < PTj)

 Print (Ti continue to wait)

 Else If (TS (Ti) > TS (Tj) && PTi < PTj)

 Print (Tj wound Ti and get it resource)

 Else If (TS (Ti) >TS (Tj) && PTi >PTj)

 Print (Tj continue to wait)

Figure 4: Wound-Wait Algorithm

International Journal of Computer (IJC) (2019) Volume 34, No 1, pp 24-33

31

5. Implementation Of Proposed Algorithms

The proposed upgraded algorithms are implemented using C++ programming language and the tool used for

coding is Dev C++ [14] and we create a small data set containing three fields like Time stamp, Process ID ,

Priority using these three fields to perform testing of proposed upgraded algorithms and the dataset used for

testing the algorithms is show in the Table 1

Table 1: DataSet

Time Stamp Process ID Priority

1 P1 2

1.5 P2 1

1.7 P3 3

1.9 P4 2

2.1 P5 4

2.3 P6 6

2.7 P7 2

2.9 P8 1

3 P10 3

3.1 P11 2

3.4 P12 8

3.6 P13 10

3.9 P14 11

3.2 P15 3

3.5 P16 16

3.7 P17 18

4 P18 19

Table 1 displayed Time Stamp, Process ID, and Priority. In this table, we take random values for testing the

proposed upgraded algorithms. We take the float value for time stamp field and numeric values for Processes

and for priorities and then put the values of these three fields one by one in the proposed upgraded algorithms

and check its result. First, we put these three fields’ values in the upgraded wait-die algorithm. We show the

result of only one record of the proposed upgraded wait-die algorithm. Results after execution of wait-die

algorithm show in the following Fig.Wait-Die Result and then we put these three fields’ values in the upgraded

wound-wait algorithm .we show the result of only one record of the proposed upgraded Wound-Wait algorithm.

Results after execution of Wound-wait algorithm show in the following Fig.Wound-Wait Result.

International Journal of Computer (IJC) (2019) Volume 34, No 1, pp 24-33

32

Figure 5: Wait-Die Algorithm

Figure 6: Wound-Wait Algorithm

6. Conculusion

In this paper main, focus on the deadlock problem in the distributed system and evaluated the approaches like

wound wait and wait die. The major problem exist in these algorithms is that they do not attend priority of

processes. In the proposed upgraded wait die algorithm if the old process is to wait for the young process so the

old process continues to wait but the priority of the older process is higher than younger process so the young

process should be wait. Else, if the old process is to wait for the young process so the old process continues to

wait but the priority of the young process is higher than Old process so the Young process continues to wait. In

the proposed upgraded wound wait algorithm if the old process is waiting for young and the priority of the old

process is higher than young process so old process wound young process and acquire its resource. Else, if the

old process is to wait for young process and the priority of the young process is higher than the old process so

the old process should be wait. These proposed upgraded algorithms attend to both priority and timestamp of

processes figure number and caption should be typed below the illustration in 9pt and center justified.

International Journal of Computer (IJC) (2019) Volume 34, No 1, pp 24-33

33

Print References

[1] A. S. T. Maarten van Steen, “Distributed Systems,” pp. 1–596, 2017.

[2] Hardik Pandya, “Distributed Systems | Characteristics | Advantages | Disadvantages. | I’M FROSTY,”

Hardik Pandya, 2018. [Online]. Available: http://www.imfrosty.com/2014/11/distributed-system.html.

[Accessed: 27-Sep-2018].

[3] Chanaka Fernando, “The Evolution of Distributed Systems - DZone Cloud,” Chanaka Fernando, 2018.

[Online]. Available: https://dzone.com/articles/the-evolution-of-distributed-systems. [Accessed: 28-Sep-

2018].

[4] G. B. George Coulouris, Jean Dollimore, Tim Kindberg, DISTRIBUTED SYSTEMS Concepts and

Design, Fifth Edit. Addison-Wesley, 2011.

[5] M. Abdoos, “Improved Deadlock Prevention Algorithms in Distributed Systems,” Int. J. Eng. Appl.

Comput. Sci., vol. 02, no. 02, pp. 75–78, Feb. 2017.

[6] G. Dhiraj and V. K. Gupta, “Approaches for Deadlock Detection and Deadlock

[7] Y. Bhatia and S. Verma, “Deadlocks in Distributed Systems,” Int. J. Res., vol. 1, no. 9, pp. 1249–1252,

2014.

[8] D. Malhotra, “Deadlock Prevention Algorithm in Grid Environment,” vol. 02013, 2016.

[9] W. C. H. Cheng, “Using ordered and atomic multicast for distributed deadlock prevention,” Proc. - 1st

Int. Symp. Object-Oriented Real-Time Distrib. Comput. ISORC 1998, vol. 1998–April, pp. 106–116, 1998.

[10] F. Tang, I. You, S. Yu, C. L. Wang, M. Guo, and W. Liu, “An efficient deadlock prevention approach

for service oriented transaction processing,” Comput. Math. With Appl., vol. 63, no. 2, pp. 458–468, 2012

[11] S. Ghosh, “Distributed Systems: An Algorithmic Approach,” pp. 352–361, 2015.

 [12] J. Wu, Distributed system design. 2017.

 [13]Dev-C++ download SourceForge.net,” Slashdot Media.[Online]. Available: https: // sourceforge

.net/projects/orwelldevcpp/. [Accessed: 21-Feb-2019].

[14] Formulating DNA Chains Using Effective Calculability, Syed Atif Ali Shah, INTERNATIONAL

JOURNAL OF COMPUTER (IJC). http://ijcjournal.org

[15] Reengineering the Industrial CMMI, Syed Atif Ali Shah, Journal of Advances in Computer Engineering

and Technology 4 (3), 1-10.

https://sourceforge.net/
https://sourceforge.net/
javascript:void(0)
http://ijcjournal.org/
javascript:void(0)

	Print References
	[1] A. S. T. Maarten van Steen, “Distributed Systems,” pp. 1–596, 2017.

